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Abstract

Animals interact with a diverse array of both beneficial and detrimental microorganisms. In insects, these symbioses in many cases
allow feeding on nutritionally unbalanced diets. It is, however, still not clear how are obligate symbioses maintained at the cellular
level for up to several hundred million years. Exact mechanisms driving host—symbiont interactions are only understood for a handful
of model species and data on blood-feeding hosts with intracellular bacteria are particularly scarce. Here, we analyzed interactions
between an obligately blood-sucking parasite of sheep, the louse fly Melophagus ovinus, and its obligate endosymbiont,
Arsenophonus melophagi. We assembled a reference transcriptome for the insect host and used dual RNA-Seq with five biological
replicates to compare expression in the midgut cells specialized for housing symbiotic bacteria (bacteriocytes) to the rest of the gut
(foregut-hindgut). We found strong evidence for the importance of zinc in the system likely caused by symbionts using zinc-
dependent proteases when acquiring amino acids, and for differentimmunity mechanisms controlling the symbionts than in closely
related tsetse flies. Our results show that cellular and nutritional interactions between this blood-sucking insect and its symbionts are
less intimate than what was previously found in most plant-sap sucking insects. This finding is likely interconnected to several features
observed in symbionts in blood-sucking arthropods, particularly their midgut intracellular localization, intracytoplasmic presence, less
severe genome reduction, and relatively recent associations caused by frequent evolutionary losses and replacements.
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Introduction interactions depend on the host biology (e.g., plant-sap vs.

Nutritional supplementation from symbiotic bacteria allowed
several insect groups to specialize on nutritionally unbalanced
diets. Endosymbiotic bacteria provide essential amino-acids
and some B-vitamins to plant-sap sucking hosts, B-vitamins
to blood-sucking hosts, and assist wood-feeding insects with
nitrogen recycling (Moran et al. 2008; McCutcheon and
Moran 2012; Douglas 2016). What is still unclear is if there
are any general insect-wide mechanisms driving these host—
symbiont interactions. For example, how often do indepen-
dent solutions of exactly the same functional problem emerge
in even closely related species? To what extent do these

blood-sucking insects) rather than on the host phylogeny
(e.g., blood-sucking Hemiptera vs. Diptera) or the symbiont
phylogeny (e.g., Gammaproteobacteria vs. Bacteroidetes)?
Because the small symbiont genomes are usually subsets of
well-known bacterial genomes such as Escherichia coll, it is
feasible to roughly predict their metabolism either by simple
mapping of present genes on metabolic pathways (Hansen
and Moran 2014; Husnik and McCutcheon 2016) or by sys-
tems biology approaches such as Flux Balance Analysis
(Thomas et al. 2009; MacDonald et al. 2011; Belda et al.
2012; Gonzalez-Domenech et al. 2012). What is not easily
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feasible, though, is to fully encompass and model the inter-
actions with the host, especially for nonmodel species for
which host genome, transcriptome or proteome data are
not available.

Our Understanding of Nutritional Insect-Symbiont
Provisioning Comes Mostly from Plant-Sap Sucking Insects

Majority of data concerning the host role in arthropod-
bacteria symbiosis is undoubtedly available for pea aphids
(Nakabachi et al. 2005; Gerardo and Wilson 2011; Hansen
and Moran 2011; Poliakov et al. 2011). Hansen and Moran
(2011) and Poliakov et al. (2011) untangled the intimate sym-
biotic interface in the pea aphid-Buchnera system, and con-
firmed the previously suggested (Nakabachi et al. 2005) host—
symbiont cooperation in the production of essential amino
acids (EAAs) and incorporation of ammonium nitrogen into
glutamate. Additional data (Macdonald et al. 2012) show that
waste ammonia is recycled predominantly by the host cells
and that aphid aminotransferases (ornithine AT: EC 2.6.1.13,
branched-chain AT: EC 2.6.1.42, and aspartate AT: EC
2.6.1.1) incorporate ammonia-derived nitrogen into carbon
skeletons synthesized by Buchnera to generate EAAs. The
highly similar picture observed in citrus mealybugs (Husnik
et al. 2013), petiole gall psyllids (Sloan et al. 2014) or white-
flies (Luan et al. 2015), and identical enzymatic gaps in other
endosymbiont genomes from hemipterans (Hansen and
Moran 2014), imply that many (but perhaps not all; Van
Leuven et al. 2014) insect hosts carry out these last steps to
gain control of production of the final products.

Unlike animals, plants can synthesize B-vitamins (Roje
2007), but whether B-vitamins are acquired by insects from
the phloem/xylem sap of their host plants and provided to
endosymbionts remains poorly understood. Endosymbiont
genomes from plant-sap feeding insects retain several
genes/pathways for biosynthesis of B-vitamins, for example,
biotin, riboflavin, and folate (Hansen and Moran 2014; Moran
and Bennett 2014). Which B-vitamins are only used by sym-
bionts and which are in addition also provided to their hosts is,
however, unclear. The only piece of experimental evidence
implies that young symbiotic aphids are provided with ribo-
flavin by their Buchnera endosymbionts (Nakabachi and
Ishikawa 1999) and riboflavin provision is also implicated in
aphid co-obligate symbioses (Manzano-Marin et al. 2016).

Host-Symbiont Cooperation Depends on Transport of
Compounds between the Bacteriocytes and the Symbiont
Cells

Symbiotic bacteria of plant-sap sucking insects retain only a
few general transporters, some of which very likely lost their
substrate specificity (Charles et al. 2011). On the other
hand, the host transporters can be involved in symbiont
maintenance. For example, amino acid transporters of
sap-feeding insects were extensively duplicated and

specialized for bacteriocyte transfer (Duncan et al. 2014)
and symbiont control (Price et al. 2014; Lu et al. 2016).
No evidence of massive transfer of proteins among the
symbiotic partners was so far confirmed, although one
host protein was reported to be targeted to Buchnera cells
in aphids (Nakabachi et al. 2014). However, such protein
transfer is very likely needed in other hosts. For example, a
recent rigorous analysis of host expression in two bacter-
iome types in a leafhopper host implies that nucleus-
encoded genes usually supporting mitochondria also sup-
port bacterial endosymbionts (Mao et al. 2018).

Nutritional Interactions between Blood-Sucking Insects
and Their Symbiotic Bacteria Are Understood Only for a
Few Hosts

Based on genomic data, different bacterial symbionts of
blood-feeding insects can synthesize biotin, thiamine, ribo-
flavin and FAD, panthotenate and coenzyme A, folate, pyr-
idoxine, ubiguinol, nicotinamide, lipoic acid, and protoheme
(Kirkness et al. 2010; Rio et al. 2012; Nikoh et al. 2014;
Novakova et al. 2015; Boyd et al. 2016; Rihova et al.
2017). Controversy arises when discussing which particular
cofactors are provided in particular host lineages.
Interestingly, there are obligately blood-feeding arthropods
(e.q., ticks or kissing bugs) that do not house stable intracel-
lular microbes. These athropods either efficiently extract rare
nutrients from their blood diet or rely on extracellular gut
bacteria acquired from the environment, for example, by
coprophagy as in kissing bugs (Eichler and Schaub 2002).
Different blood-feeding lineages thus likely rely on symbionts
for different subsets of these cofactors, perhaps due to dif-
ferences in their blood-feeding strategies, association with
the host, host species, enzymatic dependence (e.g., using
alternative enzymes not depending on a particular cofactor),
and evolutionary history. Some of the cofactors produced by
symbionts are likely only used by symbiont-encoded enzymes
rather than being provided to the insect host. Other cofac-
tors such as thiamine in human lice and louse flies are ac-
quired from the blood diet by the host and made available to
the symbionts which extract it by their thiamine ABC trans-
porters (reviewed in Husnik 2018).

In comparison to highly mosaic pathways such as biosyn-
thesis of branched-chain amino acids in plant-feeding insects
where host enzymes are needed to synthesize the final prod-
uct, bacteria in blood-feeding insects seem to be functioning
more as independent units. The only RNA-Seq analysis from
blood-feeding insects with intracellular symbionts was carried
out in tsetse flies. The authors show that in terms of nutri-
tional cooperation, only a few host genes seem to maintain
the symbiosis, particularly a multi-vitamin transporter is up-
regulated to shuttle B-vitamins from midgut bacteriocytes to
hemolymph or other tissues (Bing et al. 2017).
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Insect Immune Response Often Distinguishes Obligate
Mutualists from Facultative Symbionts and Pathogens

Several ancient and intracellular obligate symbionts of insects
have partially or completely lost bacterial cell envelope struc-
tures recognized by the insect immune system—peptidogly-
can and lipopolysaccharides (McCutcheon and Moran 2012).
In the latter case, they are often engulfed by a host-derived
symbiosomal membrane (McCutcheon and Moran 2012), so
there is nothing on their cell envelopes recognized as of bac-
terial origin by the host peptidoglycan-recognition proteins
(PGRPs) or Gram-negative binding proteins (GNBPs).
Interestingly, if there are some structures of bacterial origin
still present, the hosts were either shown to jettison PGRPs,
genes from the immunodeficiency signaling pathway (IMD),
and many antimicrobial peptides (Gerardo et al. 2010;
Kirkness et al. 2010) or modify them for symbiont defense.
Blood-feeding insects that still keep PGRPs such as tsetse flies
use amidase activity of one of PGRPs for peptidoglycan recy-
cling in bacteriocytes (and milk glands of tsetse flies) and this
activity shields symbionts from recognition by other PGRPs
and expression of lineage-specific antimicrobial peptides me-
diated by the IMD (Anselme et al. 2006; Anselme et al. 2008;
Wang et al. 2009; Weiss et al. 2011; Wang and Aksoy 2012;
Ratzka et al. 2013; Bing et al. 2017). In Sitophilus weevils, a
recently “domesticated” Sodalis pierantonius symbiont
(Oakeson et al. 2014) was shown to be kept under control
by a single antimicrobial peptide (Coleoptericin A). After si-
lencing its expression by RNA interference, the symbionts es-
caped from the bacteriocytes and spread into host tissues
(Login et al. 2011). The functional role of the symbionts is
to synthesize a single non-EAA, tyrosin, and when this benefit
is no longer needed (for cuticle hardness), symbiont numbers
are reduced by the host (Vigneron et al. 2014). Sodalis-allied
bacteria are very common symbionts of blood-sucking insects,
so it is likely that similar symbiont control solutions had to also
emerge in blood-feeding insects.

Melophagus ovinus is a sheep ectoparasite highly adapted
for blood-feeding. Both females and males are wingless, per-
manently associated with their sheep host, and strictly blood-
feeding. Similarly to other Hippoboscoidea such as tsetse flies,
M. ovinus is fully dependent on intracellular symbiotic bacteria
for its survival/reproduction, houses the bacteria in midgut
bacteriocytes, and the symbionts are transmitted from the
mother to its intrauterine larvae through the secretions of
specialized “milk” glands (adenotrophic viviparity). One obli-
gate symbiotic bacterium, Arsenophonus melophagi, is al-
ways present in all Melophagus individuals whereas some
host populations can be also infected by facultative bacteria
Sodalis melophagi, Bartonella melophagi, and Wolbachia sp.;
and the facultative eukaryote Trypanosoma melophagium
(Small 2005; Chrudimsky et al. 2012; Novakova et al. 2015;
Novakova et al. 2016). Here, we use comprehensive dual
host—symbiont RNA-Seq data for M. ovinus, and its obligate

symbiont, A. melophagi, to understand metabolic interde-
pendence and host—symbiont interactions.

Materials and Methods
RNA Extraction and Sequencing

Melophagus ovinus parasites were sampled from the same
population as used for our previous studies (Chrudimsky et al.
2012; Novakova et al. 2015). Insects were immediately dis-
sected in RNAlater (Qiagen) to stabilize expression profiles and
kept deeply frozen until RNA extractions. Five biological rep-
licates of bacteriomes and five replicates of the remaining
portion of gut from identical samples were prepared for
RNA-Seq. Total RNA was extracted from pools of five individ-
ual bacteriomes and guts for seven replicates using RNeasy
Mini Kit (Qiagen). Five of the replicates for both tissues were
selected for sequencing based on RNA quality and Bioanalyzer
chip results (Agilent). All samples were DNased by RNase-free
DNase | (Ambion) and ribosomal RNA was depleted by a
Terminator-5-Phosphate-Dependent Exonuclease treatment
(Epicentre). Ten RNA-Seq libraries were prepared from the
enriched RNA samples using the ScriptSeq strand-specific pro-
tocol (Epicentre). Paired-end sequencing (2 x 100 bp) of the
ten RNA-Seq libraries was multiplexed on one lane of the
lllumina HiSeq 2000 platform at the Centre for Genomic
Research, University of Liverpool. Total RNA was also
extracted from one whole female and one whole male
M. ovinus to improve de novo assembly of the reference tran-
scriptome. The identical procedure as described above was
carried out and the two libraries were multiplexed on one lane
of the HiSeq 2000. Raw Fastq files were trimmed for the
presence of lllumina adapter sequences using Cutadapt v1.1
(https://cutadapt.readthedocs.io/, last accessed February 25,
2020). Option -O 3 was used, so that the 3’ end of any read
which matched the adapter sequence for 3 bp or more was
trimmed. The reads were further quality-trimmed by Sickle
v1.200 (https://github.com/najoshifsickle, last  accessed
February 25, 2020) with a minimum window quality score
of 20. Reads <10bp after trimming and singlet reads were
removed. The quality-trimming resulted in 371,432,771 read
pairs. PhyloFlash v3.1 (Gruber-Vodicka et al. 2019) was used
for rRNA depletion efficiency and contamination assessment
using 18S rRNA and 16S rRNA gene databases.

Arsenophonus melophagi Gene Expression and Analyses

Bacterial expression was analyzed by mapping reads from in-
dividual libraries to the A. melophagi assembly with Bowtie2
(Langmead and Salzberg 2012). Bam files were imported into
BamView integrated in the Artemis browser v15.1.1 (Carver
et al. 2012). The A. melophagi annotation (available from
Novakova et al. 2015; http://users.prf.jcu.cznovake01/, last
accessed February 25, 2020) was subsequently improved
according to the expression data, that is, mainly pseudogene
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remnants (not-expressed short hypothetical proteins) were re-
annotated. These pseudogene re-annotation results were also
supported by our custom pipeline (https:/github.com/filip-
husnik/pseudo-finder, last accessed February 25, 2020).
Identification of transcript boundaries, quantification of tran-
script abundance (FPKM values), and prediction of operon
structure was carried out in Rockhopper v2.0.3 using default
parameters (McClure et al. 2013).

De Novo Metatranscriptome Assembly and Differential
Expression Analyses

De novo metatranscriptome assembly was carried out by the
Trinity assembler v2.4.0 (Grabherr et al. 2011) from digitally
normalized read pairs (targeted maximum coverage set to 50)
using strand-specific information. RSEM 1.3.0 (Li and Dewey
2011) was used to count Bowtie2-mapped (nonnormalized)
reads. The trimmed mean of M-values normalization (TMM),
generation of normalized TPM values (transcripts per million
transcripts), and differential expression analyses with five bio-
logical replicates were carried out in EdgeR (Robinson et al.
2010) BioConductor package using settings recommended
for transcriptome assemblies generated by the Trinity assem-
bler (run_DE_analysis.pl script). Only transcripts with at least
4-fold expression change (P-value cut-off for false discovery
rate set to 0.001) were considered to be differentially
expressed between the bacteriome and gut tissues.

Reference Transcriptome Filtering for Bacterial and
Eukaryotic Contamination

The reference transcriptome of M. ovinus was filtered for likely
assembly artifacts and lowly supported transcripts so that only
transcripts with normalized TPM > 1 in at least one sample or
replicate were retained (retained 30.95%, i.e., 51,386 from
166,038 of total transcripts). Taxonomy was assigned to all
transcripts by Blobtools (Laetsch and Blaxter 2017) with the “—
bestsum” flag based on BlastN searches against the NT data-
base and Diamond BlastX against the Uniprot proteome data-
base. All transcripts assigned either to the superkingdom
Bacteria (symbionts and bacterial contamination), the phylum
Chordata (sheep and human contamination), or the
Kinetoplastida class (T. melophagium) were removed from
the reference transcriptome. However, we note that some
of T. melophagium transcripts could be missed by this ap-
proach because transcripts with no hits were retained.
Single-gene phylogenetic inference would be needed to fully
decontaminate T. melophagium contamination from the
Melophagus reference transcriptome because no reference
genome exists for neither M. ovinus nor T. melophagium.

Transcriptome Annotation and Protein Prediction

TransDecoder  (https:/github.com/TransDecoder/, last
accessed February 25, 2020) was used for ORF and protein

prediction of the filtered reference proteome. Complete func-
tional annotation was produced by Trinotate and final results
were uploaded into a custom MySQL database and analyzed
through TrinotateWeb (Grabherr et al. 2011). BUSCO v3 was
used to assess the transcriptome completeness against 303
universally conserved eukaryotic proteins (Simao et al. 2015)
both before and after contamination removal.

Reconstruction of Selected Pathways, Metabolite
Exchange, and Immune System Composition

Digital expression values were overlaid on A. melophagi path-
way map in the Pathway Tools Software (Karp et al. 2010).
Up-regulated host transcripts of interest (e.g., B-vitamin, co-
factor, metal, and amino acid metabolism) were analyzed
manually for possible interactions with symbionts. Previously
published pathways for B-vitamins were updated with this
expression information. Expression of genes annotated in
the A. melophagi genome as transporters was assessed to
predict metabolite flux to and from the symbionts. Similarly,
annotations of up-regulated host transcripts were screened
for transporters to analyze the host role in the maintenance of
symbiotic tissue. Transporter candidates were checked by
BlastP (e-value 1e~°) against the NR protein database.
EMBL-EBI CoFactor database (Fischer et al. 2010) was used
for searches of cofactor enzyme dependence.

The insect immune system was reconstructed by BLAST
searches (BlastP, BlastN, and BlastX) of homologs against a
custom BLAST database built from our transcriptome assembly
and gene candidates were tested against the nonredundant
NCBI database. In particular, Drosophila melanogaster and
Glossina morsitans homologs acquired from the Insect Innate
Immunity Database (Brucker et al. 2012) and VectorBase
(https:/Avww.vectorbase.org/, last accessed February 25,
2020) were used as queries. Pathways involved in control of
symbiotic bacteria in gut and bacteriome tissues were com-
pared with the situation in tsetse flies using literature review.

Results

Contamination and rRNA Depletion Efficiency Assessment

Because ribosomal RNA was depleted by a Terminator-5-
Phosphate-Dependent Exonuclease treatment to allow paral-
lel evaluation of expression for both the host and all its micro-
biome members, we tested the depletion efficiency by
mapping trimmed reads against comprehensive 185 rRNA
and 16S rRNA [small ribosomal subunit (SSU)] gene databases
using PhyloFlash. Approximately 27-30% of all reads per li-
brary mapped to these genes. However, even if large subunit
rRNA molecules (23S and 28S rRNA) make up more of the
data than the small subunit rRNAs, total amount of sequenc-
ing data generated (371,432,771 trimmed reads) not only
allowed us to assemble a high-quality reference transcriptome
for M. ovinus, but also to carry out abundance estimation and
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Fic. 1.—Ribosomal RNA depletion efficiency and species composition/
contamination assessment. (4) The first barplot shows total number of
reads per library and proportion of SSU reads detected in those. The sec-
ond chart represents only the small ribosomal rRNA reads (both bacterial
and eukaryotic) assigned to taxonomic categories and sorted based on
proportion from lowest to highest. (B) The barplot shows percentage of
reads mapped to taxon-annotated transcripts from the total meta-
transcriptome data.

expression analyses for M. ovinus and A. melophagi. Species
composition profiles allowed by SSU mapping revealed very
homogenous microbiome composition across all samples
(fig. 1A) with majority of data from the host M. ovinus (and

low coverage sheep contamination from blood), its obligate
bacterial symbionts A. melophagi, and a eukaryotic commen-
sal/pathogen T. melophagium. The results show that the
method used for rRNA depletion had relatively low efficiency,
but also clearly confirm that A. melophagi is the most dom-
inant symbiont housed in the midgut bacteriocytes.
Additional lower abundance taxa of interest include S. melo-
phaqgi, B. melophagi, Wolbachia sp., and an unidentified cili-
ate related to sheep rumen ciliates. Species composition
evaluation of the assembled metatranscriptome in Blobtools
further corroborated these SSU results (fig. 1B). We note that
~97% of all reads map to our metatranscriptome assembly.

Evaluation of Symbiont Expression

FPKM values obtained by mapping raw data on the
A. melophagi genome are presented in supplementary 1,
Supplementary  Material  online and the improved
A. melophagi annotation is available through FigShare
(10.6084/m9.figshare.6146777). Figure 2 shows the expression
values and predicted operon structure of the A. melophagi ge-
nome overlaid on its linear map with genes color-coded accord-
ing to their COG (Clusters of Orthologous Groups) functional
assignments. Expression values for the 20 most highly
expressed A. melophagi genes are shown in table 1.

De Novo Transcriptome Assembly and Differential
Expression Analyses of Host Data

The transcriptomic data were de novo assembled into a total
of 166,038 transcripts (83,574 “genes”) with a contig N50
size of 1,456 bp. Total 166,522,714 bases were assembled.
BUSCO completeness assessment resulted in 298 complete
(202 duplicates due to the presence of T. melophagium and
sheep transcripts) and 5 fragmented genes out of 303
markers. Transdecoder ORF prediction resulted in 98,820 pro-
teins (31,807 full-length; 35,448 partial; 31,565 internal) pro-
viding us with a robust proteome set for analysis of the host
role in the symbiotic system. Our strictly decontaminated
M. ovinus transcriptome (no transcripts with TPM < 1 or tax-
onomic assignment to Bacteria, Kinetoplastida or Chordata by
Blobtools) consists of 43,315 transcripts with 23,780 pre-
dicted proteins (9,037 complete). These filtered data had
the BUSCO score of 272 complete (80 duplicates), 8 frag-
mented, and 23 missing markers (out of 303 markers).

Raw counts of mapped reads, normalized digital expres-
sion values, and results of differential expression analyses
from EdgeR for gut and bacteriome tissues are available in
supplementary 2, Supplementary Material online. In total, 249
genes were found significantly up-regulated and 266 genes
significantly down-regulated in the bacteriome section of the
midgut (supplementary 2, Supplementary Material online).
We note that the total number of up-regulated genes
detected by EdgeR was 1353 due to Arsenophonus tran-
scripts that were not excluded from the total assembly for
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respective peaks. Ribosomal RNA genes are shown in light green and tRNA/ncRNA genes in yellow. Expression of rRNAs is not shown because it was
depleted and is likely biased. Expression of tRNAs and other short ncRNAs is not shown because these RNAs are underrepresented due to RNA isolation and
library preparation methods used. Top left inset: Total sum of FPKM expression values for individual categories is included as a bar plot. Genes assigned to
two or more categories were not included for simplicity. Top right inset: Mean FPKM values with standard deviation showing consistent expression across five
biological replicates of bacteriomes. The FPKM values are plotted on a log scale. Bottom: Genes predicted to be expressed in operons.

the differential expression step. These transcripts (see supple-
mentary 2, Supplementary Material online) are not considered
here because Arsenophonus is only present in the bacteriome.
The most highly up-/down-regulated genes that have func-
tional annotation are shown in table 2.

Interestingly, 11 transcripts significantly down-regulated
in the bacteriome tissue come from unclassified RNA viruses
(distantly related to the Hubei Diptera virus 14).
Unfortunately, these transcripts are short and fragmented,
perhaps due to their nucleotide diversity. Although an ex-
perimental verification of this finding is needed, it is tempt-
ing to speculate that either endosymbionts in the
bacteriome tissue (A. melophagi and S. melophagi) protect
from these viruses or that endosymbionts localized mostly
outside the bacteriome tissue (Wolbachia pipientis and
B. melophagi) promote the viral infection.

Reconstruction of Selected Pathways Involved in Host—
Symbiont—Pathogen Interactions

Cofactor metabolism  reconstruction uncovered that
A. melophagi not only synthesizes several B-vitamins (B2,
B3, B6, B7, B9) in bacteriocytes, but that it also acquires thi-
amine (B1) and pantothenate (B5) from the host cells. Possible
exploitation of this resource by the additional members of the

microbiome, that is, B. melophagi, S. melophagi, Wolbachia
sp., and T. melophagium is also likely (fig. 4), because gene
expression data for these facultative microbiome members
were of relatively low abundance, we do not draw any strong
conclusions from these data here. Host immune system re-
construction and identification of genes differentially
expressed in the bacteriome and midgut sections provide ev-
idence for a possible mechanism of how the host keeps its
bacterial symbionts under control and how could facultative
members of the microbiome escape its recognition (fig. 4,
Suppl 4, Supplementary Material online). Gene/transcript in-
formation used for the reconstruction of the metabolic path-
ways and immune system (supplementary 3, Supplementary
Material online) can be found in supplementary 1 and 2,
Supplementary Material online. Additional basic statistics in-
cluding the total number of reads (after quality trimming)
generated per library and per tissue/sample, and the total
number of reads mapped to the reference metatranscriptome
and genomes of the four most abundant symbionts are avail-
able in supplementary 4, Supplementary Material online.

Transporters Up-Regulated in Bacteriocytes

Two host transporters possibly involved in maintenance of the
symbiotic system were found to be significantly up-regulated
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Table 1

Thirty Most Highly Expressed Arsenophonus melophagi Genes

Gene Product coG FPKM
cspC Cold shock-like protein K 3418
groL 60 kDa chaperonin (0} 2025
ompD Outer membrane porin M 1487
groS 10 kDa chaperonin (0} 1322
rpl) 50S ribosomal protein L10 J 986
rpsA 30S ribosomal protein S1 J 693
rpmD 50S ribosomal protein L30 J 628
rplX 50S ribosomal protein L24 J 609
rpsL 30S ribosomal protein S12 J 553
tufA_1 Elongation factor Tu J 524
rpoB RNA polymerase subunit K 518
tufA_2 Elongation factor Tu J 512
erpA Iron-sulfur cluster protein C 512
epd p-erythrose-4-P dehydrogenase G 486
ahpC Alkyl hydroperoxide reductase subunit C o 475
rplM 50S ribosomal protein L13 J 453
rpsN 30S ribosomal protein S14 J 447
rplw 50S ribosomal protein L23 J 430
bamB Outer membrane protein M 416
rpIN 50S ribosomal protein L14 J 408
ftsy Signal recognition particle receptor U 405
ompA Outer membrane protein A M 386
lipA Lipoyl synthase H 371
rplP 50S ribosomal protein L16 J 365
putA Bifunctional protein PutA E 352
rpoC RNA polymerase subunit K 336
rpsM 30S ribosomal protein 513 J 332
rpsU 30S ribosomal protein S21 J 330
rpoA RNA polymerase subunit o K 327
sodB Superoxide dismutase [Fe] P 325

Note.—COG functional categories: M, cell wall/membrane/envelope biogenesis;
0O, posttranslational modification, protein turnover, and chaperones; U, intracellular
trafficking, secretion, and vesicular transport; J, translation, ribosomal structure and
biogenesis; K, transcription; C, energy production and conversion; E, amino acid
transport and metabolism; G, carbohydrate transport and metabolism; H, coenzyme
transport and metabolism; P, inorganic ion transport and metabolism. FPKM values
are averaged from five replicates.

in bacteriocytes (table 2) and likely regulating transfer of zinc
and trehalose to the cytoplasm of the bacteriocyte cells hous-
ing A. melophagi. Other host transporters found to be highly
expressed along the entire gut include, for example, a
sodium-dependent multivitamin transporter, a mitochondrial
sodium-hydrogen exchanger, a sodium-potassium ATPase
subunit alpha, a proton-coupled amino acid transporter,
and a copper uptake protein.

The expressed transporters of A. melophagi are highlighted
in figure 3. Notably, thiamine and pantothenate transporters
suggest that A. melophagi imports these two cofactors into its
cells from the host blood diet or other microbiome members.

Additional Transcripts of Bacterial Origin

Al transcripts recognized by our cut-off values as of bacterial
origin are available in supplementary 2, Supplementary

Material online. Most of these transcripts originated from
endosymbionts present in the host species in both the gut
and bacteriome tissues. The remaining bacterial transcripts
represent low expression contamination by environmental
and gut bacteria, false positive eukaryotic transcripts, or pos-
sible HGT candidates in the M. ovinus or T. melophagium
genomes (supplementary 2, Supplementary Material online).
No additional facultative symbiont species such as Rickettsia
or Cardinium spp. were found to be present in our M. ovinus
data by any of the methods employed (PhyloFlash, Blobtools,
and BlastN/BlastX filtering). We do not discuss these genes of
possible bacterial origin further because much more contigu-
ous genome data for both the host and its facultative micro-
biome members would be needed to reliably distinguish
horizontal gene transfer events in the M. ovinus genome
and microbiome.

Discussion

Arsenophonus Gene Expression and Biosynthesis of B-
Vitamins and Cofactors

The expression profile of A. melophagi (fig. 2; supplementary
1, Supplementary Material online; table 1) represents a typical
example of an obligate symbiont in an intermediate stage of
genome reduction. As expected for such a symbiont genome,
genes for essential bacterial machinery (replication, transcrip-
tion, translation) components such as ribosomal proteins,
elongation factors, and RNA and DNA polymerases were
among the most highly expressed. The most highly expressed
gene was the cold shock-like protein CspC (and its antisense
ncRNA) with transcription antiterminator activity. Other highly
expressed genes were found to be for heat shock proteins
(GroEL and GroES; EC 5.6.1.7), outer membrane proteins,
and porins allowing various small solutes to cross the outer
membrane (OmpD, OmpA, BamABDE), enzymes protecting
against reactive oxygen species such as alkyl hydroperoxide
reductase (EC 1.11.1.-) and superoxide dismutase (EC
1.15.1.1), and iron-sulfur cluster insertion protein ErpA
(fig. 2; supplementary 1, Supplementary Material online).
Very similar sets of highly expressed genes were also found
in other obligate endosymbionts (Fukatsu and Ishikawa 1993,
Aksoy 1995; Baumann et al. 1996; Fan et al. 2013). A path-
way that shows unexpectedly high expression is conversion of
proline to L-glutamate through the PutA enzyme (EC 1.5.5.2/
1.2.1.88) and its subsequent conversion to p-glutamate by the
Murl enzyme (EC 5.1.1.3). Considering that proline is almost
always the most common amino acid in insect hemolymph
(Arrese and Soulages 2010), it is likely that symbionts use
proline-derived p-glutamate for their peptidoglycan cell wall.
Proline is in insects generally stored as an energy reserve for
energy-demanding activities (e.g., flight) or for adaptation to
cold temperature, however, M. ovinus is flightless and perma-
nently associated with its warm-blooded host. Its proline
reserves can be thus potentially used by symbiotic bacteria
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Table 2

Significantly (A) Up-Regulated Host Transcripts in the Bacteriome Tissue and (B) Down-Regulated Host Transcripts in the Bacteriome Tissue (Compared with

the Rest of the Gut)

Fold Change

Annotation [Transcript ID] logFC P Value FDR

(A) Up-regulated transcripts
FLYWCH-type zinc finger-containing protein 1 [DN33516_c0_g1_i7] 5.792 1.86 x 1072 1.32x 107"°
FLYWCH-type zinc finger-containing protein 1 [DN33516_c0_g1_i2] 4.708 407 x 107 1.90 x 1077
FLYWCH-type zinc finger-containing protein 1 [DN33516_c0_g1_i5] 3.941 1.60 x 107%° 8.01x 10
Tyrosine-protein phosphatase 10D [DN35320_c1_g6_i1] 5.325 1.12x107'® 142x 107
Paramyosin, short form isoform [DN33516_c0_g1_i2] 4645 1.30x 107 7.38x 107
Zinc transporter foi [DN36258_c3_g8_i2] 4.082 490x 107'° 2.64x 107%
Zinc transporter foi [DN37931_c0_g1_i2] 3.430 6.74x 107'° 3.58 x 107%
Glutathione-specific gamma-glutamylcyclotransferase 1 [DN33160_c6_g4_i1] 3.831 5.62x 107"° 3.01x 10
Glutathione-specific gamma-glutamylcyclotransferase 1 [DN33160_c6_g4 i3] 3.499 420x 107 1.74% 107
Facilitated trehalose transporter [DN38388_c3_g2_i2] 3.223 5.0x 10777 1.81x 10°%

(B) Down-regulated transcripts
Krasavietz (translational regulator) [DN40711_c3_g1_i6] -9.075 957 x 107'® 1.07 x 1073
Ejaculatory bulb-specific protein 3 [DN40663_c2_g4_i1] -3.538 9.05 x 107 3.15x 10
Zinc metalloproteinase [DN40175_c2_g3_i1] -2.702 3.40x 107% 9.15x 1074
Zinc metalloproteinase [DN40175_c2_g2_i4] -2.908 1.60 x 10°% 458x 107
Nucleolin 2 [DN39495_c4_g2_i1] -2.830 236x 107 6.55x 1074
Nucleolin 2 [DN39495_c4_g2_i2] -2.752 8.15x 107% 245x 107
Nucleolin 2 [DN35335_¢5_g1_i2] -2.847 136 x 10°% 3.97x 107
Fatty acid-binding protein [DN39361_c0_g3_i1] -8.034 234x 107" 1.28x 107
Retinoid-inducible serine carboxypeptidase [DN39186_c2_g1_i4] -2.791 5.21x 107 1.61x 107
Dopamine N-acetyltransferase [DN38477_c5_g1_i2] -2.571 1.00x 107 2.96x 107
Vascular endothelial growth factor C [DN38450_c1_g5_i3] -2.857 3.05x 107% 9.74x 107
Ecdysteroid-regulated 16 kDa protein [DN38275_c0_g2_i2] -2.691 2.45x107% 6.77 x 1074
Sodium-independent sulfate anion transporter [DN37924_c5_g1_i1] —-6.290 9.21x 107 2.74x 107
Helicase [DN37874_c0_g1_i2] -2.695 159 x 10°% 457 x10°%
Invertebrate-type lysozyme 3 [DN36379_c2_g2_i1] -9.106 416x 1073 3.24x 107"
Protease inhibitor-like [DN37357_c5_g1_i2] —6.909 2.62x 107 1.25x 1077
Lysozyme c-1 [DN35555_c0_g1_i2] -4.140 2.15%x 107% 7.05x 107%°
Probable cytochrome P450 9f2 [DN35329_c1_g1_i1] -2.921 9.36x 10°% 278 x 107
Protein takeout [DN34679_c1_g1_i6] -3.838 1.64 x 1077 6.31x 107%
Sphingomyelin phosphodiesterase [DN34603_c5_g1_i1] -9.233 2.05x 10% 5.76 x 107
Venom allergen [DN33750_c0_g1_i3] -5.093 837x 107" 440 %107
Synaptic vesicle glycoprotein [DN33233_c5_g1_i10] -6.485 6.20x 107% 1.89x 10°%
Trypsin [DN31717_c0_g2_i1, i2] —7.446 1.09 x 107 9.35x 107"
Trypsin [DN31717_c0_g2_i2] -4.595 5.53 x 107 1.70x 10°%
Trypsin [DN31717_c0_g1_i1] -4.957 1.04 x 1077 412x10°%
Chitinase-like protein Idgf2 [DN31674_c2_g3_i1] -4.357 2.08 x 107 6.84x 107

Note.—We note that the most differentially expressed genes were uncharacterized proteins with no functional annotation—only genes with putative annotation are shown
here in this table. At least 4-fold expression change (logFC values shown) with P-value (P value) cut-off for false discovery rate (FDR) set to 0.001 was required for a gene to be
considered differentially expressed. Isoform TMM values equal or larger than 5.0 in at least one of the libraries were required for a gene to be included.

for not only energy metabolism similarly to Wigglesworthia in
tsetse flies (Michalkova et al. 2014), but proline can be also
utilized for peptidoglycan synthesis. Moreover, proline is es-
sential for trypanosome survival in tsetse flies (Mantilla et al.
2017) and could be also involved in triggering host—symbiont
interactions as shown for example in Xenorhabdus/
Photorhabdus symbionts (closely related to Arsenophonus)
of nematodes (Crawford et al. 2010). Interestingly,

biosynthetic genes for B-vitamins and cofactors were not
highly expressed in bacteriocytes of adult insects with the ex-
ception of the lipoic acid pathway and several individual
enzymes (figs. 2 and 3; supplementary 1, Supplementary
Material online). This finding suggests that B-vitamins in adult
blood-sucking insects, although essential, do not represent
such a prominent case of host-symbiont cooperation as
EAAs in plant-sap sucking insects. Such finding is not entirely
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Fic. 3.—Expression of biosynthetic pathways for B-vitamins (B2, B3, B6, B7, B9), cofactors (ubiquinol, protoheme, coenzyme A, and lipoic acid), and
various transportersin Arsenophonus melophagi. Individual genes are represented by rectangles and filled by heatmap colors representing level of expression

(mean FPKM from five replicates).

unexpected because amino acids are crucial for proteosyn-
thesis and growth of the organism, but vitamin-based cofac-
tors are only needed by some of its enzymes. It is, however,
likely that these B-vitamins are needed most in particular host
life stages such as oocytes and developing larvae that were
not included in this study. At least two B-vitamins (thiamine
and pantothenate) are acquired by A. melophagi from the
insect host/blood and it is unknown if all the remaining B-
vitamins that are actually synthesized are acquired by the
host. An evolutionarily interesting case of a B-vitamin synthe-
sized by symbionts, but probably not provided to the host,
was found in cicadas. Obligate cosymbiont of cicadas,
Hodgkinia cicadicola, retained cobalamine-dependent methi-
onine biosynthesis, so it has to devote at least 7% of its pro-
teome to synthesize cobalamine—vitamin B12 (McCutcheon
et al. 2009).

How Specialized Are Midgut Bacteriocytes for Symbiont
Maintenance?

We saw only a few host transporters up-regulated specifically
in the bacteriocytes of M. ovinus, as would be expected in a
system without a symbiosomal membrane and with an obli-
gate symbiont still retaining numerous specific and nonspe-
cific transporters (fig. 3; supplementary 2, Supplementary
Material online). Because transporters likely import essential
nutrients from the gut lumen (and hemolymph) to the endo-
thelial cells along the whole gut, we are unable to fully rec-
ognize which of these highly expressed transporters transport
the nutrients utilized also by symbionts. Two transporters
clearly up-regulated in bacteriocytes (facilitated trehalose
transporter and zinc transporters; supplementary 2,
Supplementary Material online) support the symbiotic associ-
ation by providing the metabolites to be processed either by

the host bacteriocyte cell or the symbiont cells. We note that
the sodium-dependent multi-vitamin transporter is not signif-
icantly up-regulated in bacteriocytes (contrary to the situation
in tsetse flies), but rather highly expressed along the entire
gut.

Because the bacteriocyte cells are localized in the gut,
they likely have to express at least a handful of genes for
digestion of the food source and cannot be as specialized as
in insects where the bacteriome is freely in the hemolymph.
Several hypotheses can be put forward concerning the cell
specialization of midgut bacteriocytes. First, these gut cells
could be quite polarized and therefore able to carry out a
number of different functions depending on their localiza-
tion. For example, different transporters are likely to be
expressed on the gut lumen side compared with the hemo-
lymph side. Our data are averaged from the total tissue and
do not allow distinguishing such subtle expression differen-
ces that would be only detectable with single-cell RNA-Seq.
Second, the bacteriocyte cells are so tightly packed with
endosymbionts that they could possibly be no longer able
to function as regular midgut cells and could be only func-
tioning as a specialized space for harboring endosymbionts,
with only a few essential host genes up-regulated. Third,
because the symbiotic system is relatively recent (based on
A. melophagi genome features and phylogenetic inference)
when compared with, for example, the Buchnera-aphid sys-
tem, mechanisms regulating gene expression could be poorly
established, relatively random, or compensated by posttran-
scriptional regulation at both the host and symbiont level.
Such differentially regulated genes would be likely invisible
by our methodology. Because these three scenarios are not
mutually exclusive, we recognize that the outcome is likely a
gene/pathway-specific trade off between these and likely a
few additional explanations.
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Iron and Zinc Regulation and Its Role in Blood Digestion
and Symbiosis Maintenance

Iron regulation (i.e., acquisition, utilization, storage, and
transport) is an essential function for blood-sucking insects
needed to avoid iron toxicity. It is usually carried out by two
iron binding proteins (IBP)—ferritin and transferrin. Similar
to tsetse flies, heavy and light chain transcripts of ferritin
are highly expressed ubiquitously along the whole gut, con-
firming their general role in iron transport and storage
(Strickler-Dinglasan et al. 2006). Particularly, ferritin is in-
volved in sequestering iron from a blood meal to avoid ox-
idative stress. Transferrin was down-regulated 4.5-fold in
bacteriocytes, suggesting that its role is much more specific
and perhaps connected to regulation of microorganisms in
the gut. It was shown that it can also act as an antimicrobial
protein sequestering iron from pathogens (Yoshiga et al.
2001). Arsenophonus melophagi does not retain its own
ferritin like W. glossinidia, but codes and expresses the iron
transporter genes feoABC and the ferric transcriptional reg-
ulator (fur).

Surprisingly, multiple lines of evidence support a signifi-
cance of zinc for this obligate symbiosis. Zinc is generally
the second most abundant metal (after iron) in most organ-
isms. It is essential for hundreds of enzymes and zinc finger-
containing transcription factors (Coleman 1992; Coleman
1998; McCall et al. 2000). Several transcripts for zinc trans-
porters are highly up-regulated in bacteriocytes and very lowly
expressed in the gut (table 2). Furthermore, the zinc ABC
transporter of A. melophagi symbionts is highly expressed
(fig. 3; supplementary 1, Supplementary Material online)
and thus supports that zinc is not only imported into the cy-
toplasm of bacteriocytes, but also imported into A. melophagi
cells. Host zinc proteases are likely enzymes predominantly
using zinc in the gut and two of them were shown to be
highly expressed in the gut of tsetse flies (Yan et al. 2002).
In our study, many zinc proteases were highly expressed in the
rest of the gut, but down-regulated in bacteriocytes (table 2;
supplementary 2, Supplementary Material online), suggesting
that zinc is mostly used by symbionts in the bacteriome sec-
tion of the midgut. Why is the host providing zinc specifically
to the symbionts? High concentrations of zinc could be toxic
to its cells, so it could be using the symbiotic tissue for zinc
removal or the symbionts need it at high quantities for an
essential function the host is dependent on as well.

A question of particular importance is therefore which
A. melophagi enzymes rely on zinc. There are numerous
zinc-dependent enzyme candidates obvious from our data
(supplementary 1, Supplementary Material online), particu-
larly several zinc proteases (TldD, TIdE, HtpX, FtsH, RseP,
YebA) and a putative metalo-beta-lactamase (GloB). Zinc pro-
teases are involved in proteolysis, suggesting that
A. melophagi symbionts acquire amino acids by digesting
peptide bonds of proteins. This finding could explain why

aposymbiotic tsetse flies have difficulties digesting blood
(Pais et al. 2008). Beta-lactamases are enzymes that provide
bacteria with resistance to beta-lactam antibiotics such as
penicillin, ampicillin, and many others. Metalo-beta-
lactamases in particular are well-known for their resistance
to a broad spectrum of beta-lactam antibiotics and beta-
lactamase inhibitors (Bradford 2001; Drawz and Bonomo
2010). Because sheep in the Czech Republic are frequently
treated with beta-lactam antibiotics to avoid bacterial infec-
tions, it is tempting to speculate that Arsenophonus sym-
bionts use their metalo-beta-lactamase (and Melophagqus
supports them by providing zinc) to avoid elimination by anti-
biotics circulating in sheep blood. If confirmed by additional
experiments, it would be, to our knowledge, the first case of
an obligate endosymbiont retaining antimicrobial resistance
(AMR) genes to survive in its blood-sucking host frequently
exposed to antibiotics.

Symbiotic Insect Immunity in the Absence of Peritrophic
Matrix

Among the transcripts up-regulated in the whole gut and
down-regulated in  bacteriocytes  (supplementary 2,
Supplementary Material online), the antimicrobial peptide
attacin (3.3 FC) and two lysozymes (-550.9 FC and -17.6
FC) are very likely responsible for controlling bacterial infec-
tions in the gut and not targeting obligate symbionts
A. melophagi (fig. 4). Strikingly, PGRP-LB, although highly
expressed in both tissues, is not up-regulated in bacteriocytes
(fig. 4, supplementary 3, Supplementary Material online) as
was reported for the tsetse fly system (Wang et al. 2009; Bing
et al. 2017). This finding implies that the host likely unselec-
tively recycles peptidoglycan along the whole gut and, be-
cause GNBP has very low expression along the gut, it is
unknown if there is an additional mechanism targeting envi-
ronmental infections in specific sections of the midgut.
Possible implications of this difference might be either that
the host does not target S. melophagi and B. melophagi, but
is currently “domesticating” these bacteria because they can
increase its fitness (e.g., by providing thiamine or pantothe-
nate not synthesized but needed by Arsenophonus), or that
the host has evolved as partially immunocompromised be-
cause of its relatively bacteria-free diet and is therefore unable
to recognize the facultative symbionts. The latter explanation
would be supported by the lack of peritrofic matrix in
M. ovinus reported by early microscopy studies (Waterhouse
1953; Lehane 1997). One of essential functions of this non-
cellular membrane that is generally found in all other
Hippoboscidae species (Waterhouse 1953; Lehane 1997) is
providing a barrier to infection by pathogens. Our RNA-Seq
data corroborate the microscopy observations because we did
not detect any chitin synthesis genes of insect origin expressed
in the gut.
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Gene expression in midgut bacteriocytes of Melophagus ovinus
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Fic. 4.—Schematic reconstruction of nutritional and immunity processes revealed as involved in host-symbiont interactions in the Melophagus ovinus
midgut cells harboring Arsenophonus symbionts. Selected host genes of interest up-regulated or down-regulated in bacteriocytes are highlighted. Zinc-
dependent enzymes are denoted by Zn, iron-binding proteins are denoted by Fe. Localization of the midgut bacteriocytes is shown on a small inset figure.

Gene Duplications and Novel Genes Are Recruited for the
Symbiosis Maintenance

As usual in insect RNA-Seq studies, many differentially
expressed and/or highly expressed genes observed in our
data (supplementary 2, Supplementary Material online)
code conserved hypothetical proteins, orphan proteins with
no homology to proteins in protein databases, and numerous
gene duplications. These genes need to be examined exper-
imentally in future studies. For example, RNA-Seq study on
aphid bacteriocytes and whole mount in situ hybridizations of
overrepresented transcripts encoding aphid-specific orphan
proteins has revealed a novel family of small cysteine-rich
proteins with signal peptides (Shigenobu and Stern 2013).
At least some orphan genes in the pea aphid genome thus
likely (International Aphid Genomics Consortium 2010)
evolved to assist in lineage-specific traits, such as symbiosis.
The role of gene and isoform specialization and recruitment
for functioning in bacteriocytes was observed also in our data,
for example in zinc transporters and proteinases (supplemen-
tary 2, Supplementary Material online), implying that it is a
more general mechanism occurring outside of sap-feeding
insects.

Host-Symbiont Interactions in Blood-Sucking and Plant-
Sap Sucking Insects—Similarities and Differences

Unlike in plant-sap sucking insects where the host is strongly
involved in the EAA biosynthetic pathways (sometimes even
forming mosaic pathways requiring genes from both the host

and its symbiont), we found no evidence for such intimate
interactions in our M. ovinus data for any biosynthetic path-
ways (table 1; fig. 4; supplementary 2, Supplementary
Material online). Whether this is a common situation in all
blood-sucking insects, or if it applies only to hosts with sym-
bionts having medium-sized genomes, remains to be investi-
gated. As insect symbionts are either present directly in the
bacteriocyte cytoplasm (common in blood-sucking and om-
nivorous), or enclosed in a so-called symbiosomal membrane
(common in plant-sap sucking insects), the cellular localization
of symbionts may also be responsible for the intimacy of the
relationships. The cytoplasm-harbored symbionts, such as
A. melophagi in M. ovinus, have direct access to all nutrients
available in the host cells. For symbionts covered by a symbio-
somal membrane, their host controls which nutrients will be
available to the symbionts by adjusting the expression of
transporters through the symbiosomal membrane localization
(Price et al. 2014; Duncan et al. 2014). This situation then
inevitably leads to highly interconnected relationships (and
accelerates symbiont genome reduction). Evaluating the exact
impact of this less intimate symbiotic integration is much
needed to understand different factors driving genome reduc-
tion in different endosymbiont lineages.

Conclusions

Using RNA-Seq with five biological replicates of the midgut
cells housing bacteria and the rest of the gut, we uncovered
the interactions between a blood-sucking parasite and its
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obligate endosymbiont. We found strong evidence for impor-
tance of zinc in the system possibly caused by participation of
symbionts on blood-digestion; and for different immunity
mechanisms controlling symbionts than in closely related
tsetse flies. Our results show that adults of this blood-
sucking insect are much less intimately involved in coopera-
tion on biosynthesis of nutrients than plant-sap sucking
insects. This finding is likely interconnected to several features
observed in symbionts in blood-sucking arthropods, particu-
larly intracytoplasmic midgut localization of bacteria, their less
severe genome reduction, and younger associations caused
by frequent evolutionary losses and replacements. Because
the specialized bacteriome section of M. ovinus is clearly dis-
tinct from the rest of the midgut based on both morphology
and gene expression, it will be interesting to compare gene
expression of this specialized tissue to other blood-sucking
insects in future.

Supplementary Material

Supplementary data are available at FigShare (https:/doi.org/
10.6084/m?9.figshare.6146777).

Acknowledgments

We thank the Centre for Genomic Research (University of
Liverpool) for sequencing services. F.H. was supported by a
postdoctoral research fellowship from EMBO (ALTF 1260-
2016) while writing this article. V.H. was supported by the
Czech Science Foundation grant 18-07711S. A.D. was sup-
ported by the Biotechnology and Biological Sciences Research
Council grant BB/JO17698/1.

Author Contributions

F.H. designed and coordinated the study, carried out the
preparation of samples, analyses of data, and drafted the
manuscript. V.H. carried out analyses of immune genes and
participated in the study design and manuscript revisions.
A.D. designed the study and participated in manuscript revi-
sions. All authors read and approved the final manuscript.

Literature Cited

Aksoy S. 1995. Molecular analysis of the endosymbionts of tsetse flies: 16S
rDNA locus and over-expression of a chaperonin. Insect Mol Biol.
4(1):23-29.

Anselme C, Vallier A, Balmand S, Fauvarque MO, Heddi A. 2006. Host
PGRP gene expression and bacterial release in endosymbiosis of the
weevil Sitophilus zeamais. Appl Environ Microbiol. 72(10):6766-6772.

Anselme C, et al. 2008. Identification of the Weevil immune genes and
their expression in the bacteriome tissue. BMC Biol. 6(1):43.

Arrese EL and Soulages JL. 2010. Insect fat body: energy, metabolism, and
regulation. Annu Rev Entomol. 55:207-225.

Baumann P, Baumann L, Clark MA. 1996. Levels of Buchnera aphidicola
chaperonin GroEL during growth of the aphid Schizaphis graminum.
Curr Microbiol. 32(5):279-285.

Belda E, Silva FJ, Pereto J, Moya A. 2012. Metabolic networks of Sodalis
glossinidius: a systems biology approach to reductive evolution. PLoS
One 7(1):e30652.

Bing X, et al. 2017. Unravelling the relationship between the tsetse fly and
its obligate symbiont Wigglesworthia: transcriptomic and metabolo-
mic landscapes reveal highly integrated physiological networks. Proc R
Soc B. 284(1857):20170360.

Boyd BM, et al. 2016. Two bacterial genera, Sodalis and Rickettsia, asso-
ciated with the seal louse Proechinophthirus fluctus (Phthiraptera:
Anoplura). Appl Environ Microbiol. 82(11):3185-3197.

Bradford PA. 2001. Extended-spectrum beta-lactamases in the 21st cen-
tury: characterization, epidemiology, and detection of this important
resistance threat. Clin Microbiol Rev. 14(4):933-951.

Brucker RM, Funkhouser LJ, Setia S, Pauly R, Bordenstein SR. 2012. Insect
Innate Immunity Database (llID): an annotation tool for identifying
immune genes in insect genomes. PLoS One 7(9):e45125.

Carver T, Harris SR, Berriman M, Parkhill J, McQuillan JA. 2012. Artemis: an
integrated platform for visualization and analysis of high-throughput
sequence-based experimental data. Bioinformatics 28(4):464-469.

Charles H, et al. 2011. A genomic reappraisal of symbiotic function in the
aphid/Buchnera symbiosis: reduced transporter sets and variable mem-
brane organisations. PLoS One 6(12):229096.

Chrudimsky T, Husnik F, Novékova E, Hypsa V. 2012. Candiidatus Sodalis
melophagi sp. nov.: phylogenetically independent comparative model
to the tsetse fly symbiont Sodalis glossinidius. PLoS One 7(7):e40354.

Coleman JE. 1992. Zinc proteins: enzymes, storage proteins, transcription
factors, and replication proteins. Annu Rev Biochem. 61(1):897-946.

Coleman JE. 1998. Zinc enzymes. Curr Opin Chem Biol. 2(2):222-234.

Crawford JM, Kontnik R, Clardy J. 2010. Regulating alternative lifestyles in
entomopathogenic bacteria. Curr Biol. 20(1):69-74.

Douglas AE. 2016. How multi-partner endosymbioses function. Nat Rev
Microbiol. 14(12):731-743.

Drawz SM, Bonomo RA. 2010. Three decades of beta-lactamase inhibi-
tors. Clin Microbiol Rev. 23(1):160-201.

Duncan RP, et al. 2014. Dynamic recruitment of amino acid transporters to
the insect/symbiont interface. Mol Ecol. 23(6):1608-1623.

Eichler S, Schaub GA. 2002. Development of symbionts in triatomine bugs
and the effects of infections with trypanosomatids. Exp Parasitol.
100(1):17-27.

Fan Y, Thompson JW, Dubois LG, Moseley MA, Wernegreen JJ. 2013.
Proteomic analysis of an unculturable bacterial endosymbiont
(Blochmannia) reveals high abundance of chaperonins and biosyn-
thetic enzymes. J Proteome Res. 12(2):704-718.

Fischer JD, Holliday GL, Thornton JM. 2010. The CoFactor database: or-
ganic cofactors in enzyme catalysis. Bioinformatics 26(19):2496-2497.

Fukatsu T, Ishikawa H. 1993. Occurrence of chaperonin 60 and chaper-
onin 10 in primary and secondary bacterial symbionts of aphids: impli-
cations for the evolution of an endosymbiotic system in aphids. J Mol
Evol. 36(6):568-577.

Gerardo NM, Wilson AC. 2011. The power of paired genomes. Mol Ecol.
20(10):2038-2040.

Gerardo NM, et al. 2010. Immunity and other defenses in pea aphids,
Acyrthosiphon pisum. Genome Biol. 11(2):R21.

Gonzalez-Domenech CM, et al. 2012. Metabolic stasis in an ancient sym-
biosis: genome-scale metabolic networks from two Blattabacterium
cuenoti strains, primary endosymbionts of cockroaches. BMC
Microbiol. 12:S5.

Grabherr MG, et al. 2011. Full-length transcriptome assembly from RNA-
Seq data without a reference genome. Nat Biotechnol. 29(7):644-652.

Gruber-Vodicka HR, Seah BK, Pruesse E. 2019. phyloFlash—rapid SSU rRNA
profiling and targeted assembly from metagenomes. bioRxiv 521922.

Hansen AK, Moran NA. 2011. Aphid genome expression reveals host—
symbiont cooperation in the production of amino acids. Proc Natl
Acad Sci USA. 108(7):2849-2854.

440 Genome Biol. Evol. 12(4):429-442 doi:10.1093/gbe/evaad32 Advance Access publication February 18, 2020



Host-Symbiont Gene Expression

GBE

Hansen AK, Moran NA. 2014. The impact of microbial symbionts on host
plant utilization by herbivorous insects. Mol Ecol. 23(6):1473-1496.

Husnik F. 2018. Host-symbiont—pathogen interactions in blood-feeding
parasites: nutrition, immune cross-talk and gene exchange.
Parasitology 145(10):1294-1303.

Husnik F, McCutcheon JP. 2016. Repeated replacement of an intrabacte-
rial symbiont in the tripartite nested mealybug symbiosis. Proc Natl
Acad Sci USA. 113(37):E5416-E5424.

Husnik F, et al. 2013. Horizontal gene transfer from diverse bacteria to an
insect genome enables a tripartite nested mealybug symbiosis. Cell
153(7):1567-1578.

International Aphid Genomics Consortium. 2010. Genome sequence of
the pea aphid Acyrthosiphon pisum. PLoS Biol. 8:e1000313.

Karp PD, et al. 2010. Pathway Tools version 13.0: integrated software for
pathway/genome informatics and systems biology. Brief Bioinform.
11(1):40-79.

Kirkness EF, et al. 2010. Genome sequences of the human body louse and
its primary endosymbiont provide insights into the permanent parasitic
lifestyle. Proc Natl Acad Sci USA. 107(27):12168-12173.

Laetsch DR, Blaxter ML. 2017. BlobTools: interrogation of genome assem-
blies. F1000Research 6:1287.

Langmead B, Salzberg SL. 2012. Fast gapped-read alignment with Bowtie
2. Nat Methods. 9(4):357-359.

Lehane MJ. 1997. Peritrophic matrix structure and function. Annu Rev
Entomol. 42(1):525-550.

Li B, Dewey CN. 2011. RSEM: accurate transcript quantification from RNA-
Seq data with or without a reference genome. BMC Bioinformatics
12(1):323.

Login FH, et al. 2011. Antimicrobial peptides keep insect endosymbionts
under control. Science (80-) 334(6054):362-365.

Lu HI, Chang Cc, Wilson ACC. 2016. Amino acid transporters implicated in
endocytosis of Buchnera during symbiont transmission in the pea
aphid. Evodevo 7:24.

Luan J-B, et al. 2015. Metabolic coevolution in the bacterial symbiosis of
whiteflies and related plant sap-feeding insects. Genome Biol Evol.
7(9):2635-2647.

Macdonald SJ, Lin GG, Russell CW, Thomas GH, Douglas AE. 2012. The
central role of the host cell in symbiotic nitrogen metabolism. Proc R
Soc B. 279(1740):2965-2973.

MacDonald SJ, Thomas GH, Douglas AE. 2011. Genetic and metabolic
determinants of nutritional phenotype in an insect-bacterial symbiosis.
Mol Ecol. 20(10):2073-2084.

Mantilla BS, et al. 2017. Proline metabolism is essential for Trypanosoma
brucei brucei survival in the tsetse vector. PLoS Pathog.
13(1):21006158-29.

Manzano-Marin A, Simon J-C, Latorre A. 2016. Reinventing the wheel and
making it round again: evolutionary convergence in Buchnera—
Serratia symbiotic consortia between the distantly related Lachninae
Aphids Tuberolachnus salignus and Cinara cedri. Genome Biol Evol.
8(5):1440-1458.

Mao M, Yang X, Bennett GM. 2018. Evolution of host support for two
ancient bacterial symbionts with differentially degraded genomes in a
leafhopper host. Proc Natl Acad Sci USA. 115(50):E11691-E11700.

McCall KA, Huang C, Fierke CA. 2000. Function and mechanism of zinc
metalloenzymes. J Nutr. 130(5):14375-1446S.

McClure R, et al. 2013. Computational analysis of bacterial RNA-Seq data.
Nucleic Acids Res. 41(14):e140.

McCutcheon J, McDonald B, Moran N. 2009. Convergent evolution of
metabolic roles in bacterial co-symbionts of insects. Proc Natl Acad Sci
USA. 106(36):15394—15399.

McCutcheon JP, Moran NA. 2012. Extreme genome reduction in symbi-
otic bacteria. Nat Rev Microbiol. 10(1):13-26.

Michalkova V, Benoit JB, Weiss BL, Attardo GM, Aksoy S. 2014. Obligate
symbiont-generated vitamin B6 is critical to maintain proline

homeostasis and fecundity in tsetse flies. Appl Environ Microbiol.
80(18):5844-5853.

Moran NA, Bennett GM. 2014. The tiniest tiny genomes. Annu Rev
Microbiol. 68(1):195-215.

Moran NA, McCutcheon JP, Nakabachi A. 2008. Genomics and evolution
of heritable bacterial symbionts. Annu Rev Genet. 42(1):165-190.
Nakabachi A, Ishida K, Hongoh Y, Ohkuma M, Miyagishima S. 2014.
Aphid gene of bacterial origin encodes a protein transported to an

obligate endosymbiont. Curr Biol. 24(14):R640-641.

Nakabachi A, Ishikawa H. 1999. Provision of riboflavin to the host aphid,
Acyrthosiphon pisum, by endosymbiotic bacteria, Buchnera. J Insect
Physiol. 45(1):1-6.

Nakabachi A, et al. 2005. Transcriptome analysis of the aphid bacteriocyte,
the symbiotic host cell that harbors an endocellular mutualistic bacte-
rium, Buchnera. Proc Natl Acad Sci USA. 102(15):5477-5482.

Nikoh N, et al. 2014. Evolutionary origin of insect-Wolbachia nutritional
mutualism. Proc Natl Acad Sci USA. 111(28):10257-10262.

Novakova E, Husnik F, Sochova E, Hyp3a V. 2015. Arsenophonus and
Sodalis symbionts in louse flies: an analogy to the Wigglesworthia
and Sodalis system in tsetse flies. Appl Environ Microbiol.
81(18):6189-6199.

Novékova E, Hypsa V, Nguyen P, Husnik F, Darby AC. 2016. Genome
sequence of Candiidatus Arsenophonus lipopteni, the exclusive symbi-
ont of a blood sucking fly Lipoptena cervi (Diptera: Hippoboscidae).
Stand Genomic Sci. 11: 72.

Oakeson KF, et al. 2014. Genome degeneration and adaptation in a na-
scent stage of symbiosis. Genome Biol Evol. 6(1):76-93.

Pais R, Lohs C, Wu Y, Wang J, Aksoy S. 2008. The obligate mutualist
Wigglesworthia glossinidia influences reproduction, digestion, and im-
munity processes of its host, the tsetse fly. Appl Environ Microbiol.
74(19):5965-5974.

Poliakov A, etal. 2011. Large-scale label-free quantitative proteomics of the pea
aphid-Buchnera symbiosis. Mol Cell Proteomics. 10(6):M110.007039.
Price DRG, et al. 2014. Aphid amino acid transporter regulates glutamine
supply to intracellular bacterial symbionts. Proc Natl Acad Sci USA.

111(1):320-325.

Ratzka C, Gross R, Feldhaar H. 2013. Gene expression analysis of the
endosymbiont-bearing midgut tissue during ontogeny of the carpen-
ter ant Camponotus floridanus. J Insect Physiol. 59(6):611-623.

Rihové J, Novakové E, Husnik F, Hyp3a V. 2017. Legionella becoming a
mutualist: adaptive processes shaping the genome of symbiont in the
louse Polyplax serrata. Genome Biol Evol. 9(11):2946-2957.

Rio RV, et al. 2012. Insight into the transmission biology and species-
specific functional capabilities of tsetse (Diptera: Glossinidae) obligate
symbiont Wigglesworthia. MBio 3(1):1-13.

Robinson MD, McCarthy DJ, Smyth GK. 2010. edgeR: a Bioconductor
package for differential expression analysis of digital gene expression
data. Bioinformatics 26(1):139-140.

Roje S. 2007. Vitamin B biosynthesis in plants. Phytochemistry
68(14):1904-1921.

Shigenobu S, Stern DL. 2013. Aphids evolved novel secreted proteins for
symbiosis  with  bacterial endosymbiont. Proc R Soc B.
280(1750):20121952.

Simao FA, Waterhouse RM, loannidis P, Kriventseva EV, Zdobnov EM.
2015. BUSCO: assessing genome assembly and annotation complete-
ness with single-copy orthologs. Bioinformatics 31(19):3210-3212.

Sloan DB, et al. 2014. Parallel histories of horizontal gene transfer facili-
tated extreme reduction of endosymbiont genomes in sap-feeding
insects. Mol Biol Evol. 31(4):857-871.

Small RW. 2005. A review of Melophagus ovinus (L.), the sheep ked. Vet
Parasitol. 130(1-2):141-155.

Strickler-Dinglasan PM, Guz N, Attardo G, Aksoy S. 2006. Molecular char-
acterization of iron binding proteins from Glossina morsitans morsitans
(Diptera: Glossinidae). Insect Biochem Mol Biol. 36(12):921-933.

Genome Biol. Evol. 12(4):429-442 doi:10.1093/gbe/evaa032 Advance Access publication February 18, 2020 441



Husnik et al.

GBE

Thomas GH, et al. 2009. A fragile metabolic network adapted for coop-
eration in the symbiotic bacterium Buchnera aphidicola. BMC Syst Biol.
3:24.

Van Leuven JT, Meister RC, Simon C, McCutcheon JP. 2014. Sympatric
speciation in a bacterial endosymbiont results in two genomes with
the functionality of one. Cell 158:1270-1280.

Vigneron A, et al. 2014. Insects recycle endosymbionts when the benefit is
over. Curr Biol. 24(19):2267-2273.

Wang JW, Aksoy S. 2012. PGRP-LB is a maternally transmitted immune
milk protein that influences symbiosis and parasitism in tsetse’s off-
spring. Proc Natl Acad Sci USA. 109(26):10552—10557.

Wang JW, Wu YN, Yang GX, Aksoy S. 2009. Interactions between mu-
tualist Wigglesworthia and tsetse peptidoglycan recognition protein
(PGRP-LB) influence trypanosome transmission. Proc Natl Acad Sci
USA. 106(29):12133-12138.

Waterhouse DF. 1953. The occurrence and significance of the peritrophic
membrane, with special reference to adult lepidoptera and diptera.
Aust J Zool. 1(3):299-318.

Weiss BL, Wang J, Aksoy S. 2011. Tsetse immune system maturation
requires the presence of obligate symbionts in larvae. PLoS Biol.
9(5):¢1000619.

Yan J, Cheng Q, Li CB, Aksoy S. 2002. Molecular characterization of three gut
genes from Glossina morsitans morsitans:  cathepsin B,  zinc-
metalloprotease and zinc-carboxypeptidase. Insect Mol Biol. 11(1):57-65.

Yoshiga T, et al. 2001. Drosophila melanogaster transferrin—Cloning, de-
duced protein sequence, expression during the life cycle, gene local-
ization and up-regulation on bacterial infection. Eur J Biochem.
260(2):414-420.

Associate editor: Richard TE Cordaux

442  Genome Biol. Evol. 12(4):429-442 doi:10.1093/gbe/evaa032 Advance Access publication February 18, 2020



