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Abstract: Huntington’s disease (HD) is caused by expansion of polyglutamine repeats in the protein
huntingtin, which affects the corpus striatum of the brain. The polyglutamine repeats in mutant
huntingtin cause its aggregation and elicit toxicity by affecting several cellular processes, which
include dysregulated organellar stress responses. The Golgi apparatus not only plays key roles in the
transport, processing, and targeting of proteins, but also functions as a sensor of stress, signaling
through the Golgi stress response. Unlike the endoplasmic reticulum (ER) stress response, the
Golgi stress response is relatively unexplored. This review focuses on the molecular mechanisms
underlying the Golgi stress response and its intersection with cysteine metabolism in HD.

Keywords: Golgi apparatus; Huntington’s disease; cysteine; transsulfuration; Golgi stress response;
integrated stress response

1. Introduction

Huntington’s disease (HD) is an autosomal dominant neurodegenerative disease
which profoundly affects the corpus striatum of the brain; it results from expansion of
polyglutamine repeats in the protein huntingtin [1]. Mutant huntingtin (mHtt) aggregates
and affects cellular processes in multiple ways [2]. mHtt affects basic neuronal processes
such as transcription, translation, nuclear-cytoplasmic transport, redox homeostasis, mito-
chondrial function and amino acid metabolism in addition to a myriad of physiological
processes [3–7].

HD has also been linked to impaired stress responses involving redox homeostasis
and endoplasmic stress response [5,7]. In addition to essential functions in cellular function,
organelles serve important roles as sensors of stress and as hubs for signaling pathways.
For instance, the endoplasmic reticulum (ER) plays central roles in protein folding, post-
translational modifications, quality control of proteins and Ca2+ handling, among many
other functions [8–11]. During ER stress—a state of functional imbalance—adaptive and
restorative programs such as the unfolded protein response (UPR) and ER-associated
protein degradation (ERAD), or autophagy, come into play [12,13]. One stimulus that
triggers the ER stress response is the accumulation of unfolded or misfolded proteins in
the ER lumen. Three arms exist in the ER stress response: the protein kinase R (PKR)-like
endoplasmic reticulum kinase (PERK), activating transcription factor 6 (ATF6), and inositol-
requiring enzyme 1 (IRE1) pathways, where each of the sensor proteins is a membrane
protein (Figure 1). In the PERK arm, during stress, PERK dissociates from the chaperone
protein, binding immunoglobulin protein/glucose-regulated protein 78 (BiP/GRP78), and
undergoes dimerization and phosphorylation. PERK, (a component of the integrated stress
response) then phosphorylates the eukaryotic translation initiation factor 2 subunit −α
(eIF2α), which results in global translational arrest. Under these conditions only certain
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mRNAs such as those encoding activating transcription factor 4 (ATF4) are translated,
in order to maintain functions important for cell survival. ATF4 regulates amino acid
homeostasis, purine metabolism, response to oxidative stress, autophagy and apoptosis.
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from the mRNA of X-box binding protein 1, XBP1 to create XBP1s. T XBP1s protein translocates to 
the nucleus and transactivates its target genes. In the ATF6 arm, binding immunoglobulin pro-
tein/glucose-regulated protein 78 (BiP/GRP78) dissociates from ATF6 when unfolded proteins ac-
cumulate in the ER. ATF6 translocates to the Golgi complex, where it undergoes proteolytic cleavage 
by site 1 and site 2 proteases (S1P and S2P). The N-terminal cytosolic fragment of ATF6 migrates to 
the nucleus and induces expression of target genes. In the PERK arm, dissociation of BiP causes its 
dimerization and autophosphorylation. PERK then phosphorylates eukaryotic initiation factor 2α 
(eIF2α), which results in global translational arrest. Under these conditions, only certain mRNAs 
such as ATF4 are translated, in order to maintain cellular functions during stress. 
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activating IRE1′s cytosolic endonuclease domain, which then splices a specific intron from 
the mRNA of X-box binding protein 1u, XBP1u to create XBP1s. The XBP1s protein trans-
locates to the nucleus and transactivates genes involved in protein degradation, protein 
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transmembrane protein that translocates to the Golgi when activated. During ER stress, 
when unfolded proteins accumulate, BiP/GRP78 dissociates from ATF6 to cause translo-
cation of ATF6 into the Golgi. In the Golgi, site 1 protease (S1P) and site 2 protease (S2P) 
cleave ATF6 [16]. The N-terminal region of ATF6 functions as a transcription factor and 
stimulates expression of target genes, such as protein disulfide isomerase (PDI), XBP1, 
and C/EBP Homologous Protein (CHOP) [16,17]. When proteins cannot be repaired or 
folded back into their functional configurations, they are targeted for degradation by 
ERAD [18]. When the repair capacity of ERAD is crossed, portions of the ER can be spe-
cifically targeted for degradation through autophagy (ER-phagy) [19]. Recently, we eluci-
dated the involvement of signaling pathways modulated by the Golgi apparatus in HD 

Figure 1. The endoplasmic reticulum (ER) stress response. The mammalian ER stress response
consists of three arms: the inositol-requiring enzyme 1 (IRE1), protein kinase R (PKR)-like ER kinase
(PERK), and activating transcription factor 6 (ATF6) pathways. IRE1 senses ER stress, which leads to
its dimerization and to the activation of its endonuclease role, that is, to splice a specific intron from the
mRNA of X-box binding protein 1, XBP1 to create XBP1s. T XBP1s protein translocates to the nucleus
and transactivates its target genes. In the ATF6 arm, binding immunoglobulin protein/glucose-
regulated protein 78 (BiP/GRP78) dissociates from ATF6 when unfolded proteins accumulate in the
ER. ATF6 translocates to the Golgi complex, where it undergoes proteolytic cleavage by site 1 and
site 2 proteases (S1P and S2P). The N-terminal cytosolic fragment of ATF6 migrates to the nucleus
and induces expression of target genes. In the PERK arm, dissociation of BiP causes its dimerization
and autophosphorylation. PERK then phosphorylates eukaryotic initiation factor 2α (eIF2α), which
results in global translational arrest. Under these conditions, only certain mRNAs such as ATF4 are
translated, in order to maintain cellular functions during stress.

In the inositol-requiring enzyme (IRE) branch, the ER-resident IRE1 senses unfolded
proteins or lipid disequilibrium and undergoes dimerization and autophosphorylation,
activating IRE1′s cytosolic endonuclease domain, which then splices a specific intron
from the mRNA of X-box binding protein 1u, XBP1u to create XBP1s. The XBP1s protein
translocates to the nucleus and transactivates genes involved in protein degradation,
protein folding, and lipid metabolism [14,15]. The third arm of the UPR consists of ATF6,
an ER transmembrane protein that translocates to the Golgi when activated. During ER
stress, when unfolded proteins accumulate, BiP/GRP78 dissociates from ATF6 to cause
translocation of ATF6 into the Golgi. In the Golgi, site 1 protease (S1P) and site 2 protease
(S2P) cleave ATF6 [16]. The N-terminal region of ATF6 functions as a transcription factor
and stimulates expression of target genes, such as protein disulfide isomerase (PDI), XBP1,
and C/EBP Homologous Protein (CHOP) [16,17]. When proteins cannot be repaired or
folded back into their functional configurations, they are targeted for degradation by
ERAD [18]. When the repair capacity of ERAD is crossed, portions of the ER can be
specifically targeted for degradation through autophagy (ER-phagy) [19]. Recently, we
elucidated the involvement of signaling pathways modulated by the Golgi apparatus in
HD [20,21]. This review focuses on the involvement of the Golgi and stress signaling
coordinated by this organelle in neurodegenerative states.
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2. The Golgi Apparatus
2.1. Organization of the Golgi Apparatus

The Italian anatomist Camillo Golgi was the first to describe the Golgi apparatus in
1898 [22]. He developed the staining protocol for the Golgi, termed the ‘Black Reaction’ (La
reazione nera) or Golgi’s staining, which accelerated the study of the brain by facilitating
the microscopic visualization of the complexity of the human nervous system [23–25].
The Golgi apparatus both processes and sorts lipids and proteins through the secretory
pathway. The Golgi complex is organized as a stack of cisternae, with the cis-face receiving
cargo from the ER and the trans-face or trans Golgi network (TGN) sorting cargo for export
to their respective destinations [26]. The stacks are interconnected by tubular membranes
into a continuous structure named the Golgi ribbon, which is a feature of the organelle
in mammals. Within cells the Golgi is positioned close to the centrosomes, the primary
microtubule-organizing center (MTOC) in dividing cells; vital for the maintenance of cell
polarity, this center in turn modulates cell migration and neurite outgrowth [27]. The
Golgi undergoes changes in morphology during various cellular processes such as cell
cycle progression and stress responses [28]. The Golgi is highly dynamic, and undergoes
disassembly during mitosis in early prophase and reassembly in telophase [29,30]. During
mitosis in mammals, the Golgi ribbon is disassembled and partitioned into daughter cells.
This disassembly also regulates mitotic progression [31].

2.2. The Golgi Stress Response

The Golgi plays central roles in glycosylation of proteins and harbors glycosyltrans-
ferases, glycosidases, and nucleotide sugar transporters, which orchestrate addition of
various sugars that result in a mature glycan [32]. The cargo may also undergo sev-
eral post-translational modifications including acetylation and phosphorylation, sulfation,
methylation or proteolytic cleavage [33]. When the capacity of the Golgi is exceeded, it
causes Golgi stress in a manner analogous to ER stress. In order to counter Golgi stress,
cells mount signaling cascades which constitute the Golgi stress response [34]. Although
the Golgi stress response is not as extensively characterized as ER stress, mounting evi-
dence suggests the involvement of signaling cascades. Several signaling cascades have
been reported with sensor proteins and effector proteins, which together elicit the Golgi
stress response (Figure 2). These include the TFE3, proteoglycan, CREB3, PERK and HSP47
pathways [21,35,36].

2.2.1. The TFE3 Pathway

The TFE3 pathway involves the activation of proteins responsible for the maintenance
of Golgi functions. TFE3 targets include the Golgi structural proteins (GCP60, Giantin, and
GM130) which maintain the structural integrity of the Golgi. GM130 (Golgin95) and Golgin-
160 are cis-Golgi-localized harboring coiled-coils, and mediate stacking of Golgi cisternae
and vesicular transport by serving as a vesicle tethering factor [37]. GM130 anchors adja-
cent stacks by interacting with Golgi reassembly and stacking protein of 65 kD (GRASP65)
and the p115 protein through its C-terminal and N-domains, respectively [37]. GCP60 (also
called acyl-CoA binding domain containing 3, or ACBD3) is a Golgi structural protein asso-
ciated with Golgi integral membrane protein (Giantin). Overexpressing a dominant nega-
tive mutant of GCP60 triggers disassembly of the Golgi and blockage of protein transport
from the ER to the Golgi [38]. Other targets of TFE3 include: N-glycosylation enzymes, such
as ST3 beta-galactoside alpha-2,3-sialyltransferase 1 (SIAT4A/ST3GAL1), SIAT10, fucosyl-
transferase 1 (FUT1), Galactosylgalactosylxylosylprotein 3-beta-glucuronosyltransferase 2
(B3GAT2) and UDP-N-acetylhexosamine pyrophosphorylase-like protein 1 (UAP1L1); pro-
teins involved in vesicular transport, such as Syntaxin 3A (STX3A), WD-repeat protein
Interacting with phosphoinositide (WIPI)-1alpha (WIPI49/WIP1α) and RAB20 (Ras-related
protein Rab-20); and Golgi proteases. Analysis of the promoters of ACBD3 and SIAT4A
has revealed the presence of an enhancer element, termed the Golgi apparatus stress re-
sponse element (GASE) [39]. Two transcription factors, TFE3 and MLX, were reported to
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bind GASE, which has a consensus sequence of ACGTGGC. Increasing the expression of
TFE3 while increasing expression of MLX decreased transcription of genes with the GASE
sequence. It has also been reported that Golgi stressors cause dephosphorylation of TFE3
at Ser108 and its nuclear translocation [40]. Similarly, MLX also translocates to the nucleus
in response to Golgi stress [41]. Similar to ER stress, Golgi stress may trigger proteosomal
degradation, which acts to restore Golgi homeostasis and organelle autoregulation. When
Golgi stress persists, Golgi-apparatus related degradation (GARD) may ensue, analogous
to ERAD associated with the ER. Golgi stress induces proteasomal degradation of GM130,
which causes Golgi dispersal [42]. Other mechanisms proposed for regulation of Golgi
tethering factors and morphology include caspase 3 mediated cleavage of GRASP-65 [43].
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Figure 2. The Golgi stress response. Pathways involving the transcription factor E3 (TFE3), mucin,
proteoglycan, heat shock protein 47 (HSP47), cAMP responsive element binding protein 3 (CREB3)
and the protein kinase R (PKR)-like ER kinase (PERK) have been identified. The sensors for TFE3,
mucin, proteoglycan and HSP47 have not yet been identified. The transcription factors for the
mucin, proteoglycan and HSP47 pathways are also not well characterized. In the TFE3 pathway,
dephosphorylation of TFE3 causes its nuclear translocation, where it activates transcription of its
target genes by interacting with the Golgi apparatus stress response element (GASE) enhancer
element. The mucin pathway, which is activated in response to insufficiency of mucin glycosylation,
displays crosstalk with the TFE3 pathway. The mucin-type Golgi stress response element (MGSE)
is present on the promoter of the TFE3 gene as well. The proteoglycan pathway involves the ER-
localized CREB3 (which functions as a sensor for Golgi stress) translocating from the ER to the
Golgi to be cleaved by S1P and S2P proteases. The cytosolic region of the truncated CREB3 migrates
to the nucleus and activates transcription of ARF4, leading to apoptosis. In the HSP47 pathway,
expression of HSP47 (an ER chaperone involved in collagen folding and maturation) inhibits Golgi
stress-induced apoptosis. The PERK pathway acts via the eIF2α/ATF4 axis, however, BiP/GRP78 is
not induced when this pathway is activated by Golgi stress.

2.2.2. The Proteoglycan Pathway

The proteoglycan (PG) pathway involves upregulation of glycosylation enzymes when
PG glycosylation capacity in the Golgi is suboptimal. Genes encoding these glycosylation
enzymes harbor the enhancer elements PGSE-A and PGSE-B (with consensus sequences
CCGGGGCGGGGCG and TTTTACAATTGGTC, respectively) in their promoters.
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2.2.3. The CREB3 Pathway

In the CREB3 (ATF3) pathway, the ER-resident membrane protein CREB3 senses Golgi
stress and translocates from the ER to the Golgi to be cleaved by S1P and S2P proteases.
The truncated CREB3 derived from the cytosolic region moves to the nucleus and activates
transcription of ARF4 to induce apoptosis [36].

2.2.4. The HSP47 Pathway

The HSP47 pathway, on the other hand, acts to prevent apoptosis induced by Golgi
stress by stimulating the expression of the ER-resident chaperone HSP47 to suppress Golgi
stress-induced apoptosis [44].

2.2.5. The Mucin Arm

The mucin arm, first proposed in 2019, is activated in response to inadequate mucin-
type glycosylation in the Golgi. Mucins are high molecular weight, heavily glycosylated
proteins produced by epithelial cells, which often form gel-like structures and are com-
ponents of mucous. Expression of glycosylation enzymes for mucins such as GALNT5,
GALNT8, and GALNT18 has been observed in this case. The mucin-type Golgi stress
intersects with the TFE3 pathway as well, by inducing the expression and activation of
TFE3. An enhancer element regulating transcriptional induction of TFE3 upon mucin-type
Golgi stress was identified and designated as the mucin-type Golgi stress response element,
with a consensus sequence ACTTCC (N9) TCCCCA [45].

2.2.6. The PERK Pathway

The PERK pathway, which is also activated during ER stress, has additionally been
identified as a pathway activated by the Golgi stressor monensin [21]. However, unlike ER
stress, the ER-resident chaperone BiP/GRP78 is not induced during Golgi stress, suggesting
that Golgi stress response is a distinct type of stress despite the phosphorylation of PERK
in both types of stress response.

3. Golgi Stress Response and Redox Imbalance in Neurodegeneration: Focus on
Huntington’s Disease

Accumulating evidence reveals that abnormalities in the structure and function of
Golgi apparatus occur in neurodegenerative diseases including Alzheimer’s disease (AD),
Amyotrophic lateral sclerosis (ALS), Parkinson’s disease (PD), Huntington’s disease (HD)
and Creutzfeldt–Jakob disease [20,46–51]. The Golgi has also been reported to be frag-
mented during viral infection [52]. Depletion of the golgin GM130 has been reported to
cause Golgi disruption, Purkinje neuron loss, and ataxia in mice [53]. Golgi fragmentation
in dopaminergic neurons in the substantia nigra has been observed in Parkinson’s disease
patients [54]. Early studies revealed that the Golgi apparatus may be fragmented in a
population of neurons without neurofibrillary tangles (NFTs) [55]. In JNPL3 transgenic
mice—which express the P301L mutant of tau, a component of NFTs and paired helical
filaments (PHFs)—the Golgi complex was fragmented; however, mitochondria or other
membranous organelles appeared normal, indicating that Golgi fragmentation is one of
the earliest events that occur during pathogenesis, a finding which has been suggested by
other laboratories as well [56–58]. Structural deformities in the Golgi complex were also
linked to accumulation of phospho-tau in the P301S mouse model of AD [59]. Aging is a
major risk factor for neurodegeneration; not surprisingly, increased Golgi fragmentation in
neurons was observed with aging. GRASP65 and Golgin-84 were also diminished in the
aging mouse brain [60].

In HD, we showed that elevated levels of ACBD3 occurred in cell culture and mouse
models as well as human HD [20]. ACBD3 bound to the striatal protein ras homolog
enriched in striatum (Rhes), which binds to mutant huntingtin (mHtt) and mediates cell
death in HD [61]. More recently, we identified another arm of the Golgi stress signaling
pathway in a striatal progenitor cell line model of HD. HD is a neurodegenerative disorder
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triggered by expansion of CAG repeats (encoding polyglutamine repeats) in the gene
encoding huntingtin and which primarily affects the corpus striatum of the brain, mani-
festing as abnormal involuntary movements along with motor and cognitive deficits [1,2].
mHtt affects multiple cellular processes such as DNA replication and repair, transcription,
translation, nucleocytoplasmic trafficking, mitochondrial function and proteostasis, to
name a few [4–6,62–66].

3.1. Redox Imbalance and Cysteine Metabolism in HD

A hallmark of HD is increased oxidative stress. Oxidative stress occurs when the bal-
ance between prooxidant and antioxidant pathways tilts in favor of the former. However,
oxidative stress has more recently been defined as a disruption of redox signaling path-
ways [67]. Elevated oxidative stress is at the heart of several neurodegenerative diseases, as
well as other conditions [68,69]. Decreased levels and/or dysregulated metabolism of the
antioxidants such as ascorbate (vitamin C), glutathione (GSH) and cysteine, and coenzyme
Q10 (CoQ10) have been observed in HD and contribute to disease pathology [70–72]. Both
biosynthesis and the uptake of cysteine or its oxidized form cystine are compromised in HD,
causing elevated oxidative stress [5,73,74]. The activity of the neuronal cysteine transporter
EAAT3/EAAC1 is reduced in HD due to decreased trafficking to the cell membrane [75].
Decreased expression of cystathionine γ-lyase (CSE) (the biosynthetic enzyme for cysteine)
also occurs in HD as mHtt sequesters specificity protein 1 (SP1), the transcription factor for
CSE during basal conditions [71,76,77]. CSE is also regulated by activating transcription
factor 4 (ATF4) in response to stress. In HD-affected cells the induction of ATF4 is subopti-
mal, leading to decreased CSE expression and cysteine biosynthesis [5]. Cysteine is utilized
in the biosynthesis of sulfur-containing molecules such as coenzyme A, taurine, lanthio-
nine, homolanthionine, and cystamine [78]. It is also the substrate for production of the
gaseous signaling molecule hydrogen sulfide (H2S) [79,80]. H2S signals by sulfhydration or
persulfidation, a posttranslational modification which occurs on the –SH group of reactive
cysteine residues, leading to formation of –SSH or persulfide groups [81]. Sulfhydration
modulates the function of several proteins and signaling cascades, including response
to inflammation, mitochondrial bioenergetics and stress responses [82,83]. Both cysteine
metabolism and sulfhydration are altered in HD, which contributes to increased protein
oxidation [5,71,84].

3.2. Golgi Stress Response and Links to Redox Homeostasis

ATF4, a master regulator of amino acid homeostasis and stress responses, is a central
player in the integrated stress response [85–87]. It also regulates purine biosynthesis and
regulates mTOR function [88]. Furthermore, ATF4 modulates the switch from synthesis of
fetal hemoglobin to adult hemoglobin by stimulating transcription of BCL11A, a repressor
of γ-globin synthesis [89]. ATF4 harbors a basic leucine-zipper (bZIP) domain and can either
form homodimers or heterodimerize with other members of the bZIP family (FOS/JUN,
ATF and CCAAT enhancer-binding protein (C/EBP) bZIP transcription factors) to control
transcription [90,91]. Nuclear factor erythroid 2-related factor 2 (Nrf2), the master regulator
of redox regulation, also forms heterodimers with ATF4 and stimulates the transcription
of cytoprotective genes during oxidative stress [92]. ATF4 may have dual functions,
modulating either cell survival or cell death, and excessive stimulation of ATF4 signaling
may cause cell death [93]. The pro-survival or apoptotic function of ATF4 has been
attributed in part to the identity of its heterodimerization partner and the physiologic
context; the mechanisms are still being elucidated [94].

Expression of ATF4 is regulated at the transcriptional as well as the translational
level, and is a vital part of the integrated stress response [95,96]. The integrated stress
response (Figure 3) is engaged in response to stress stimuli, including but not limited to
amino acid and nutrient deprivation, ER stress, mitochondrial stress, iron dysregulation
and viral infection. Four kinases, namely general control non-derepressible 2 (GCN2),
PKR-like ER kinase (PERK) 19, double-stranded RNA-dependent protein kinase (PKR),
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and heme-regulated eIF2α kinase (HRI) sense the stress and phosphorylate the eukaryotic
initiation 2 α (eIF2α), which abrogates its catalytic activity resulting in global translational
arrest [85,97–101]. Under these conditions, only mRNAs responsible for maintenance of
cell survival and essential signaling (such as ATF4) are translated. Recently, we showed
that the Golgi stressors, monensin and nigericin, activated the integrated stress response
by eliciting phosphorylation of PERK, resulting in translation of ATF4 and expression of its
targets [21] (Figure 4). Among these targets were enzymes involved in cysteine biosynthesis
and uptake, cystathionine γ-lyase (CSE) and SLC7A11, a subunit of the XcT transporter,
which imports cystine, the oxidized form of cysteine (Figure 4a).
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stress responses. We had shown previously that Q111 cells had decreased expression
of CSE and thus could not grow in the absence of cysteine [5,71]. These cells were also
compromised in their ability to upregulate ATF4, the transcription factor responsible for
induction of CSE during cysteine deprivation. Treatment with monensin rescued growth
in cysteine-free media and decreased oxidative stress in a manner dependent on PERK
(Figure 4b). Monensin failed to upregulate ATF4 and CSE expression in cells deleted for
PERK. Thus, Golgi stress engages the PERK pathway in HD cells. We further showed that
mild Golgi stress can be harnessed to elicit cytoprotective effects [21].
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Figure 4. The Golgi stress response and its intersection with redox homeostasis in Huntington’s
disease (HD). (a) Golgi stress response in normal cells. Golgi stress activates PERK, which phospho-
rylates eIF2α to inhibit general protein synthesis. Only mRNAs such as ATF4 are translated. ATF4
regulates amino acid homeostasis and one of the genes induced by ATF4 is CTH (which encodes
the biosynthetic enzyme for cysteine, also called CSE). CSE utilizes cysteine to produce the gaseous
signaling molecule hydrogen sulfide (H2S). H2S signals by a post-translational modification termed
sulfhydration/persulfidation and modulates the activity of target proteins. H2S stimulates cystine
uptake by the cystine transporter, leading to increased cysteine levels in cells. ATF4 also regulates
expression of SLC7A11 (xCT), a subunit of the cystine transporter, by activating its transcription
through heterodimerization with Nrf2, a master regulator of redox homeostasis. (b) Harnessing
the Golgi stress response to elicit cytoprotection in HD. Normal cells express CSE and ATF4 during
basal conditions and during stress to produce cysteine. Cysteine is also imported into cells via the
cystine transporter, Xc-. In HD, both basal expression of CSE (regulated by specificity protein1, SP1)
as well as stress-induced expression of CSE and the xCT subunit of the cystine transporter by ATF4
are compromised, causing a cysteine deficit which leads to decreased H2S levels and sulfhydration.
When cells are treated with monensin, a Golgi stressor, CSE is induced via the PERK/ATF4 pathway
to increase cysteine and H2S levels and mediate cytoprotection.

4. Conclusions

Cells are outfitted with an array of defense mechanisms to counter stress. When
exposed to stress stimuli, adaptive and cytoprotective pathways are engaged to restore
balance. When the damage induced by stress cannot be resolved, apoptosis ensues. It is
becoming increasingly clear that exposure to low-grade stress may precondition cells in a
hermetic manner. Thus, mild stress such as low-grade Golgi stress, which does not cause
toxicity, can up-regulate defense mechanisms to precondition cells to withstand future
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insults. Novel therapeutics which target the points of intersection between stress and
adaptive responses may be beneficial in a wide variety of diseases.
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ERAD ER-Associated Degradation
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IRE1 Inositol-Requiring Enzyme 1
MTOC Microtubule Organizing Center
NFTs Neurofibrillary Tangles
Nrf2 Nuclear Factor Erythroid 2-Related Factor 2
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PHF Paired Helical Filament
Rab20 Ras-Related Protein Rab-20
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S2P Site 2 Protease
SIAT4A/ST3GAL1ST3 β-Galactoside Alpha-2,3-Sialyltransferase 1
SP1 Specificity Protein 1
STX3 Syntaxin 3A
TFE3 Transcription Factor E3
TGN Trans Golgi Network
UAP1L1 UDP-N-Acetylhexosamine Pyrophosphorylase-Like Protein 1
UPR Unfolded Protein Response
WIPI49/WIP1α WD-Repeat Protein Interacting with PhosphoInosides 1α
XBP1 X-box Binding Protein 1
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