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Abstract

Connective tissue growth factor (CTGF) is a signaling molecule that primarily functions in extracellular matrix maintenance
and repair. Increased Ctgf expression is associated with fibrosis in chronic organ injury. Studying the role of CTGF in fibrotic
disease in vivo, however, has been hampered by perinatal lethality of the Ctgf null mice as well as the limited scope of
previous mouse models of Ctgf overproduction. Here, we devised a new approach and engineered a single mutant mouse
strain where the endogenous Ctgf-39 untranslated region (39UTR) was replaced with a cassette containing two 39UTR
sequences arranged in tandem. The modified Ctgf allele uses a 39UTR from the mouse FBJ osteosarcoma oncogene (c-Fos)
and produces an unstable mRNA, resulting in 60% of normal Ctgf expression (Lo allele). Upon Cre-expression, excision of the
c-Fos-39UTR creates a transcript utilizing the more stable bovine growth hormone (bGH) 39UTR, resulting in increased Ctgf
expression (Hi allele). Using the Ctgf Lo and Hi mutants, and crosses to a Ctgf knockout or Cre-expressing mice, we have
generated a series of strains with a 30-fold range of Ctgf expression. Mice with the lowest Ctgf expression, 30% of normal,
appear healthy, while a global nine-fold overexpression of Ctgf causes abnormalities, including developmental delay and
craniofacial defects, and embryonic death at E10-12. Overexpression of Ctgf by tamoxifen-inducible Cre in the postnatal life,
on the other hand, is compatible with life. The Ctgf Lo-Hi mutant mice should prove useful in further understanding the
function of CTGF in fibrotic diseases. Additionally, this method can be used for the production of mouse lines with
quantitative variations in other genes, particularly with genes that are broadly expressed, have distinct functions in different
tissues, or where altered gene expression is not compatible with normal development.
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Introduction

Many of the diseases that have a major impact on human health

and pose a major burden on healthcare costs have a fibrosis-

related component. Coronary heart disease (CHD) was the single

largest killer in the United States in 2003, accounting for 1 in every

5 deaths [1]. Forty percent of acute CHD incidents result in death,

but for those who survive an ischemic event, permanent scarring of

heart tissue is largely unavoidable. Both myocardial infraction (MI)

and chronic high blood pressure result in scarring of the

myocardium known as cardiac fibrosis [2]. Cardiac fibrosis is

characterized by necrosis of myocardial tissue, collagen buildup,

and scar tissue contraction often resulting in ventricular diastolic

dysfunction and a poor long term prognosis [3–5]. Similarly, both

diabetic nephropathy and cirrhosis of the liver have been identified

as diseases with a large burden on the healthcare system and are

characterized by fibrotic tissue damage [6,7]. Prevention of

cardiac fibrosis and fibrotic disease in other organs (kidney, liver,

lung and others) is a promising strategy of intervention for

improving long term prognosis and quality of life.

All of the fibrosis-related diseases mentioned are characterized

by overexpression of connective tissue growth factor (CTGF

or CCN2, ENSMUSG00000019997), a primary fibrosis-related

signaling molecule [8]. CTGF is a member of the CCN (Cyr61,

Ctgf, and Nov) family of extracellular matrix (ECM) associated

proteins. Ctgf is widely expressed during development, and in

adulthood it is expressed in all major organs including the

vasculature and the skeletal system [9,10]. In the adult, expression

is nearly ubiquitous and promotes normal turnover and mainte-

nance of ECM. As part of normal wound healing following injury,

there is a marked induction of Ctgf expression [11]. Essentially,

CTGF acts as a central coordinator of multiple pro- and anti-

fibrotic signals and misregulation of CTGF is believed to result in

tissue fibrosis and scarring [11,12]. Increased Ctgf expression is

clearly associated with fibrosis in multiple tissues including skin,

liver, heart, lung, and kidney (reviewed in [11,12]). In addition,

CTGF is a diffusible protein and can be detected in urine and

blood [13,14]. A critical difference between healthy healing and

pathological fibrosis may be the temporal regulation of, and/or the

level and duration of, Ctgf expression. Thus, it is postulated that
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tight regulation of Ctgf expression is necessary to maintain healthy

tissues and induce healthy, non-fibrotic healing [15].

To examine the role of CTGF in vivo, several animal models

have been created. The first is a traditional knockout, which when

homozygous, is perinatally lethal. The pups are born, but do not

survive due to skeletal deformity, including a malformed rib cage

which causes an inability of pups to breathe properly. The

heterozygous knockouts survive and have little discernable fibrosis-

related phenotype [16]. Transgenic models of Ctgf overproduction

in bone and cartilage, cardiomyocytes, kidney podocytes, hepato-

cytes, lung epithelia and fibroblasts have also been made using

promoter-enhancers constructs specific to each cell type [17–23].

The fibrotic phenotypes of these strains vary widely ranging from

no increase in fibrosis to a clear fibrotic phenotype. In all of these

models the relationship between gene expression level and

phenotype is not clear since the normal control of Ctgf gene

expression is disrupted and the mechanism by which altered steady

state Ctgf gene expression influences non-target tissues has not

been described. Thus, the role of Ctgf expression in fibrosis remains

unclear and there is a need for animal models with variable Ctgf

expression in which there is minimal alteration in the natural

transcriptional regulation to clarify how altered Ctgf expression

levels may predispose or change the progression of heart disease

and other fibrotic diseases.

Here we describe an innovative method of modulating gene

expression by making one animal that can express either low

or high levels of a gene. This is made possible by use of Cre-

recombinase to alter expression in vivo from low to high. The

endogenous 39-untranslated region (39UTR) is replaced with a

cassette containing the 39UTR from the FBJ osteosarcoma

oncogene (c-Fos, ENSMUSG00000021250) and the 39UTR from

the bovine growth hormone (bGH) gene, also known as somato-

tropin (ENSBTAG00000017220), placed in tandem. Each 39UTR

modulates the stability of the mRNA transcript and can

respectively decrease (c-Fos) or increase (bGH) steady state levels

of mRNA in both cells and whole animals [24–27].

Using this method, we have created a single construct that

allows the examination of the role of Ctgf when it has reduced

expression, increased expression, or when expression is altered in a

tissue-specific manner. Our results show that Ctgf expression

reduced to 30% of wild type is survivable, while expression nine

fold higher than wild type leads to embryonic lethality by day

E12.5. Thus, we have created a 30-fold range of Ctgf expression in

vivo, which should prove useful in further understanding the

function of CTGF in fibrotic disease.

Results

Global, conventional KO of the Ctgf gene
In order to inactivate the Ctgf gene, we have made a targeting

construct to delete exons 3 through 5 of the Ctgf gene in the

genome in ES cells as illustrated in Fig. 1A. The 59 and 39 arms of

homology are a 4.7 kb BamH1/Nhe1 fragment and a 1.4 kb

Nsi1/Bgl2 fragment, respectively. A neomycin resistant gene was

used as a selection marker. Mice heterozygous for an inactivated

Ctgf KO allele appear normal and express the Ctgf gene at

approximately 50% levels. As reported by Ivkovic et al,

homozygous mice completely lacking CTGF are born but die

within 16 hours [16].

Strategy to generate the Ctgf-Lo and Ctgf-Hi alleles
Our initial attempts to increase the stability of Ctgf transcripts in

vivo using 39UTR replacement with the bGH-39UTR [24] met

with difficulties. Chimeric mice with a modified allele tended to be

runted and did not transmit the modified allele (data not shown).

In order to circumvent the potential embryonic lethality of high

Ctgf expression and generate adult mice overexpressing the Ctgf

gene, we devised a novel strategy using a low-high cassette (Lo-Hi)

that allows us to change gene expression levels from low to high by

altering mRNA stability (Fig. 1B). The second line in Fig. 1B

illustrates the Ctgf-Lo allele made by a replacement of the endo-

genous Ctgf gene 39UTR sequence with a cassette that includes

a loxP site, followed by the 39UTR sequence from the FBJ

osteosarcoma oncogene (c-Fos-39UTR), the neomycin resistant

gene (neo), a second lox P site, and the bGH-39UTR. The modified

allele, Ctgf-Lo, uses the c-Fos-39UTR and so its transcripts are less

stable than those from the wild type Ctgf allele. However, a Cre-

mediated recombination between the two loxP sequences in the

Lo-Hi cassette excises the c-Fos-39UTR and the neo gene and

generates the Ctgf-Hi allele that uses bGH-39UTR (Figure 1B, third

line). The transcript with the bGH-39UTR is more stable than nor-

mal and consequently steady state levels of Ctgf mRNA increase.

Mice with low Ctgf expression
Heterozygotes for the Ctgf-Lo (Ctgf Lo/+) allele are born and

appear normal. Ctgf Lo/+ mice were first intercrossed to determine

if the Ctgf Lo/Lo phenotype is viable. Pups were born from this

cross at a 10:18:5 genotypic ratio (+/+: Lo/+: Lo/Lo). The number

of Ctgf Lo/Lo pups was about half the expected Mendelian ratio

of 1:2:1 for the cross, but the Chi square test was not significant

(p = 0.409, n = 33). The Ctgf Lo/+ and Ctgf Lo/Lo pups are healthy,

reproduce normally, and are indistinguishable from their wild type

and heterozygous littermates.

The Ctgf Lo/Lo mice are expected to have reduced Ctgf mRNA

expression throughout the body. Tail snips from 10 day old pups

were used to assay for Ctgf mRNA expression. Ctgf Lo/Lo mice

express about 60% of wild type levels of Ctgf. The Ctgf Lo/Lo mice

are similar in Ctgf expression level to the Ctgf heterozygous

knockout (Ctgf KO/+) mice which express 50% of wild type Ctgf.

Ctgf Lo/+ heterozygotes have an intermediate Ctgf expression level

that is 85% of wild type mice (+/+: 100%66.8, n = 21, Lo/+:

85%65.1, n = 25, p,0.05, Lo/Lo: 60%611.4, n = 5, p,0.005,

Figure 2A).

Mice with very low Ctgf expression
Ctgf Lo/Lo mice were crossed to Ctgf heterozygous knockouts

(Ctgf KO/+) to generate mice with very low Ctgf expression (Ctgf Lo/

KO). Ctgf Lo/KO mice were born at the expected Mendelian ratio

of 1:1 (17 Lo/+: 15 Lo/KO). Tissues from adult siblings (males and

females) were assayed for Ctgf mRNA expression by RT-PCR. Ctgf

Lo/KO heart tissue had significantly lower Ctgf expression (heart:

Lo/KO: 30%64.2, n = 7, Lo/+: 85%614.3 for, n = 14, p = 0.002,

Figure 2B). Similarly, both kidney and lung had significantly

reduced Ctgf expression (kidney: Lo/KO: 33%623.5, n = 8, Lo/+:

85%615.0, n = 14, p = 0.01 and lung: Lo/KO: 23%611.9, n = 8,

Lo/+: 85%627.9, n = 14, p = 0.02, Figure 2B). When the results

from various tissues are combined, Ctgf expression in Lo/KO mice

is on average 29% of wild type ((30%+33%+23%)/3 = 28.7%).

The Ctgf Lo/KO animals reproduce adequately, are healthy,

phenotypically normal in appearance, and display no overt

structural phenotypes.

Embryonic lethality in mice with high Ctgf expression on
a B6.129 mixed background

When Cre is present, a Cre-mediated recombination between

the two loxP sequences within the Ctgf-Lo allele excises the c-Fos-

39UTR and the neo gene, this generates the Ctgf-Hi allele that uses

Ctgf Gene Expression Variants
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the bGH-39UTR. To generate mice carrying a Ctgf-Hi allele, Ctgf

Lo/+ mice on a B6.129 mixed genetic background were crossed to

a heterozygous whole body Cre expressing mouse line

129.Tg(Ella-Cre) (from B6.FVB-Tg(EIIa-cre) C5379Lmgd/J stock

that was backcrossed to 129/SvEv for 18 or more generations).

Heterozygotes for the Ctgf Hi allele (Ctgf Hi/+ mice) were defined

as presence of the bGH-39UTR, presence of a Cre allele and low

Neo gene copy number. After seven litters and 40 pups, no live

mice carrying both the modified Ctgf allele and the EIIa-Cre

transgene were recovered, suggesting the Ctgf-Hi allele causes an

embryonic lethal phenotype.

To examine the timing and nature of the lethality, we used

timed matings and recovered embryos between E13.5 and E14.5.

At this embryonic age, Ctgf Hi/+ embryos were recovered at a

ratio of 10:15:11:7 (+/+;Cre-: Lo/+;Cre-: +/+;Cre+: Hi/+;Cre+)

which was not different from the expected Mendelian genotypic

ratio of 1:1:1:1 (Chi Square, p = 0.385, n = 43).

At recovery, embryos were weighed and phenotypically classified

as normal, small, or small atyical without knowledge of the

genotype. Normal embryos were nondysmorphic in appearance,

of the expected developmental stage for the embryonic age, and

were within two standard deviations of the mean embryo weight for

that litter. Small embryos were nondysmorphic in appearance and

of the expected developmental stage for the embryonic age, but

small in size with a body weight below two standard deviations of

the litter average (litter averages include all pups that were

sufficiently intact to be weighed). Small atypical embryos were

developmentally delayed, macerated, or poorly vascularized with a

body weight below two standard deviations of the litter average. By

this classification method, no normal Ctgf Hi/+ embryos were

present among 43 embryos at E13.5-E14.5 (Figure 3). All of the Ctgf

Hi/+ embryos were either small or small atypical and were similar

in appearance to the examples in Figure 4E, which would be

classified as small atypical (Fig. 4A is a normal embryo from the

same litter). In addition to small size and weight, the Ctgf Hi/+
embryos generally lacked clearly visible vasculature, lagged behind

in development, and many were macerated and likely to be in the

process of reabsorption (Figure 4E). This suggests that the embryos

begin to die before E13.5. While the reason for the lethality is

unclear, we observed a less developed eye (4e top arrow), as a mark

of developmental delay and craniofacial defects including both

lateral and midline facial clefting (4e middle and bottom arrow,

respectively). No Ctgf Hi/+ embryos were recovered from the litters

older than embryonic day point 14.5.

Figure 1. Ctgf KO and Ctgf Lo-Hi allele. A) Ctgf KO allele. Line 1 is the endogenous Ctgf locus. Line 2 is the Ctgf KO allele construct. Line 3 is the
result following homologous recombination where exons 3–5 of the Ctgf gene were replaced with a neo cassette to generate the Ctgf KO allele. Black
boxes indicate coding exons and a white box indicates the endogenous 39UTR. B) Ctgf Lo-Hi allele. Line 1 is the endogenous Ctgf locus. The Ctgf Lo-Hi
allele was generated by replacement of the endogenous Ctgf-39UTR with a construct containing the c-fos-39UTR and a Neo cassette flanked by loxP
sites, followed by the bGH-39UTR. In line 2, the modified Ctgf gene uses the less stable c-Fos-39UTR which reduces gene expression (Ctgf Lo allele). In
the bottom line, following Cre-mediated recombination, the c-Fos-39UTR and Neo cassette are excised and the Ctgf gene uses the more stable bGH-
39UTR which increases gene expression (Ctgf Hi allele). TAA indicates a stop codon Restrcition sites are abbreviated B is BamH1, Bc is Bcl1, Nhe is
Nhe1, Nsi is Nsi1, and Bg is Bgl2.
doi:10.1371/journal.pone.0012909.g001
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Embryonic lethality in mice with high Ctgf expression on
a 129/SvEv background

In order to investigate the timing of the lethality more closely

and to examine embryo viability in a pure 129/SvEv background,

Ctgf Lo/Lo mice on a 129/SvEv background were crossed with

129.Tg(Ella-Cre) mice. After genotyping three litters, no Ctgf Hi/+
embryos were recovered at E13.5, suggesting an earlier lethality in

the fully inbred background. Embryos on a 129/SvEv background

were then harvested at E10.5 (Figure 4 B-D and F-H) for

examination of morphology.

Figure 2. Ctgf mRNA levels by quantitative RT-PCR. A) Ctgf mRNA expression from tail samples of 10 day pups from a cross of Ctgf Lo/+ parents.
All mice are siblings. The mean of Ctgf +/+ (wild type) expression is set to 100% expression LoLo: n = 5, Lo/+: n = 25, and +/+: n = 21. B) Ctgf mRNA
expression from tissues of five month old mice. Ctgf Lo/+ mice are the control with Lo/+ expression set to 85% based on results from Figure 2A. For
each organ Lo/+: n = 14 and Lo/KO: n = 8. C) Ctgf mRNA expression from whole mouse embryos at day points E11.5, normalized to Lo/+ the same as
Figure 2B. Lo/+: n = 8 and Hi/+: n = 13 D) Ctgf mRNA expression from tissues of 10 month old mouse tissues normalized to a combined control of
animals of the genotypes +/+;Cre-, Lo/+;Cre-, and +/+;Cre+. E) Neo gene copy number in embryos at day E11.5. Copy number is in arbitrary units and
normalized to Lo/+ = 100%. Lo/+: n = 18 and Hi/+: n = 28. For all graphs the Lo/+ animals are heterozygous for the Ctgf Lo allele and do not have a Cre
allele. The Hi/+ animals are heterozygous for the Ctgf Hi allele and have one EIIa-Cre allele.
doi:10.1371/journal.pone.0012909.g002
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The Ctgf Hi/+ embryos at E10.5 display developmental delay

and a number of morphological defects. The gapping open mouth

posture seen in Figure 4F (bottom arrow) and 4G is suggestive of a

small forebrain (also 4B and 4F top arrow) and the abnormal

indentation of the back of the head seen in Figure 4G (bottom

arrow) suggests an abnormal hindbrain. The embryo in Figure 4G

also appears to have less visible microvasculature in the face and

possibly elsewhere and has a less developed eye (top arrow 4 g)

suggesting possible developmental delay. Additionally, the closure

of the pharyngeal (branchial) arches, particularly between the first

and second (pharyngeal cleft one) and second and third arch

(pharyngeal cleft two), were abnormally patent (compare Figure 4D

to 4H).

No Ctgf Hi/+ embryos on a 129/SvEv inbred background were

recovered beyond E12.5 suggesting the lethality on the 129/SvEv

background is earlier than that of the B6.129 background, at

around day E11.5-E12. Despite the earlier time point of lethality

in the 129/SvEv background, developmental delay and craniofa-

cial defects were present in both backgrounds.

Gene expression levels of Ctgf Hi/+ embryos
In order to examine the expression levels of the Ctgf-Hi allele,

Ctgf Lo/Lo females were crossed to 129.Tg(Ella-Cre) Cre+ males

and the embryos were harvested at E11.5 and assayed for whole

body Ctgf gene expression using RT-PCR. Ctgf expression varied

greatly in Ctgf Hi/+ embryos, ranging between two and fifty times

greater than the mean of Ctgf Lo/+ embryos. Most likely this is due

to variations in developmental stage, embryo condition, and

variations in Cre expression. On average the Ctgf Hi/+ embryos

had a greater than ten fold increase in Ctgf mRNA levels compared

to the Ctgf Lo/+ littermate controls, which is a nine fold increase in

Ctgf expression over WT (Lo/+: 85%634, n = 8 and Hi/+:

930%6506, n = 13, p,0.05, Figure 2C).

To validate that excision of the c-fos-39UTR and neo gene was

occurring, whole embryos were assayed for neo gene copy number

as a measure of excision efficiency. On average Ctgf Hi/+ embryos

had less than one eighth the amount of neo alleles than the Ctgf Lo/

+ embryos (Lo/+: 100%67.8, n = 18 and Hi/+: 11.6%61.7,

n = 28, p,161027, Figure 2E). While the excision of the c-fos-39UTR

and neo is not complete, the switch from the Lo allele to the Hi allele is

occurring efficiently and in the large majority of cells. There did not

appear to be a direct relationship between reduction in neo copy

number and increase in Ctgf gene expression levels suggesting that

mechanisms other than just efficiency of c-fos-39UTR and neo

excision were regulating Ctgf gene expression levels in the embryos

(data not shown).

Pattern of CTGF protein in embryos
Increased Ctgf mRNA levels may be causing changes in the

levels or pattern of CTGF protein in Ctgf Hi/+ embryos. Thin

sections of embryos were stained with a CTGF antibody and a

fluorescent seconday then counterstained with DAPI to visualize

the level and pattern of CTGF protein. CTGF was visible in

almost evey tissue of the embryos and appeared to be primarily

staining the extracellular matrix and the cell surface (Fig. 5I–5L).

The Hi/+ embryo in Fig. 5D has the highest CTGF staining and

the Lo/+ embryo in Fig. 5A the lowest staining, suggesting a

genotype dependent difference CTGF levels. Although the heart

in Fig. 5A is staining strongly, this likely represents a specific and

perhaps short-lived induction of CTGF in the heart during em-

bryogenesis. The other two embryos (Fig. 5B and 5C) have similar

staining intensity despite being different genotypes suggesting

CTGF levels vary substantially within each genotype. For the most

part individual differences in staining were greater than the dif-

ferences between genotypes, and there was not a distinct difference

in the pattern of CTGF staining nor a dramatic difference in the

overall intensity of CTGF staining between Ctgf Lo/+ and Ctgf Hi/+
(Figure 5). Immunohistochemistry (IHC) with a higher antibody

concentration and E13.5 mixed genetic background embryos

yielded a similar result (data not shown).

Survivors with high Ctgf gene expression
After many matings, four Ctgf Hi/+ animals (out of 81 that were

genotyped) escaped embryonic lethality and survived to adulthood

(26:28:23:4 ratio of +/+,Cre2: Lo/+,Cre2: +/+,Cre+: Hi/+,Cre+).

One male and one female of the surviving animals were siblings

from a mixed B6.129 mating. Two additional male survivors came

one year later, one from a mixed B6.129 mating and one from a

129/SvEv mating. All four mice exhibited the same phenotype: a

shortened face, small ears, a shortened and kinked or curled tail,

and a shortened overall body length (Figure 6).

The surviving Ctgf Hi/+ animals and their sibling controls were

further characterized by dual energy x-ray absorptiometry (DEXA)

to assess whole body: bone mineral density (BMD), bone mineral

content (BMC) and body composition (lean, fat and % fat mass).

Although the number of samples was small and the animals were in

different genetic backgrounds, all of the Ctgf Hi/+ animals had

significantly smaller bone area and lean mass than controls (bone

area: controls: 9.8760.33 cm2 and survivors: 8.3560.57 cm2; lean

mass: controls: 25.461.1 grams and survivors: 21.060.95 grams,

controls: n = 9 and survivors: n = 4, p,0.05, Table 1) indicating a

smaller overall body size as suggested by their outward appearance.

The BMC of Ctgf Hi/+ survivors was low suggesting changes in the

bone mineralization or morphology (controls: 0.64260.033 grams,

n = 9 and survivors: 0.53260.052 grams, n = 4, p,0.05, Table 1).

At sacrifice several tissues including fat pads were collected and

weighed to determine any gross differences. There were no

differences in total amount or relative amounts of renal, inguinal,

or mesenteric fat (data not shown). Organ weights tended to be

smaller with both kidney and lung significantly smaller in the Ctgf

Hi/+ survivors (Kidney: controls: 0.22160.010 grams and

survivors: 0.17060.013 grams; Lung: controls: 0.13360.009

grams and survivors: 0.09760.008 grams, controls n = 9 and

Figure 3. Phenotype of E13.5 embryos. Embryos are from a cross
between Ctgf Lo/+ and EIIa-Cre +/- parents. The number of embryos for
each genotype classified as Normal, Small, or Small atypical. +/+ n = 9,
Lo/+ n = 15, Cre+ n = 11, Hi/+ n = 7. The +/+ animals are wild type for Ctgf
and do not have a Cre allele, Lo/+ animals are heterozygous for the Ctgf
Lo allele and do not have a Cre allele. Cre+ are wild type for Ctgf and
have one Cre allele. And Hi/+ are heterozygous for the Ctgf Hi allele and
have one Cre allele.
doi:10.1371/journal.pone.0012909.g003
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survivors n = 4, p,0.05, Table 1). However, organ weights as a

ratio of total body weight tended to be smaller in Ctgf Hi/+
survivors but were not significantly different from the controls

(Table 1). The organ weight ratios were not different from controls

because at sacrifice the Ctgf Hi/+ survivors were smaller in total

body weight than controls (controls: 35.72061.65 grams, n = 9

and survivors: 29.05763.57 grams, n = 4, p,0.05, Table 1)

suggesting that Ctgf Hi/+ survivors have a normally proportioned

but smaller body size.

Heart, kidney and lungs from Ctgf Hi/+ survivors and siblings or

age-matched controls were harvested and assayed for Ctgf gene

expression using RT-PCR. There was a significant increase in Ctgf

expression in each tissue (Figure 2D). The heart had a modest

increase at two-fold above controls, kidney is three-fold increased,

and lung had the largest change at nearly five-fold increased Ctgf

expression over sibling controls (Heart: Lo/+: 85%69.6, Hi/+:

190%616.6, p,0.0001; Kidney: Lo/+: 85%611.6, Hi/+: 286%6

67.9, p,0.001; Lung: Lo/+: 85%610.1, Hi/+: 482%6111.6,

p,0.0001, n = 9 controls and n = 4 survivors, Figure 2D). At the

time of sacrifice, 10 months of age, the Ctgf Hi/+ survivors

appeared healthy and did not seem to have accelerated aging.

Histological evaluation of sections of heart, kidney, and lung was

not remarkable and not different from age matched controls (data

not shown).

Global increase of Ctgf gene expression in adult mice
The survival of several animals with very high Ctgf expression

suggests that while high Ctgf expression is embryonic lethal, in

an adult it is compatible with survival. To test this hypothesis

we crossed Ctgf Lo/Lo mice with CAG-Cre mice, which are a

tamoxifen-inducible global Cre expresser strain [28]. At four to six

weeks of age, offspring were treated with tamoxifen to induce Cre

expression. PCR of small skin biopsy of tamoxifen-treated animals

showed that the Lo-Hi allele functioned as predicted with excision

of the c-fos-3-UTR and neo (Lo allele) to generate the smaller the

Hi allele in the presence of tamoxifen and the inducible Cre gene

(Figure 7C). Similar to Hi/+ survivors and embryos, Ctgf gene

expression in Cre expressing mice (Ctgf Hi/+ mice, after tamoxifen

treatment) was approximately four-fold higher than in Ctgf Lo/+
mice without the Cre gene (Lo/+: 85%615.3, n = 23 and Hi/+:

357%663.4, n = 20, p.0.00005, Figure 7A).

Three months after tamoxifen treatment both males and

females remained indistinguishable from the non-Cre carrying

littermates, suggesting that high levels of Ctgf expression in the

adult are survivable. This experiment also shows that our construct

can be used in an inducible fashion to study fibrotic disease in

adult animals.

CTGF protein levels in plasma
To confirm that changes in Ctgf mRNA expression translated to

changes in CTGF protein abundance, a Western blot of plasma

samples with a mouse-specific CTGF antibody was performed for

quantitation. CTGF is a secreted protein and is known to circulate

in plasma at measurable levels. Recent human and mouse research

has suggested that CTGF protein levels in the plasma can be used

as a non-invasive marker of Ctgf gene expression levels [29,30].

Band sizes ranging from 11 kDa to the full length 38 kDa have

been reported in Western blots for CTGF, including multiple

reports of a doublet around 31 kDa [31,32]. The primary band we

observed for CTGF in adult plasma was a doublet around 31 kDa

(Fig. 7D). Quantitation by densitometry showed that the Ctgf Lo/Lo

mice had significantly reduced CTGF protein to a level that was

about 60% of wild type (Lo/Lo: 0.6260.077, n = 5, +/+:

1.0060.135, n = 5, p,0.05, Figure 7B), which is similar to the

Ctgf Lo/Lo mRNA expression levels (Figure 2A). In contrast,

tamoxifen-treated Ctgf Hi/+ animals had significantly increased

CTGF protein abundance of about 170% of wild type (Hi/+:

1.7260.037, n = 7, p,0.0001, Figure 7B). While this is not as high

as the mRNA expression levels it is a significant and very

consistent increase in CTGF protein levels.

Discussion

Previous studies have shown that altering or interchanging

the 39UTR of a gene is an effective method for altering gene

expression in cells and in animals [24–27]. The method takes

advantage of the idea that the 39UTR, in part, regulates mRNA

abundance primarily through modulating mRNA stability. In

altering the stability of a gene’s mRNA, the mRNA abundance

and thus the protein abundance can be modulated in a

qualitatively predictable manner. By combining Cre-lox technol-

ogy with the use of two well-characterized 39UTR sequences, c-

Fos-39UTR and bGH-39UTR, a single allele that can decrease or

increase gene expression has been assembled. This method was

applied to the gene Ctgf to generate an allelic series that has a 30-

fold range of Ctgf expression as summarized in Table 2. In

addition, in line with previous reports by Ivkovic et al [16], our Ctgf

KO/KO (homozygous knockout) are born but die within a day.

We found that embryos with a Ctgf Hi allele had increased Ctgf

mRNA levels that were nine-fold higher than WT in embryos and

the increase in Ctgf expression was embryonic lethal, depending on

genetic background, between day E11 and E13.5. The lethality of

the Ctgf Hi allele, made from the Lo-Hi allele, recapitulates the

lethality observed in our previous attempts to directly generate a

Ctgf Hi allele with the bGH-39UTR. Embryos from both 129/SvEv

and B6.129 mixed backgrounds display craniofacial defects

consistent with alterations to the first and second pharyngeal

arches. The fissures between the arches in the mutant E10.5

embryo in Figure 4H do not have a jagged border or other

morphology that indicates a handling-related tear. In addition,

similar fissures were observed in two other Ctgf Hi/+ embryos,

suggesting that this defect was a result of high Ctgf gene expression.

Defect of the pharyngeal arches, rostrum and midline in Ctgf Hi/+
embryos are in congruence with previous reports that Ctgf is highly

expressed in these regions at E9.5-E10.5 [16]. In humans, altered

development of the first and second pharyngeal arches is known to

cause malformations of the ear, cheekbone, upper and lower jaw,

soft palate, eye, and facial muscles and nerves [33]. In particular,

Figure 4. E14.5 and E10.5 embryos. A) and E) are fixed embryos at E14.5 from a cross between Ctgf Lo/+ and EIIa-Cre +/2 B6.129 mixed
background parents. A) is a normal Lo/+ and E) is a small atypical Hi/+ at higher magnification. Top arrow denotes less developed eye in E) and the
lower two arrows point to lateral and midline facial clefting, respectively. Embryos B) to D) and F) to H) are E10.5 embryos from a cross between Ctgf
Lo/Lo and EIIa-Cre +/2 129/SvEv background parents. B), C), and F), G), are unfixed embryos. B), C) and D) are normal Ctgf Lo/+ embryos. F), G), and H)
are Ctgf Hi/+ embryos. The top arrow in B) and F) points to the forebrain which appears smaller in F) and the lower arrow points to the mouth gape in
F) also indicative of a small forebrain. The top arrow in C) and G) points to the eye and the bottom arrow points to the hindbrain which both appears
abnormal in G). The pictures in D) and H) are from scanning electron microscopy. The arrows in D) and H) point to the first (top) and second (bottom)
pharangeal (branchial) clefts. In D) there is normal closure of the clefts and in H) the clefts are abnormally patent (open). B) and C) are the same
embryo and F) to H) are the same embryo. The bars in A), B), E), and F) represent 1000 mm and in C), D), G), and H) the bars represent 250 mm.
doi:10.1371/journal.pone.0012909.g004
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closure defects of the first and second pharyngeal clefts (the spaces

between the arches) are associated with oblique or lateral clefting

and cervical/branchial (neck) fistula [34].

The generalized developmental delay and craniofacial defects

like those seen in Ctgf Hi/+ embryos by themselves are not

necessarily lethal [35], so it remains unclear why the Ctgf Hi allele

is embryonic lethal. Craniofacial defects are often observed in

conjuction with cardiac defects and both phenotypes are thought

to be caused by improper migration and differentiation of neural

crest cells [36,37]. Defects including craniofacial dysmorphism and

abnormal pharyngeal arches as well as cardiac defects were

observed in transforming growth factor (TGFb) family knockout

mutant mouse strains and were thought to be caused by defective

neural crest cell migration [36]. Although, TGFb isoforms are

most commonly thought to increase Ctgf expression [38], there are

recent reports that suggest Tgfb2 can inhibit Ctgf expression [39]. If

TGFb2 is regulating CTGF in utero, loss of Tgfb2 could lead to

increased levels of CTGF, creating a similar phenotype to our

model of increased Ctgf expression. Therefore, dysfunction of

neural crest cells, which likely causes the craniofacial defects in Ctgf

Hi/+ embryos, may be the ultimate reason for the embryonic

lethality. No overt defects were observed in the heart in our limited

histological analysis, and immunohistochemical staining revealed

that Ctgf expression may be generally increased in Hi/+ embryos

but is not consistent. Despite the large increase in mRNA,

immunohistochemistry (IHC) does not show large differences in

CTGF levels suggesting that IHC may not be sufficiently sensitive

or that translational regulation may be occurring. Future experi-

ments using in situ hybridization and/or tissue-specific over-

expression of Ctgf should focus on defects in neural crest cells,

Figure 5. Immunofluorescence of E11.5 Ctgf Lo and Hi embryos. Panels A) – D) are stained with an anti-CTGF antibody and a Alexa 594 (Texas
Red) secondary. Panels E) – H) are stained with DAPI to highlight nuclei. Panels I) – L) are a merge of the Red and the DAPI layer. Genotypes for each
panel are as marked on the panel. The panels in each row are from the same section. All panels are at 56magnification.
doi:10.1371/journal.pone.0012909.g005

Figure 6. Survivors of Ctgf Hi/+ embryonic lethality. Gross morphology of high Ctgf-expressing survivors at 10 months old. Males are shown in
A) and B) and females are shown in C) and D). In A) and B) the Ctgf Hi/+ mice (foreground) have small ears, shortened face and short body length. B)
The short curly tail of the Hi/+ male. D) Short kinked tail and short body of the Hi/+ female (top) compared with a control sibling (bottom). All the
animals shown are siblings from a cross between Ctgf Lo/+ and EIIa-Cre +/2 animals on a mixed B6.129 background. The controls (background of A)
and C) and bottom of D)) are of the genotype Ctgf Lo/+.
doi:10.1371/journal.pone.0012909.g006
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especially in the heart, as a possible cause for the Ctgf Hi/+
embryonic lethality.

Alternative causes for lethality in Ctgf Hi/+ embryos include

failures of vasculogeneis or erythropoeisis, both are crucial devel-

opmental milestones of E10-E12 embryos [40]. Many of the Ctgf

Hi/+ embryos recovered appeared generally pale and may have

lacked proper circulation. Vascular endothelial growth factor

(VEGF) is known to be an essential factor in vasculogenesis and is

thought to have a complex regulatory relationship with CTGF

[41–43]. Disruption of VEGF signaling caused by high CTGF

levels could be the cause of this defect. Failures in placental

development, cell migration, or hematopoietic proliferation at this

embryonic stage are also common reasons for embryonic lethality

and could be the cause of lethality in the Ctgf Hi/+ embryos [44–46].

An unexpected benefit of the uneven penetrance of the EIIa-Cre

has been the few animals that have escaped the embryonic lethality.

Genotyping showed that the survivors do not have complete neo

excision in tail DNA suggesting they are mosaics for the Ctgf Lo and

Ctgf Hi alleles and likely escaped lethality due to low Cre expression

during embryogenesis. Like the embryos, the survivors express

significantly increased Ctgf as well as exhibit craniofacial defects in

the form of a shortened rostrum. In addition, similar to previously

reported Ctgf high expression transgenics, [17,18] the survivors have

skeletal defects in the form of shorted body-length, shortened or

kinked tails, and reduced bone mineral content. All of these

similarities as well as mRNA expression levels suggest that the Ctgf

Hi/+ survivors are true high expressers.

The EIIa-Cre line is known to have a mosaic pattern of Cre

expression with varying excision efficiency in different tissues as

well as large variability between animals in the amount of

Cre-mediated excision. Previous reports have shown that with

the Ella-Cre as few as 50% of animals undergo high levels of

Cre-mediated excision in the first generation [47,48]. The EIIa-

Cre expression profile reported by The Jackson Laboratory shows

that certain organs such as lung and kidney have very high Cre

expression in adults and other organs such as heart have much

lower Cre expression [49]. It is noteworthy that the pattern of gene

expression observed in our survivor mice is similar to the report of

Cre expression by The Jackson Laboratory and shows that Ctgf

expression is moderately increased in heart (two-fold) and

substantially increased in the kidney and lung (three-fold and

five-fold, respectively).

These surviving animals are rare with only four animals

surviving the embryonic lethality in two years of breeding.

Matings of survivor males never produced offspring that carried

a fully floxed (neo negative) high expressing allele, reinforcing that

the Ctgf Hi/+ allele is embryonic lethal. Therefore, due to their

rarity and lack of direct transmission of the Ctgf Hi/+ allele, these

animals are not a tenable model for Ctgf overexpression.

We then used a mouse strain that expresses tamoxifen-inducible

Cre gene and showed that high Ctgf expression in an adult is not

lethal. With only a moderate dose of tamoxifen, these animals

express a four-fold increase in Ctgf mRNA and a nearly two fold

increase in CTGF protein abundance in plasma and do no appear

to suffer any immediate ill effects. Unlike the low Ctgf expression

models where decreases in protein levels paralleled that of mRNA,

in the Ctgf Hi/+ there is a two-fold difference between the protein

abundance in plasma (1.7-fold increased) and the tissue mRNA

gene expression (3.6-fold increased). The discrepancy may be due

to the inaccuracy of the method used to quatitate the protein or to

unknown regulation at the translational level. The increase in Ctgf

mRNA was not as high as in the embryos so a higher tamoxifen

dose, or treatment at a younger age, may increase Ctgf expression

to a level closer to the nine-fold increase we observe in embryos.

Previous reports have implicated CTGF as a profibrotic signaling

molecule leading to the suggestion that reducing Ctgf expression by

treatment with a drug or a monoclonal antibody may be a worth-

while therapeutic strategy in treating fibrotic disease [11,29,30].

This therapeutic strategy, however, remains largely untested. The

lack of overt fibrotic phenotype in histological analysis of the Ctgf

Hi/+ survivors and the externally normal phenotype of the

tamoxifen treated Ctgf Hi/+ animals suggests that genetically

increasing Ctgf expression by itself is not sufficient to cause fibrosis.

This is consistent with a report which showed that exogenous

application of CTGF to the skin alone is not sufficient to cause

fibrosis [50]. Transgenic mice overexpressing Ctgf in cardiomyocytes

[19], kidney podocytes [20], and hepatocytes [21] show no

spontaneous fibrosis of tissue while transgenic mice overexpressing

Ctgf in lung respiratory epithelial cells [22], and fibroblasts [23] show

abnormal thickening of the alveolar septa or dermis and fibrotic

alterations [22,23]. However, fibrosis in the lung-specific model is a

largely development-related phenotype [22] and in the fibroblast-

specific model the in vivo level of Ctfg expression was not established

[23], so these results may differ from ours because of differences in

levels of Ctgf expression or that the transgene is not responsive to

normal transcriptional regulation of the Ctgf allele at the endogenous

locus. Altogether, the current literature does not preclude a role for

CTGF in fibrotic disease, but it suggests that activation of other

factors or the application of stress may be required in addition to

Ctgf overexpression in order to cause fibrosis.

Increased Ctgf expression has been observed in conjunction with

fibrotic pathology in a number of organs and disease conditions.

However, an unequivocal role for Ctgf as a causal factor in

pathological fibrosis remains questionable. An allelic series with a

wide range of genetically altered Ctgf gene expression provides a

tool to test, the effectiveness of reducing Ctgf expression, in vivo, to

Table 1. DEXA and necropsy measurements of Ctgf Hi/+
survivors and sibling controls.

Measurement Control Hi/+; Cre +
T-Test p-
value

Bone (DEXA) BMD (g/cm2) 0.0648 0.0635 0.357

BMC (grams) 0.642 0.532 0.048

Area (cm2) 9.87 8.35 0.016

Tissue (DEXA) Lean (grams) 25.4 21.0 0.013

Fat (grams) 11.3 9.9 0.312

Total (grams) 36.7 30.8 0.072

% Fat 30.0 30.0 0.485

Weight (Fresh) Total 35.720 29.057 0.037

Kidney 0.221 0.170 0.007

Heart 0.167 0.142 0.081

Lung 0.133 0.097 0.017

% of Body Weight Heart/Total 0.475 0.485 0.347

Kidney/Total 0.311 0.300 0.329

Lung/Total 0.381 0.343 0.268

The top half of table is DEXA measurements of live mice at 10 months of age
and the bottom is necropsy data. Mice were euthanized at 10 months of age
and total body weight and organ weights were measured. Males and females
were pooled. The p-value for each measurement is from Student T-test.
Statistically significant p-values are shown in black. Controls: n = 9 and Hi/+:
n = 4. Genotype of controls: Lo/+: n = 4, Cre+: n = 3, and +/+: n = 2. Cre+ animals
are wild type for Ctgf and +/+ animals are wild type for Ctgf and do not have a
Cre allele. BMD = bone mineral density and BMC = bone mineral content.
doi:10.1371/journal.pone.0012909.t001
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prevent fibrotic disease and determining if increased expression of

Ctgf is causal in fibrotic disease. In addition, by generating mouse

lines with varying Ctgf expression using the endogenous locus, the

function of Ctgf in fibrotic disease can be tested more effectively.

We note that this method of altering gene expression, through

altering a gene’s 39UTR, avoids many of the issues of random

insertion transgenes including insertional mutagenesis. Addition-

ally, a single founder with the Lo-Hi allele in combination with

existing resources allows the production of an allelic series of

quantitative variants. We also note that, the construct can be

arranged to produce a Hi-Lo allele which high expression allele

can be switched to low expression allele. Altogether, this method

will likely be particularly useful for genes with multiple separate

functions, genes expressed in many tissues, as well as in cases

where altered gene expression causes embryonic lethality.

Methods

Ethics statement
All animals were cared for in accordance with guidelines set

forth by the Association for Assessment and Accreditation of

Laboratory Animal Care. The University of North Carolina –

Chapel Hill’s ‘‘Institutional Animal Care and Use Committee’’

(IACUC) approved all studies (protocol #08-045 and #07-228).

Table 2. Strains in the Ctgf allelic series.

Ctgf genotype Allele
Ctgf mRNA
Expression

KO/KO del/del 0%

Lo/KO c-fos-39/del 30%

+/KO WT/del 50%

Lo/Lo c-fos-39/c-fos-39 60%

Lo/+ c-fos-39/WT 85%

+/+ (WT) WT/WT 100%

Hi/+ inducible bGH-39/WT 360%

Hi/+ embryos bGH-39/WT 930%

Ctgf expression levels are relative to WT. A single WT allele expresses 50%
(2650% = 100%). Each copy of the Ctgf Lo allele expresses about 30% of WT
(Lo/+ = 30%+50%<85%). Each copy of the Ctgf Hi allele expresses about 300%
to 860% of WT. Abbreviations: KO is knockout, del is exon 3–5 deletion, and 39 is
39UTR.
doi:10.1371/journal.pone.0012909.t002

Figure 7. Ctgf mRNA levels in tamoxifen treated adults and CTGF protein abundance in plasma. A) Ctgf mRNA determined by RT-PCR in
tamoxifen treated mice from a cross of Ctgf Lo/Lo and CAG-Cre +/2 animals on a B6.129 F1 background. All animals were treated with tamoxifen and
Lo/+ is set to 85% as a control. Lo/+: n = 23 and Hi/+: n = 20. B) Quantification of CTGF protein abundance in plasma as calculated using ImageJ. Lo/Lo:
n = 5, +/+: n = 5, and Hi/+: n = 7 animals for each genotype. C) A 330 bp band corresponds to the Ctgf Lo allele and a 240 bp band corresponds to the
Ctgf Hi allele. The PCR reaction is not quantitative but the presence of the 240 bp band indicates that Cre-mediated excision of DNA flanked by the
loxP sequences has taken place. Presence of 330 bp band in animals with Ctgf Hi allele (Hi) indicates that the excision is not complete. DNA from the
wild type animal (WT) does not amplify with these primers indicating the absence of the Ctgf Lo allele. The lane of size markers is indicated by M. D) A
representative western showing a doublet band for CTGF just above 31 kDa for three Ctgf Lo/Lo mice, three WT mice and three Ctgf Hi/+ mice. In A)
Lo/+ animals are heterozygous for the Ctgf Lo allele and do not have a Cre allele. In A), B), and D) Hi/+ animals are heterozygous for the Ctgf Hi allele,
have one tamoxifen-inducible CAG-Cre. All animals have been treated with tamoxifen.
doi:10.1371/journal.pone.0012909.g007
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Modifications of the Ctgf gene
In order to inactivate the Ctgf gene, we have made a targeting

construct to delete exons 3 through 5 of the Ctgf gene in the

genome in ES cells as illustrated in Fig. 1A. The 59 and 39 arms of

homology are a 4.7 kb BamH1/Nhe1 fragment and a 1.4 kb

Nsi1/Bgl2 fragment, respectively, and a neomycin resistant gene

(neo) was used as a selection marker. The Ctgf-Lo allele (Figure 1B)

was made by replacing the endogenous Ctgf gene 39UTR sequence

with a cassette that includes a loxP site, followed by the 39UTR

sequence from the c-Fos gene (c-Fos-39UTR), neo, a second lox P

site, and the 39UTR from the bovine growth hormone gene (bGH-

39UTR). A 1060 bp fragment of DNA including the Ctgf-39UTR

sequence, 510 bp of 39flanking and the polyA addition signal were

removed from the endogenous locus leaving the 20 bp immedi-

ately following the TAA stop codon intact.

Gene targeting in mouse ES cells (TC1) from 129S6/SvEvTac

(129/SvEv) was carried out using the procedures described

previously [27,51]. Cells with planned mutations were identified

with PCR, followed by confirmation with Southern blot analyses,

and used for generating mice carrying the mutations.

Mice
Both the Ctgf KO and Ctgf Lo-Hi mice were established and

maintained on a 129S6/SvEvTac (129/SvEv) background. The

Ctgf Lo-Hi mice were also backcrossed to C57BL6/J (B6) then

intercrossed two to three generations to create a mixed B6.129

background. Initial experiments were with these mixed back-

ground animals as noted.

The B6.FVB-TgN(EIIa-Cre)C5379Lmgd/J (EIIa-Cre) constitu-

tive global Cre expressing mice were a gift from Dr. Westphal at

the NIH [48]. The EIIa-Cre mice were backcrossed to 129/SvEv

mice for at least 18 generations before being bred to the Ctgf Lo-Hi

mice.

The inducible global Cre expressing mice are B6.Cg-Tg(CAG-

cre/Esr1)5Amc/J from The Jackson Laboratory, Bar Harbor, ME

stock number: 4682 (CAG-Cre) [28]. This Cre line uses the

chicken beta actin promoter/enhancer coupled with a cytomega-

lovirus enhancer (CAG) under control of a mutant mouse estrogen

receptor ligand binding domain. The latter receptor ligand

domain is unresponsive to estrogen but sensitive to the synthetic

ligand 4-hydroxytamoxifen (tamoxifen). Therefore, the CAG-Cre

allele produces robust expression of Cre only in the presence of

tamoxifen [28].

Genotyping
Animals were genotyped as appropriate using DNA from either

toe or tail snips using standard protocols. Ctgf KO animals were

genotyped by PCR with the primers: 59-TCG AGT TCA GAA

CCA GAG CT-39 (common), 59-TCC GAT TCC TAC CAG

GAA GT-39 (endogenous), and 59-TTA TGG CGC GCC ATC

GAT CT-39 (neo) with the conditions (92uC for 30 sec., 58uC for

30 sec, 60uC for 7 min) for 35 cycles. Because amplification is

passing through the highly repetitive 39UTR region the amplifi-

cation step is done at a lower temperature to improve Taq fidelity.

The endogenous band is 550 bp and the KO band is 320 bp.

Ctgf Lo alleles were genotyped by PCR with the primers: 59-

CAC TCT GCC AGT GGA GTT CA-39 (common), 59-TAA

TTT CCC TCC CCG GTT AC-39 (endogenous), and 59-CAC

AGC CTG GTG TGT TTC AC-39 (c-Fos) and the conditions

(92uC for 30 sec, 57uC for 45 sec, 65uC for 2.5 min) for 35 cycles.

The endogenous band is 525 bp and the Ctgf KO band is 375 bp.

Genotyping for Ctgf Hi allele was performed using fluorescent

primer probe sets in real time PCR with ABI 7500 Fast Real Time

PCR 3 system (Life Technologies Carlsbad, CA). The Ctgf Lo allele

was defined as the presence of the bGH-39UTR and neo and the

absence of Cre (where applicable). The Ctgf Hi allele was defined

as the presence of both the bGH-39UTR and Cre as well as a the

absence or low neo gene copy number. Primer sets for bGH-

39UTR: TGC CAG CCA TCT GTT GTT TG (forward), ACA

GTG GGA GTG GCA TCT T (reverse), and FTC TCC CCC

GTG CCT TCC TTG AQ (probe), for neo: GAC GGC GAG

GAT CTC GTC G (forward), TAT GTC CTG ATA GCG GTC

CG (reverse), and FAC CCA TGG CGA TGC CTG CTT GCC

GQ (probe), and for Cre: GGC AGT AAA AAC TAT CCA GCA

(forward), GCC GCA TAA CCA GTG AAA CA (reverse), FAT

TGC TGT CAC TTG GTC GTG GCA GCQ (probe). For all

probes F is 59 fluorescein (FAM) and Q is the 39 quencher

(TAMRA).

Quantitation of Neo gene copy number
When genotyping by real time PCR relative gene copy number

for the allele of interest, in this case the neo gene, is quantitatively

measured. We have used the relative neo gene copy number

information from RT-PCR genotyping as a proxy for determining

the efficiency of excision of the Lo (c-fos-39UTR and neo) portion

of the Ctgf Lo-Hi allele.

Embryo Recovery
To recover embryos, females were checked for mucosal plugs

every morning. If a plug was observed the female was separated

and watched for pregnancy by visual inspection. At the designated

embryonic day point (from E10 – E15 for these experiments)

mothers were sacrificed and embryos were recovered live. The

embryonic sac (amnion) was separated from each embryo and

used for genotyping. Each intact embryo was rinsed in PBS then

weighed whole (when possible) and assessed for phenotype. At

recovery, embryos were phenotypically classified based on body

weight and gross appearance before genotype was determined.

‘‘Normal’’ embryos were nondysmorphic in appearance and at the

expected developmental stage for the embryonic age and were

within two standard deviations (heavier or lighter) of the mean

embryo weight for that litter. ‘‘Small’’ embryos were nondys-

morphic in appearance and at the expected developmental stage

for the embryonic age, but were small in size and had a body

weight below two standard deviations of the litter average (litter

averages include all pups that are sufficiently intact to be weighed).

‘‘Small atypical’’ embryos were developmentally delayed, macer-

ated, or poorly vascularized and had a body weight below two

standard deviations of the litter average. Embryos were fixed with

4% paraformaldehyde or gluteraldehyde as needed for further

studies.

Ctgf Gene Expression Profiling
Mice were euthanized with an overdose of 2,2,2-tribromoeth-

anol and mRNA was harvested from tissues for gene expression

profiling. Assays were performed by real-time quantitative RT-

PCR as previously described [27]. The primer/probe sets used for

Ctgf mRNA expression were: AGT CGC CTC TGC ATG GTC

A (forward), GCG ATT TTA GGT GTC CGG AT (reverse), and

FCC TGC GAA GCT GAC CTG GAG GAA AQ (probe). All

samples were normalized to b-actin using primer set: AAG AGC

TAT AGA CTG CCT GA (forward), ACG GAT GTC AAC

GTC ACA CT (reverse), and FCA CTA TTG GCA ACG AGC

GGT TCC GQ (probe). Additional samples for gene expression

were either tail samples from 10–12 day old pups or whole

embryos harvested from timed matings at embryonic day E10-12

(days post-coitum). For tamoxifen treated animals, three weeks

after tamoxifen treatment ear tissue biopsies were taken by small
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punch on lightly anesthetized (2,2,2-tribromoethanol) mice at 3–4

months of age.

Immunohistochemistry
Embryos were recovered and sectioned as described above.

Sections were deparrafinned then stained with Rabbit anti-CTGF

primary antiboday at 1:100 or 1:500 dilution (Genetex Irvine, CA)

and a anti-Rabbit Alexa Fluor 594 at 1:200 dilution (Molecular

Probes Eugene, OR). Sections were counterstained with DAPI to

visualize nuclei. To correct for autofluorescence, for each section

there was an adjacent section stained with secondary antibody

only. Sections were examined on a Nikon Eclipse 80i and

photographned with Nikon DS-QiMc 12mp digital camera and

NIS Elements BR 3.0, SP6 (build 539) software.

Body mass composition and bone density
Using Dual Energy X-ray Absorptiometry (DEXA) we

measured body mass composition and bone density. Mice were

lightly anesthetized with isofluorane then scanned, excluding the

head, using PIXImus DEXA (Lunar Corporation, Madison, WI).

Measurements and calculations were performed as previously

described [52]. For analysis of DEXA data, males and females

were pooled and put in two groups, either Ctgf Hi/+ or controls

(including sibling controls of the genotypes Ctgf Lo/+;Cre-, Ctgf +/+;

Cre+, or completely wild type).

Tamoxifen Treatment
The Ctgf Lo/Lo mice were crossed to the tamoxifen inducible

CAG-Cre mice to produce Ctgf Lo/+ and Ctgf Lo/+; Cre+ mice. At

six weeks of age mice were treated with tamoxifen at a dose of

3 mg/kg of body weight for four consecutive days [28,53,54].

Following treatment the Ctgf Lo/+; Cre+ mice are designated with

the genotype Ctgf Hi/+. Mice were monitored for any overt

phenotypic changes.

PCR Validation of Ctgf Lo-Hi allele
DNA was isolated from skin biopsy samples of animals that

carry a single copy of the modified allele and with or without

tamoxifen-inducible global Cre transgene. All animals were

treated with tamoxifen four months prior to the collection of the

samples. The Ctgf-Lo was allele amplified with primer1 (59-ACA

GGA AGA TGT ACG GAG AC-39, corresponding to the sense

strand of Ctgf exon 5) and primer2 (59-GCT ACA TCT CTG

GAA GAG GT-39, corresponding to the antisense strand of cFos

39UTR) and the Ctgf-Hi allele amplified with primer1 and primer3

(59-CAC CTA CTC AGA CAA TGC GA-39, corresponding to

the antisense strand of bGH 39UTR sequence. PCR products

were run on 1.5% agarose gel and stained with ethidium bromide

to visual bands.

Western Blot and Protein Quantitation of Plasma
All plasma samples for western blot and protein quantita-

tion were obtained through retro-orbital or tail vein bleed on

anesthetized mice. 0.5 M EDTA was added to whole blood it was

spun to obtain plasma. Plasma was used fresh or frozen at 220uC
until used. Pre-poured (Nu-Sep iGel) 10% polyacrylamide gels

were loaded with 1 mL of plasma mixed with loading buffer. Gels

were run, transferred and blotted by standard methods. Mem-

branes were blocked using 10% nonfat milk in tris-buffered saline

with Tween (TBST). Primary CTGF antibody (US Biological

Rabbit anti mouse-CTGF) was applied overnight 1:2000 dilution.

Secondary (Cal Biochem Goat anti-Rabbit IgG Peroxidase Conju-

gated) was applied for 3 hours 1:5000 dilution. Chemiluminescence

(Pierce Biotechnology SuperSignal West Pico Chemiluminescent

Substrate) was applied per manufacturer instructions. Band density

was quantitated with ImageJ software.

Microscopy/Photography
Adult mice were lightly anesthetized with 2,2,2-tribromoethanol

then photographed live (Canon Powershot SD600, Canon, NY,

USA). Whole fixed E13.5 embryos were pictured using a dissecting

macroscope (Leica Wild M420 Leica, NY) with a QImaging

camera (QImaging MicroPublisher MP3, Surrey, BC, Canada).

Whole unfixed E10.5 embryos were pictured with embryos

immersed in buffered saline using light microscopy (Olympus

America Inc., Melville, New York). Embryos were then fixed and

prepared for scanning electron microscopy (EM) as previously

described [55]. Briefly, embryos were fixed in 2.5% glutaraldehyde

in Sorenson’s buffer. Secondary fixation was performed in 2%

osmium tetroxide in Sorenson’s buffer [55]. Samples were

dehydrated in consecutive ethanol washes then dried. Specimens

were mounted on aluminum stubs with colloidal silver, sputter

coated, then viewed and photographed by scanning EM (Zeiss

Supra 25 field emission scanning electron microscope, Carl Zeiss,

Thornwood, NY, USA).

Statistics
Data are presented as mean 6 standard error of the mean and

p-values are from paired Student t-test performed in Microsoft

Excel. Additional statistics including Chi Squares were performed

by hand. Any p-value less than 0.05 was considered statistically

significant.
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