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Introduction

Epithelium and endothelium separate different tissues to 
protect multicellular organisms from external effects. These 
tissues need to form tight junctions (TJs), the selective gates 
that control the diffusion of ions and solutes around the 
cells. Additionally, the apical and basal plasma membrane 
domains are separated by TJ, which is connected to the 

mechanism that controls the apical-basal polarization (1). 
TJs are simple static components used to establish cell 
adhesion structure and are involved in mediating cellular 
signals. They receive environmental cues and transmit 
signals within a cell. CLDNs plays a role in maintaining 
TJ adhesion between cells (2), thus constituting a selective 
barrier to the pericellular membrane. CLDN is a tetramer 
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protein ranging in size from 20 to 27 kDa. The CLDN 
family consists of more than 27 members. The sequence 
analysis of CLDNs leads to two groups according to their 
sequence similarity, called classical CLDNs and non-
classical CLDNs (3). 

In human tumors, CLDNs expression is often reduced 
or eliminated. These findings align with the well-
established hypothesis that disruption or ineffectiveness of 
functional TJs is strongly associated with cancer. Instead, 
accumulated data show increased or abnormal expression 
of CLDNs in different cancers, indicating their special 
role in tumorigenesis. Although the CLDN family exhibits 
specific distribution patterns in different organs, abnormal 
expression of CLDNs promotes tumorigenesis. Notably, 
determining whether the expression of maladjusted CLDNs 
plays a carcinogenic role or leads to tumor inhibition 
depending on its target tissues and cells and whether it 
correlates with tumor outcomes and prognosis contributes 
to the study of tumor development and progression (4). 
CLDNs are expressed abnormally at both the transcriptional 
and post-transcriptional levels in cancer, although recent 
research has indicated that epigenetic mechanisms, such as 
DNA methylation, histone modification, and microRNAs 
(miRNAs), are essential for modulating CLDN expression.

Hepatocellular carcinoma (HCC) is the most common 
primary liver cancer, accounting for 90% of liver cancers. 
Common risk factors for HCC are chronic inflammatory 
infections caused by the hepatitis B and C viruses. These 
infections lead to cirrhosis and make HCC the cancer 

with the highest recurrence rate in the world (5). Despite 
considerable progress and innovation in surgical techniques, 
chemoradiotherapy, and targeted treatment for liver cancer 
in recent years, metastasis remains an important factor 
contributing to poor prognosis. This is why studying the 
underlying mechanisms of HCC onset and metastasis is 
essential, along with finding effective biomarkers to help 
with the diagnosis and targeted therapy (6).

In this research, CLDN6’s role in HCC was demonstrated. 
Furthermore, it was observed that silencing of CLDN6 
significantly promotes apoptosis and inhibits migration 
and invasion in SMMC-7721 and MHCC-97H cells. 
The mechanism may be associated with the JAK2/STAT3 
signaling pathway. We present this article in accordance 
with the MDAR reporting checklist (available at https://tcr.
amegroups.com/article/view/10.21037/tcr-23-19/rc).

Methods

Cell culture

SMMC-7721 (Cat. No: CC-Y1476) and MHCC-97H 
(Cat. No: CC-Y1613) cell lines were supplied by Shanghai 
EK-Bioscience Biotechnology Co., Ltd. (China). Cell 
culture of every cell line was carried out at 37 ℃ using an 
incubator comprising 5% CO2. DMEM and RPMI 1640 
media (HyClone, Logan, UT, USA) were added with 10% 
fetal bovine serum (FBS) (Gibco, Grand Island, NY, USA) 
and penicillin/streptomycin (Life Technologies, Carlsbad, 
CA, USA).

Transfection

For the downregulation of the CLDN6  gene, four 
short  interfering RNAs (s iRNAs) (NC-siRNA sense 
strand:  5'-UUCUCCGAACGUGUCACGUTT-3' 
a n d  a n t i s e n s e  s t r a n d ,  5 ' - A G G U G A C A C G 
UUCGGAGAATT-3'; CLDN6-siRNA1 sense strand 
5'-CCGGCCAGAUGCAGUGCAATT-3' and antisense 
strand, 5'-UUGCACUGCAUCUGGCCGGTT-3'; 
CLDN6-siRNA2 sense strand 5'-GGGAUUGUCUUU 
GUCAUCUTT-3' and antisense strand, 5'-AGAUGACA 
AAGACAAUCCCTT-3'; CLDN6-siRNA3 sense strand 
5'-CCUACCAAGAAUUACGUCUTT-3' and antisense 
strand, 5'-AGACGUAAUUCUUGGUAGGTT-3') were 
purchased from GeneChem (Shanghai, China). 

In the next step, a quantitative real-time polymerase 
chain reaction (qRT-PCR) assay was carried out for the 
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purpose of selecting the sequence that facilitated CLDN6 
knockdown for the next experiment. pcDNA-CLDN6 and 
pcDNA vector (pcDNA-NC) were used for overexpression. 
Lipo 2000 (Invitrogen, Waltham, MA, USA) was used 
for cell transfection. Cell inoculation was carried out into 
six-well plates at a density of 5×105 per well 24 h before 
transfection. CLDN6-siRNA or pcDNA-CLDN6 plasmids 
were introduced into each pore cell, respectively. The liquid 
was replaced after six hours. The cells were gathered for 
future experimentation one day following transfection.

qRT-PCR assay

RNA separation from the samples was done by utilizing 
Trizol (Invitrogen) as per the manufacturer’s guidelines, and 
the NanoVuebles Plus (Thermo Fisher Scientific, Waltham, 
MA, USA) instrument was employed for measurement 
of RNA quality by determining the A260/A280 ratio. 
Subsequently, reverse transcription of 1 g of every μ sample 
was done with the help of the PrimeScripSphereTakara 
First Strand cDNA synthesis kit (Takara, Kusatsu, Japan), 
followed by storage of the resulting product at −80 ℃. In 
order to perform qRT reactions, SYBR PreMix Ex Taq 
(Takara) and ABI StepOne PCR Real-time PCR System 
(Applied Biosystems, Carlsbad, CA, USA) were utilized. 

The following primers employed in this research: 
CLDN6-forward: 5'-CCATCAGGGACTTCTATAA-3', 
CLDN6-reverse: CAGACGTAATTCTTGGTAGGGT; 
GAPDH-forward: 5'-CAGGAGGCATTGCTGATGAT-3', 
GAPDH-reverse: 5'-GAAGGCTGGGGCTCATTT.

Immunofluorescence technique

SMMC-7721 and MHCC-97H cells (4×104/well) were 
inoculated in confocal Petri dishes overnight at 37 ℃ in 
an incubator with 5% CO2. After discarding the medium, 
pre-cooled phosphate buffered saline (PBS) was employed 
for cell washing after which cell fixation was done with 
4% paraformaldehyde for 30 min. Then, they were closed 
with 3% bovine serum albumin (BSA) for an hour at room 
temperature. Subsequently, incubation of the dishes was 
done using a rabbit monoclonal antibody against CLDN6 
(Affinity Biosciences Cat# AF5213, Affinity Biosciences,  
Zhenjiang, China) overnight in an incubator at 4 ℃ and a 
fluorescent secondary antibody (Affinity Biosciences Cat# 
S0006) for an hour at room temperature. Visualization of 
the cells was done using laser scanning confocal microscopy.

Cell Counting Kit-8 (CCK-8) assay

Cell proliferation was assessed by a CCK-8 cell counting 
kit. The human hepatoma cell line was cultured in 96-well 
plates at 37 ℃ in an environment containing 5% carbon 
dioxide. When the cells reached 60% or 70% fusion, 
CLDN6-siRNA was introduced into the cells, after which 
they were incubated for 24, 48, or 72 h. Subsequently, 
10% CCK-8 was diluted into each hole and incubated for 
another hour. With the aid of a microplate reader (Bio-Rad, 
Hercules, CA, USA), optical density (OD) measurements at 
450 nm were recorded.

Invasion and migration assays

The assay chamber (Corning Life Sciences, Corning, 
NY, USA) was exposed to ultraviolet light for 30 min and 
then used in the experiment. Tumor cell invasion assay 
requires a pre-coated Matrigel (1:8). The upper portion of 
the chamber was introduced with tumor cells and serum-
free media (migration: 2×104 cells/well; invasion: 5×104 
cells/well). In the lower chamber, a conventional medium 
supplemented with 10% FBS was employed. Following 
incubation for one day at 37 ℃, the cells were fixed for 
15 minutes with 4% paraformaldehyde and stained for 15 
minutes with 0.5% crystal violet. A microscope was used to 
observe and count cells that were migrating or invading.

Wound healing assay

Measurement of cell migration was done by means of 
the wound healing assay. The cells (5×105/well) were 
inoculated in a 6-well plate until they reached 80% fusion.  
Twenty-four hours after transfection, an artificial wound 
was constructed on the cell monolayer using the tip of a 
200 μL sterile pipette, followed by washing thrice with 
PBS. ImageJ was used to quantify the wound area after the 
wound was viewed under the inverted microscope for 0, 24, 
and 48 hours.

Wound healing rate = V0 − Vn/V0, where V0 indicates 
the initial wound area and Vn refers to the wound area after 
n hours.

Apoptosis detection

Following 24 hours of transfection, cells were collected by 
trypsin solution (EDTA-free) and stained with AnnexinV-
FITC and PI  (BestBio, Shanghai, China). As per the 
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guidelines provided by the manufacturer, 300 μL of 1× 
Annexin V binding solution was introduced for the purpose 
of cell resuscitation. After adding 4 μL of Annexin V-FITC, 
cell incubation was done on ice for 15 min. Subsequently, 
8 μL of PI staining solution was added and mixed gently in 
the absence of light, followed by incubation for 5 min on 
ice. Afterward, flow cytometry was employed for evaluating 
target cell apoptosis.

Western blotting

The cells lysed in RIPA buffers containing protease and 
phosphatase inhibitors. Using a BCA kit, the proteins’ 
concentrations were measured. SDS-PAGE was used to 
isolate whole cell proteins, which were then transferred 
to PVDF membranes (Millipore, Billerica, MA, USA). 
Blocking of the blots was done using 5% non-fat milk, 
followed by probing with the primary antibody and 
placement in a 4 ℃ refrigerator overnight. They were 
probed again with secondary antibodies for 2 h. For these 
analytical procedures, β-actin was utilized in the form 
of loading control. The primary antibodies used were as 
follows: rabbit anti-JAK2 (1:1,000, Affinity Biosciences Cat# 
AF6022), anti-STAT3 (1:1,000, Affinity Biosciences, RRID: 
AB_2835144), anti-p-JAK2 (1:1,000, Affinity Biosciences 
Cat# AF3024), anti-p-STAT3 (1:1,000, Affinity Biosciences 
Cat# AF3293), anti-CLDN6 (1:1,000, Affinity Biosciences 
Cat# AF5213), anti-Bcl-2 (1:1,000, Proteintech, 12789-1-
AP; Proteintech, Wuhan, China), anti-cleaved caspase-3 
(1:1,000, Proteintech, 66470-2-lg), anti-Bax (1:1,000, 
Proteintech, 50599-2-lg), and anti-β-actin (1:1,000, Affinity 
Biosciences, RRID: AB_2839420).

Statistical analysis

Graphpad Prism 8.0 was employed for conducting all 
statistical analytical procedures. The data were compared 
using t-test, analysis of variance (ANOVA), and Tukey’s 
honestly significant difference (HSD) test if appropriate. 
P<0.05 was considered as the significance threshold.

Results

Inhibition of invasion and migration of SMMC-7721 and 
MHCC-97H cells by CLDN6 silencing

Initially, treatment of SMMC-7721 and MHCC-97H 
cells was done with siRNA sequences for 48 h. qRT-PCR 

was employed for the detection of CLDN6 expression. 
CLDN6-siRNA2 and CLDN6-siRNA1 significantly 
down-regulated the expression of CLDN6 in SMMC-
7721 (Figure 1A) and MHCC-97H (Figure 1B) cells, 
respectively. Therefore, these two sequences were used as 
knockdown sequences in subsequent tests. The findings 
of the immunofluorescence assay exhibited that following 
transfection with CLDN6-siRNA, CLDN6  protein 
expression level was remarkably reduced and increased 
upon transfection with pcDNA-CLDN6m indicating 
high transfection efficiency in the aforementioned cells  
(Figure 1C,1D). Then, transwell invasion and migration 
were carried out for examination of the influence of CLDN6 
on cell invasion and migration. As observed in Figure 
2A,2B, the downregulation of CLDN6 significantly blocked 
the invasion and migration ability of the cells (P<0.001), 
and through wound healing assay, we can also see the same 
trend in Figure 2C,2D.

Promotion of SMMC-7721 and MHCC-97H cell apoptosis 
by CLDN6 silencing

The findings of the CCK-8 assay indicated inhibition 
of cell proliferation (Figure 3A,3B) after CLDN6-siRNA 
transfection at 24, 48, and 72 h (P<0.01, P<0.001). Flow 
cytometry was employed for analyzing tumor cell apoptosis 
(Figure 3C,3D). After CLDN6 silencing, tumor cell apoptosis 
appeared remarkably greater in comparison to control cells 
(P<0.001). The results of WB (Figure 4A,4B) showed the 
same trend. These findings were indicative of the inhibitory 
effects of CLDN6 knockdown on the proliferation of these 
cells, as well as its ability to promote cell apoptosis.

Induction of apoptosis by CLDN6 silencing via 
downregulation of JAK2/STAT3 signaling pathway 
activation

In oncogenesis, JAK2/STAT3 signaling is a vital regulator 
of tumor progression. To evaluate the influence of CLDN6 
knockdown on this pathway, the levels of JAK2/STAT3 
pathway-related proteins were analyzed through Western 
blotting. As shown in picture 3, CLDN6 silencing decreased 
the expression of p-JAK2, p-STAT3, p-JAK2/JAK2, 
p-STAT3/STAT3, CLDN6, and Bcl-2. However, Bax and 
cleaved caspase-3 expression levels were increased, while no 
remarkable differences were observed in JAK2 and STAT3 
expression levels (Figure 4). These results clearly showed 
that CLDN6 silencing induced apoptosis by downregulating 

https://antibodyregistry.org/search.php?q=AB_2835144
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Figure 1 Transfection of SMMC-7721 and MHCC-97H cells with CLDN6-siRNA or NC-siRNA for 48 h. (A,B) Detection of CLDN6 
expression by qRT-PCR, ***, P<0.001. (C,D) Observation of fluorescence images under a laser scanning confocal microscope after 
fluorescent secondary antibody staining. siRNA, short interfering RNA; qRT-PCR, quantitative real-time polymerase chain reaction.

the activation of this pathway.

Promotion of HCC cell invasion and migration and 
inhibition of apoptosis by CLDN6 overexpression

MMC-7721 and MHCC-97H cells were transfected 
with pcDNA-NC or pcDNA-CLDN6 sequence for 48 h. 
Western blotting showed increased expression of CLDN6 
(Figure 5A,5B), and immunofluorescence (Figure 1C,1D) 
analysis demonstrated overexpression, elevated Bcl-2 levels, 
and lowered Bax and cleaved caspase-3 levels. CLDN6 
overexpression resulted in the inhibition of HCC cell 
apoptosis (Figure 5A,5B). The ability of the aforementioned 
cells to invade and migrate was significantly increased 
following CLDN6 overexpression. However, cell invasion 
and migration decreased significantly when a pathway 
inhibitor (AG490) was used (Figure 5C,5D). These results 
indicated that CLDN6 regulates cell invasion and migration 
via JAK2/STAT3 pathway in these cells.

Discussion

TJs are essential for modulating cell polarity, adhesion, and 
permeability. They are present in the junctional complex 
connecting epithelial and endothelial cells (7), also, tight 
junctions must also be selectively permeable to ions, water, 
and macromolecules (8). Tumors and inflammatory tissues 
are characterized by decreased TJ integrity and increased 
cellular bypass permeability (9). The junction adhesion 
molecules, occludin, and CLDN are the three fundamental 
membrane proteins that make up TJs. The CLDN protein 
family is a vital regulator of TJ functioning (10). The 
CLDN family functions as an important modulator of 
tumorigenesis and metastasis, the altered expression of 
CLDN6 is linked to the development of various cancers 
whose malignant phenotypes include proliferation and 
apoptosis, migration and invasion and drug resistance (11). 
CLDN6 varies among tumor cells of various types. The 
expression of CLDN6 in gastric cancer (12), non-small cell 
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Figure 2 Inhibition of SMMC-7721 and MHCC-97H cell invasion and migration by CLDN6 downregulation. (A,B) The cells crossed 
through the pores of Transwell chamber were stained by crystal violet. (C,D) Detection of cell invasion via wound-healing assay. Each 
bar represents the mean ± SEM of three independent experiments (*, P<0.05; **, P<0.01; ***, P<0.001; one-way ANOVA). siRNA, short 
interfering RNA; ANOVA, analysis of variance; SEM, standard error of the mean.
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Figure 3 Promotion of SMMC-7721 and MHCC-97H cell apoptosis by CLDN6 silencing. (A,B) Inhibition of cell proliferation depicted by 
CCK-8 assay. (C,D) Analysis of apoptosis by flow cytometry 24 h after CLDN6 silencing (**, P<0.01; ***, P<0.001). siRNA, short interfering 
RNA; CCK-8, Cell Counting Kit-8.

lung cancer (NSCLC) (13), ovarian cancer (14), endometrial 
cancer (15), and esophageal squamous cell carcinoma (16) 
are greater than the expression observed in normal tissues. 
However, its expression is down-regulated in cervical 
cancer (17) and is undetectable in breast cancer (18). The 
abnormality of CLDN6 expression in some tumors renders 
CLDN6 a possible targeting molecule for treating these 
tumors (19), such as breast cancer (20) and NSCLC (21). 
The primary objective of this research was the investigation 
of the CLDN6 mechanism in HCC.

The most prevalent primary liver cancer is HCC, which is 
also the second-leading contributor to cancer-caused deaths 
globally (22), accounting for 75% to 85% of cases (23).  
HCC is the fastest increasing cause of cancer-related death 
and one of the leading causes of death in patients with 
compensated cirrhosis (24). 

For early HCC, surgical resection and liver transplantation 

are the major treatment strategies. However, large or 
multifocal tumors with co-existing liver lesions are 
sometimes unresectable. Although liver transplantation and 
surgical resection are the mainstays of HCC treatment, 
numerous patients are inoperable in advanced stages. In 
stark contrast to other cancers, HCC is considered resistant 
to systemic chemotherapy (25). Sorafenib is the first 
systematic treatment to increase the survival rates of patients 
with advanced liver cancer (26). Although sorafenib has been 
proven effective and safe for HCC treatment, its potential 
role as an adjuvant for HCC is still controversial (27).  
According to the results of recent clinical trials, a single 
drug may not be sufficient to treat liver cancer (28). 
Therefore, combined therapy is the main strategy for 
treating advanced liver cancer systemically. In addition, 
it is important to find new therapeutic targets. With the 
continuous development of new treatment strategies, HCC 
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Figure 4 Induction of apoptosis via downregulation of JAK2/STAT3 signaling pathway activation by CLDN6 silencing. Transfection of 
MMC-7721 and MHCC-97H cells with CLDN6-siRNA or NC-siRNA sequence. (A,B) Attenuation in p-JAK2, p-STAT3, p-JAK2/JAK2, 
p-STAT3/STAT3, CLDN6 and Bcl-2 expression and enhancement of Bax expression and cleaved caspase-3 levels via CLDN6 silencing (*, 
P<0.05; **, P<0.01; ***, P<0.001; one-way ANOVA). siRNA, short interfering RNA; ANOVA, analysis of variance.
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Figure 5 Reduction in the impact of CLDN6 overexpression on cell invasion and migration via inhibition of the JAK2/STAT3 signaling 
pathway. Transfection of MMC-7721 and MHCC-97H cells with pcDNA-NC or pcDNA-CLDN6 sequence. (A,B) Enhancement of Bcl-
2 expression and attenuation in Bax expression and cleaved caspase-3 levels via CLDN6 overexpression. (C,D) CLDN6 overexpression. 
Assessment of cell invasion and migration by Transwell assay, which was stained by crystal violet. *, P<0.05; **, P<0.01; ***, P<0.001.
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outcomes are expected to be greatly improved in the future.
JAK/STAT signaling pathway is considered among 

the most important signal-cascading pathways in many 
cellular processes and is initiated by growth factors, 
cytokines, hormones, and other ligands. The JAK/STAT 
signal modulates several physiological mechanisms, 
including immunomodulation, cell proliferation, cell 
survival, apoptosis of myeloid and non-myeloid cells, 
and hematopoiesis (29). JAK/STAT is an evolutionarily 
conserved signal transduction pathway in all eukaryotes 
and the main signal transduction pathway for mammalian 
cytokines and growth factors, converting extracellular signals 
into transcriptional information to regulate physiological 
processes (30). Abnormal activation of intracellular 
signaling pathways causes cells with genetic and metabolic 
changes to show malignant phenotypes (31). Numerous 
changes are observed in signaling pathways regulating 
cell growth, division, death, fate, movement, tumor 
microenvironment, angiogenesis, and inflammation (32).  
In addition to the regulation of physiological processes, 
alterations in this signaling pathway also function in some 
pathophysiological diseases, including malignant tumors. 
Research has shown the activation of this pathway in 
multiple cancers, including HCC. Multiple effects of this 
pathway on cells and its association with other signaling 
pathways are key markers for the onset and development 
of cancer. Therefore, targeted activation of this pathway 
is a reasonable strategy for treating tumors (33). This 
pathway regulates various biological processes. However, 
it is particularly important for cell division, cell death (34), 
and tumor formation (35). Many mechanisms regulate 
JAK2/STAT3 signal transduction, in which tyrosine kinases 
are crucial. The synergistic effect of these mechanisms 
ensures optimal cell function during normal physiology 
and prevents inappropriate cell activities associated with 
the onset of diseases, such as tumors (36). STAT3 promotes 
cell invasion by adjusting matrix metalloproteinases (MMP) 
expression, such as MMP-2 and MMP-9 MMP (37). In 
addition, STAT3 also causes enhancement of HCC cell 
invasion via upregulation of the expression of Slug, Twist, 
and other epithelial-mesenchymal transition proteins (38). 
Other pathways involved in tumor metastasis, such as the 
PI3K/Akt2 signaling pathway, are also regulated by STAT3, 
which can synergistically increase tumor invasiveness (39). 
It is considered a strong candidate gene for the promotion 
of tumorigenesis in many human cancers, including the  
HCC (40). As a transcription factor, STAT3 stimulation 
promotes the expression of multiple genes, producing plenty 

of cancer markers. This finding highlights the carcinogenic 
role of STAT3 in the HCC (33). STAT3 is related to the 
adaptation of cancer cell metabolic processes to produce 
large amounts of energy biomolecules that promote cell 
survival (41). Therefore, JAK2/STAT3 signaling pathway is 
a vital regulator of liver cancer onset and advancement and 
may become a potential target for future clinical treatment.

This research observed that CLDN6 knockdown could 
reduce the invasive and migratory capacities of cells and 
inhibit JAK2/STAT3 signaling pathway activation. A 
particular effect was observed on p-JAK2 and p-STAT3 
proteins, which was characterized by reduced expression 
levels of these proteins and increased apoptosis. The 
expression of anti-apoptotic protein Bcl-2 was decreased, 
and cleaved caspase-3 and Bax expression were contrasting. 
Conversely, CLDN6 overexpression can prevent apoptosis 
while promoting cell migration and invasion. The increase 
in Bcl2 expression level and the lowered expression levels 
of Bax and cleaved caspase-3 backed this hypothesis. 
Collectively, these findings are indicative of the involvement 
of CLDN6 in HCC progression by regulating the JAK2/
STAT3 signaling pathway.

Conclusions

In conclusion, CLDN6 is a promising treatment target for 
HCC, but subsequent research is required to completely 
understand its underlying mechanisms and associated 
adverse effects to enhance therapeutic efficiency and 
potential individualized patient therapy. The JAK2/STAT3 
signaling pathway’s diverse cellular effects, as well as how 
it interacts with other signaling pathways, are crucial for 
the onset and progression of cancers. Therefore, targeted 
activation JAK2/STAT3 pathway is a reasonable strategy 
to treat tumors with the modulation of this abnormal 
signaling pathway. The findings of this study demonstrate 
that the downregulation of CLDN6 is sufficient for the 
reduction of the invading and migrating ability of HCC 
cells and ultimately resulting in the death of HCC cells 
by inactivating the JAK2/STAT3 signaling pathway. This 
suggests that CLDN6 may be a biomarker of HCC with 
potential value as a therapeutic target.
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