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Abstract

Interethnic variability in drug response arises from genetic differences associated with drug

metabolism, action and transport. These genetic variations can affect drug efficacy as well

as cause adverse drug reactions (ADRs). We retrieved drug-response related single nucleo-

tide polymorphism (SNP) associated data from databases and analyzed to elucidate popu-

lation specific distribution of 159 drug-response related SNPs in twenty six populations

belonging to five super-populations (African, Admixed Americans, East Asian, European

and South Asian). Significant interpopulation differences exist in the minor (variant) allele

frequencies (MAFs), linkage disequilibrium (LD) and haplotype distributions among these

populations. 65 of the drug-response related alleles, which are considered as minor (variant)

in global population, are present as the major alleles (frequency�0.5) in at least one or

more populations. Populations that belong to the same super-population have similar distri-

bution pattern for majority of the variant alleles. These drug response related variant allele

frequencies and their pairwise LD measure (r2) can clearly distinguish the populations in a

way that correspond to the known evolutionary history of human and current geographic dis-

tributions, while D’ cannot. The data presented here may aid in identifying drugs that are

more appropriate and/or require pharmacogenetic testing in these populations. Our findings

emphasize on the importance of distinct, ethnicity-specific clinical guidelines, especially for

the African populations, to avoid ADRs and ensure effective drug treatment.

Introduction

Pharmacogenomics studies interindividual variability in drug response, which is mainly

caused by particular genetic variants associated with drug absorption, distribution, metabolism

and elimination (ADME) [1, 2]. Differences in drug response can also be caused by variants in

leukocyte antigen genes and drug targets [3]. These variants can modulate efficacy of drugs as

well as result in ADRs, which are major causes of hospitalizations and mortalities in both

adults and children [4–7]. Such adverse reactions not only exacerbate the patients’ illness, but
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also cause economic losses [8]. However, ADRs may be avoided in many cases if the genotypes

of the patients at the drug-response related loci are known. For example, genotype-guided war-

farin dosing was shown to significantly reduce warfarin-related internal bleeding and throm-

boembolism [9].

Except for a small fraction of the total genetic variants, the majority (genetic variants with

minor allele frequencies > 0.05) are commonly shared across populations [10]. But this tiny

fraction of the total genetic variants distinguish between metabolic phenotypes of the conti-

nental populations [11]. Besides, there is evidence of interethnic and intraethnic differences in

the distribution of drug-response associated genetic variants and, as a consequence, variability

in drug responses [12–14]. For example, rosuvastatin is commonly prescribed to prevent car-

diovascular complications and treat abnormal lipid levels in the blood. Although its high effi-

cacy and safety profile as a drug to tackle dyslipidemia are well-known, multiple studies have

reported dose-dependent adverse effects of prolonged statin therapy [15–17]. Ethnic differ-

ences exist in the pharmacokinetics of rosuvastatin. The average systemic exposure to this

drug among the individuals of Chinese ethnicity is 2.3-fold greater than the Caucasians,

whereas Malays and Asian Indians have intermediate values [18].

Due to interpopulation genetic variations, drugs as well as markers used for pharmacogen-

otyping in one population may not be appropriate for another population. For example, HLA-

b�58:01 allele is associated with allopurinol-induced severe cutaneous adverse reactions and

rs9263726 can be used as a surrogate biomarker for the Japanese, but not the Australian and

the Han Chinese populations [19, 20]. Population-based differences in the outcomes of anti-

cancer treatments have also been reported. For example, discrepant responses to 5-Fluoroura-

cil (5-FU) among different ethnicities of the South Asian population were attributed to genetic

variations in the DPYD gene [21]. Analysis of population specific genetic structure, therefore,

has many applications in medical and population genetic research as well as ensuring drug effi-

cacy and development of pharmacogenetic tests [8, 22, 23].

Many aspects of the population history are reflected in genetic information [23]. SNPs and

their allelic distribution provide important information about population structure, evolution

and migration [24–29]. There are population-specific differences in the extent and pattern of

linkage disequilibrium (LD) among genetic variants [11]. Levels and patterns of LD depend on

a number of demographic factors such as population size and structure, population growth,

admixture, migration and locus-specific factors such as mutation, selection, recombination,

gene conversion and genetic drift [30, 31]. The application and transferability of surrogate bio-

markers and/or tagSNPs from a particular genome wide association study (GWAS) depends

on the genetic relatedness between the studied populations [32–35]. Hence, it is important to

know population-specific LD patterns among different genetic variants before widely imple-

menting results of GWAS.

Since allelic distribution and linkage disequilibrium (LD) of SNPs vary among populations,

frequencies of different SNP alleles associated with drug response and patterns of LD should

be analyzed separately for different populations. Here, we present the variant allele distribu-

tion, pairwise LD and haplotypes frequencies of 159 drug-response associated SNPs in five

super-populations (African, Admixed Americans, East Asian, European and South Asian) and

twenty six individual populations belonging to these super-populations.

Materials and methods

List of SNPs associated with drug response

The dbSNP database (https://www.ncbi.nlm.nih.gov/snp) at the National Center for Biotech-

nology Information (NCBI) was searched using the keyword ‘drug-response’. After filtering

Drug-response related genetic variants in world populations and their genetic relatedness
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out the duplicates and insertion/deletion (indel) polymorphisms, 159 SNPs were selected for

further analysis. Drugs related to these SNPs along with their applications were searched in

ClinVar archive at NCBI (https://www.ncbi.nlm.nih.gov/clinvar) [36] and the PharmGKB

(https://www.pharmgkb.org/) [37].

Allele frequency and pairwise LD calculation

We used the LDhap module at LDlink (https://ldlink.nci.nih.gov/) [38] to retrieve the popula-

tion-specific allele and haplotype frequencies from the phase 3 (version 5) sequence data of the

1000 Genomes Project [39] for five super-populations (African, Admixed Americans, East

Asian, European and South Asian) and twenty six individual populations belonging to these

super-populations (Listed in Table 1). LDlink is a suite of web-based bioinformatics modules

that provides an easy and user-friendly interface to investigate SNPs, LD and haplotypes in

populations included in the 1000 Genomes Project [38]. The Reference SNP (rs) numbers of

the SNPs were used as inputs. We used the LDmatrix module at LDlink to calculate the pair-

wise LD among the SNPs in different super- and sub-populations. SNPs that are located on the

same chromosome were inputted together. SNP pairs that maintain a strong LD (r2� 0.8)

were selected and compiled in a non-redundant list.

Statistical analyses

The statistical tools available at Metaboanalyst (https://www.metaboanalyst.ca/Metabo

Analyst/ModuleView.xhtml) [40] were used for multivariate principle component analysis

(PCA), partial least square- discriminant analysis (PLS-DA) and hierarchical clustering based

on the MAFs (defined based on frequencies in global population) of 159 drug-response related

SNPs as well as pairwise LD measures (r2 and D’). Euclidean distance based Ward’s algorithm

was applied in hierarchical clustering to generate population dendrogram. All graphs were

generated using the GraphPad Prism1 (Version 6) software.

Results

Distribution of drug-response related SNPs across populations

We compiled the allele frequencies of 159 drug-response related SNP loci in a total of 32 popu-

lations (one global, five super populations and twenty six individual populations) (S1 Table).

Defining an allele as minor (frequency<0.5) based on its global distribution may not be always

appropriate since globally defined minor alleles may be present as the more prevalent ones in

certain populations [41]. 65 of these drug-response related alleles that are considered as minor

(variant) in global population are present as the major alleles (frequency�0.5) in at least one

population (Table 1). In fact, 14 of these drug-response related SNPs have MAFs� 0.8 in at

least one of the individual populations. 7 of these SNPs (rs1056836, rs7793837, rs776746,

rs2740574, rs6977820, rs1954787 and rs5443) have MAFs� 0.8 only in multiple African sub-

populations and 6 (rs2359612, rs8050894, rs9934438, rs9923231, rs7196161 and rs1346268)

have MAFs� 0.8 only in several East Asian sub-populations. rs7294 has MAF� 0.8 in only

two South Asian populations (STU and ITU). MAFs at majority of the loci show similar distri-

bution patterns among the individual sub-populations within each super-population (Table 1

and S1 Table). The drug-response related allele frequency distribution is different among

super-populations indicating demographic effects (Fig 1).

SNPs can be arbitrarily divided into many classes based on their allele frequencies [42, 43].

In this study, we considered frequencies� 0.2 to be comparatively high for the minor (variant)

allele at any locus in any population. We observed 111 SNPs which have MAFs� 0.2 in at least

Drug-response related genetic variants in world populations and their genetic relatedness
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one of the super-populations (S1 Table). 31 of these 111 SNPs have MAFs� 0.2 in all super-

populations. MAFs at 13 SNP loci are� 0.2 in all twenty-six individual sub-populations. These

13 SNPs are rs2297480, rs6166, rs3812718, rs2952768, rs2228001, rs1902023, rs1042713,

rs1042522, rs3212986, rs4680, rs1135840, rs1041983 and rs5443. 18 SNPs have MAFs� 0.2 in

only one of the super-populations. These SNPs are rs7582141, rs6432512, rs264588, rs264631,

rs2231142, rs7779029, rs2740574, rs6988229, rs885004, rs4917639, rs11045879, rs7297610,

rs17708472, rs2884737, rs6065, rs1876828, rs16960228 and rs8099917. 28 SNPs are totally

absent (MAF = 0) in all sub-populations belonging to at least any one of the super-populations.

72 SNPs have very low (� 0.05) MAFs in at least one of the super-populations. 23 of the drug-

response related SNPs have MAF = 0 in majority (>13) of the 26 populations (S1 Table).

Private alleles, which are only present in a particular population among a broader collection

of populations, are very useful in population genetics and human evolutionary genetics [44].

We found minor alleles of rs186335453 (T allele) and rs139801276 (C allele) to be private in

LWK and all African sub-populations (except ACB), respectively. Minor alleles of rs111033610

(G allele) and rs5030865 (T allele) are private to the East Asian sub-populations (except JPT

and CHS, respectively), and the T (variant) allele of rs56019966 is private to 3 European sub-

populations (TSI, GBR and IBS).

LD patterns of the drug-response related SNPs

r2 and D’ are the two most widely used measures of LD. r2 is more robust and correlates better

among different population samples [45]. We found 48 SNP pairs with r2� 0.8 in at least one

of the five super-populations (Table 2). 4 of these pairs have r2 values� 0.8 in all super-popula-

tions. Interpopulation variability was observed at the levels of LD between drug-response

Fig 1. Drug-response related minor (variant) allele frequency distribution in global and five super populations. AFR = African, AMR = Admixed Americans,

EAS = East Asian, EUR = European, SAS = South Asian.

https://doi.org/10.1371/journal.pone.0228000.g001
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Table 2. List of drug-response related SNP pairs with r2� 0.8 in at least one of the five super-populations.

SNP pairs Chromosome ALL AFR AMR EAS EUR SAS

rs264588 rs7582141 2 0.816 0.929 0.979 0.857 0.953 0.239

rs264588 rs6432512 2 0.795 0.880 0.969 0.857 0.953 0.239

rs264588 rs10497203 2 0.414 0.196 0.802 0.829 0.790 0.122

rs264588 rs264651 2 0.564 0.230 0.833 0.972 0.859 0.846
rs264631 rs7582141 2 0.718 0.686 0.928 0.870 0.953 0.237

rs264631 rs6432512 2 0.699 0.642 0.919 0.870 0.953 0.237

rs264631 rs10497203 2 0.361 0.136 0.760 0.841 0.790 0.121

rs264631 rs264588 2 0.869 0.736 0.949 0.958 1.000 0.991
rs264631 rs264651 2 0.498 0.171 0.790 0.986 0.859 0.838
rs264651 rs10497203 2 0.684 0.714 0.965 0.854 0.873 0.144

rs264651 rs7582141 2 0.387 0.205 0.815 0.883 0.808 0.054

rs264651 rs6432512 2 0.377 0.194 0.807 0.883 0.808 0.054

rs6165 rs6166 2 0.630 0.208 0.783 0.880 0.992 0.940
rs6432512 rs7582141 2 0.976 0.949 0.990 1.000 1.000 1.000
rs6432512 rs10497203 2 0.510 0.204 0.816 0.972 0.829 0.477

rs7582141 rs10497203 2 0.523 0.216 0.825 0.972 0.829 0.477

rs1142345 rs1800460 6 0.318 0.043 0.687 NA 0.965 0.232

rs1360780 rs4713916 6 0.455 0.080 0.717 0.689 0.699 0.800
rs713598 rs10246939 7 0.931 0.970 0.865 0.996 0.855 0.927

rs1726866 rs10246939 7 0.799 0.446 0.878 0.996 0.992 1.000
rs713598 rs1726866 7 0.751 0.443 0.758 1.000 0.855 0.927

rs1208 rs1801280 8 0.823 0.611 0.904 0.948 0.918 0.914
rs1799930 rs1041983 8 0.532 0.317 0.504 0.439 0.887 0.743

rs7853758 rs885004 9 0.565 0.213 0.815 0.920 0.909 0.799

rs4244285 rs12777823 10 0.858 0.583 0.896 0.991 0.939 0.982
rs10509681 rs1799853 10 0.850 0.825 0.937 1.000 0.823 0.732

rs75838422 rs7900194 10 1.000 1.000 1.000 1.000 1.000 1.000
rs554405994 rs116855232 13 0.217 0.000 0.800 0.233 0.000 0.000

rs1719247 rs1346268 15 0.537 0.099 0.849 0.950 0.946 0.744

rs9934438 rs2359612 16 0.863 0.265 0.948 1.000 1.000 1.000
rs9923231 rs2359612 16 0.862 0.265 0.943 1.000 1.000 1.000
rs9923231 rs9934438 16 0.999 1.000 0.994 1.000 1.000 1.000
rs8050894 rs2359612 16 0.646 0.003 0.833 1.000 0.951 0.976
rs9934438 rs8050894 16 0.774 0.167 0.884 1.000 0.951 0.976
rs9923231 rs8050894 16 0.774 0.167 0.878 1.000 0.951 0.976
rs7196161 rs8050894 16 0.720 0.323 0.827 1.000 0.899 0.921
rs2359612 rs7294 16 0.463 0.181 0.497 0.971 0.365 0.534

rs8050894 rs7294 16 0.511 0.279 0.525 0.971 0.379 0.547

rs9934438 rs7294 16 0.400 0.048 0.471 0.971 0.365 0.534

rs9923231 rs7294 16 0.399 0.048 0.469 0.971 0.365 0.534

rs7196161 rs7294 16 0.572 0.494 0.506 0.971 0.368 0.536

rs7196161 rs2359612 16 0.645 0.196 0.773 1.000 0.852 0.898
rs7196161 rs9934438 16 0.551 0.035 0.727 1.000 0.852 0.898
rs7196161 rs9923231 16 0.550 0.035 0.722 1.000 0.852 0.898

rs12979860 rs11881222 19 0.569 0.182 0.879 0.949 0.909 0.845
rs8099917 rs11881222 19 0.441 0.100 0.636 0.873 0.463 0.714

rs8099917 rs12979860 19 0.264 0.022 0.566 0.920 0.428 0.637

rs1065852 rs3892097 22 0.329 0.507 0.855 0.002 0.903 0.623

https://doi.org/10.1371/journal.pone.0228000.t002
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associated SNP loci (Fig 2). 7 SNP pairs with r2� 0.8 are found in African, 31 in Admixed

American, 43 in East Asian, 37 in European and 23 are in South Asian super-population

(Table 2). East Asian super-population has very strong pairwise LD among 32 SNP pairs (r2�

0.9).

We found 10 haplotypes (2 in chromosome 8, 9 and 19 each, and 1 in chromosome 6, 7, 10

and 16 each) having� 2 variant alleles as well as with frequencies� 0.2 in at least one of the

five super-populations (Table 3). All the alleles in the haplotype (T_A_C) on chromosome 7

are minor alleles at the corresponding loci in the global population. This haplotype is present

in all five super-populations.

Geographic distribution of the drug-response related SNPs

We used MAFs (alleles that are considered as minor in global population) of the 159 SNPs,

and both r2 and D’ estimates of pairwise LD among these SNPs for multivariate clustering

through principal component analysis (PCA), partial least square- discriminant analysis

(PLS-DA), and hierarchical clustering (Figs 3 and 4). We used the first 2 components in PCA

and PLS-DA to visualize the clustering pattern. With MAFs, the 1st and the 2nd components of

both PCA and PLS-DA can explain more than 75% of the variations among the sub-popula-

tions (Fig 3A and 3B). The 1st and the 2nd components of both PCA and PLS-DA with r2 can

Fig 2. Distribution of pairwise LD (r2) values among the drug-response related minor (variant) alleles in global and 5 super populations. AFR = African,

AMR = Admixed Americans, EAS = East Asian, EUR = European, SAS = South Asian.

https://doi.org/10.1371/journal.pone.0228000.g002
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explain> 70% variations among the populations (Fig 3A and 3B). As shown in the Fig 3A and

3B, component populations of the same super-populations cluster together. Americans of Afri-

can ancestry in USA (ASW) and the African Caribbeans in Barbados are placed along with the

African super-population. Hierarchical clustering of the MAF and r2 values using Euclidean

distance measure and Ward’s algorithm cluster the component populations of each super-pop-

ulation in a similar way (Fig 4). In both MAF and r2 based dendrograms, African populations

form a completely different branch from rest of the populations. In the other branch, the East

Asian populations form a different clade from the Admixed American, European and South

Asian populations. The other LD measure (D’) cannot cluster the component populations as

distinctively as in PCA and hierarchical clustering (Figs 3A and 4). Although D’ places the

component populations of super-populations in separate clusters in PLS-DA, their clustering

is less obvious than the MAF and r2 based plots. Besides, in case of both PCA and PLS-DA

using MAF and r2, but not D’, the 1st component can distinctly separate African population

cluster from clusters of other populations (Fig 3A and 3B). It is to be noted that PLS-DA is a

supervised multivariate clustering method, which takes into consideration the data classes dur-

ing the clustering process, while PCA is an unsupervised method.

Discussion

Drug-response related SNPs with high MAFs in global population and

their clinical importance

Among the 159 drug-response related SNPs, we found 13 SNPs that have MAFs� 0.2

in all super- and sub-populations. These SNPs are responsible for variable responses to

Fig 3. Multivariate analysis using MAF, r2 and D’ of the drug-response related SNPs in 26 populations. A. Principle component analysis (PCA). B. Partial least

square- discriminant analysis (PLS-DA).

https://doi.org/10.1371/journal.pone.0228000.g003
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bisphosphonates (rs2297480), carbamazepine, phenytoin and antiepileptics (rs3812718), fenta-

nyl, morphine and opioids (rs2952768), cisplatin (rs2228001, rs1042522, rs3212986) oxazepam

and lorazepam (rs1902023), salbutamol and salmeterol (rs1042713), antineoplastic agents such

as cyclophosphamide, fluorouracil and paclitaxel (rs1042522), platinum and platinum com-

pounds (rs3212986), nicotine (rs4680), debrisoquine (rs1135840), ethambutol, isoniazid, pyra-

zinamide and rifampin (rs1041983), and sildenafil (rs5443)- drugs that are prescribed for

conditions like epilepsy, postmenopausal osteoporosis, pain relief, osteosarcoma, urinary blad-

der cancer, ovarian cancer, medulloblastoma, brain cancer, breast cancer, neutropenia, stom-

ach cancer, non-small-cell lung carcinoma, colorectal cancer, esophageal cancer, pancreatic

cancer, uterine cervical cancer, anxiety, insomnia, asthma, tuberculosis, etc [36, 37, 41]. rs6166

probably renders follicle-stimulating hormone receptor (FSHR) more sensitive to FSH by

overcoming feedback inhibition [46]. Flurouracil (a common anti-cancer drug) and nicotine

have been frequently reported to exhibit differences in drug response among different popula-

tions [8]. High MAF values at rs1042524 (also rs1042522) may play a role in such

discrepancies.

One of these (rs2228001) variant-drug combinations has reached level 1B of clinical anno-

tation [37]. Level 1B indicates annotation for a variant-drug combination in Clinical Pharma-

cogenomics Implementation Consortium (CPIC) or medical society-endorsed

Fig 4. Multivariate analysis using hierarchical clustering. The dendrogram was constructed using the Ward clustering algorithm. The distances are not represented to

scale on the tree.

https://doi.org/10.1371/journal.pone.0228000.g004
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Pharmacogenomics (PGx) guideline, or implemented at a Pharmacogenomics Research Net-

work (PGRN) site or in another major health system, for which the preponderance of evi-

dences show an association. Patients with GG or GT genotype at rs2228001 may have an

increased risk of cisplatin toxicity in comparison with those with TT genotype [37]. Another

interesting variant-drug combination is rs4680-nicotine, which has level 2A clinical annota-

tion evidence. The variants in level 2A are located in known pharmacogenes, and therefore,

functional significance is more likely. rs4680 is located in the COMT gene. Individuals with

the AA or AG genotype at rs4680, who are treated with nicotine replacement therapy (NRT),

may have an increased likelihood of smoking cessation and decreased risk of relapse as com-

pared to individuals with the GG genotype. Although A is the global minor allele at rs4680

(Table 1), its frequency is� 0.5 in FIN, GBR and PJL sub-populations. The long term benefit

of NRT is actually the requirement of modest and repeated episodes of such treatment [47].

Differences in the efficacy of NRT between men and women have been reported as well. Gains

from long-term NRT decrease more rapidly for women than men [48]. Genotyping at the

rs4680 locus may be considered while assessing the factors influencing NRT efficacy for the

treatment of tobacco use disorder.

Drug-response related SNPs with high MAFs in individual populations and

their clinical importance

18 SNPs have MAFs� 0.2 in only one super-population (Table 1). 11 of these have

MAFs� 0.2 in African super-population. These are responsible for variable response to radio-

therapy for prostate neoplasm (rs7582141, rs6432512, rs264588 and rs264631), irinotecan

(rs7779029), tacrolimus (rs2740574), salbutamol (rs6988229), warfarin (rs4917639), hydro-

chlorothiazide (rs7297610 and rs16960228) and aspirin (rs6065). Four of these SNPs

(rs7582141, rs6432512, rs264588 and rs264631) may be associated with variable risk of toxicity

in response to radiotherapy for prostate neoplasm. There is level 2B clinical annotation evi-

dence for these four variant-drug combinations [37]. Although data on prostate cancer treat-

ment in Africa is under-reported [49], it is known that African men disproportionately suffer

from prostate cancer compared to men from other parts of the world [50] and African Ameri-

can men have the highest rate of prostate cancer morbidity and mortality compared to men

from any other race or ethnicity in the USA [51]. Socioeconomic and genetic factors are

among the suggested explanations for such high burden of prostate cancer in African men

[52]. There is no evidence that prostate cancer in African Americans is more virulent than in

Caucasians [53]. But there are population-level genetic differences in androgen receptor sig-

naling and DNA repair between African American and Caucasian men’s prostate cancer and

African American men may harbor more radiosensitive tumors, which may result in better

clinical outcomes from radiotherapy in African American patients with prostate cancer [54].

Since further studies are needed to conclusively find out all the factors affecting the efficacy of

radiotherapy in African prostate cancer patients, the risk of increased toxicity of radiotherapy

in prostate cancer patients with certain genotypes at rs7582141, rs6432512, rs264588 and

rs264631 and their high (�0.2) MAFs in African super-population should be considered. A

discrete screening guideline may be helpful in treating African American men with prostate

cancer [55] along with a distinct clinical guideline for radiotherapy.

The minor allele (C) at the rs4917639 locus- (located in CYP2C9 gene) is present with�0.2

frequency only in the African super-population. Individuals with the CA or CC genotype may

require decreased dose of warfarin compared to those with the AA genotype and there is level

2A clinical annotation for this variant-drug combination [37]. An ethnicity-dependent CPIC

guideline for warfarin dosing recommends a dose reduction of 10–25% in African Americans
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PLOS ONE | https://doi.org/10.1371/journal.pone.0228000 January 23, 2020 13 / 26

https://doi.org/10.1371/journal.pone.0228000


with AG or AA genotype at rs12777823, but not in patients with non-African ancestry [37].

Frequency of the A allele at rs12777823 is 0.251 in African super-population (Table 1). We did

not find high pairwise LD between these 2 SNPs in African super-population. So, incorpo-

ration of rs4917639 into clinical guidelines may benefit individuals of African ancestry.

rs885004 and rs8099917 have MAFs� 0.2 only in Admixed American super-population.

These may cause variable response to anthracyclines and related substances (rs885004) and

peginterferon alfa-2a, peginterferon alfa-2b, and ribavirin, telaprevir, boceprevir (rs8099917).

There is level 1B clinical evidence for rs8099917 associated variable efficacy of peginterferon

alfa-2a, peginterferon alfa-2b, ribavirin, telaprevir and boceprevir in chronic Hepatitis C treat-

ment [37]. So, patients belonging to Admixed American super-population may benefit from

dosing guidelines for these drugs based on the rs8099917 genotypes. In fact, it has been sug-

gested that at least in HCV infected Caucasian patients simultaneous genotyping of

rs12979860 and rs8099917 should be recommended prior to the initiation of pegylated inter-

ferons and ribavirin treatment [56]. The global minor allele (T) at rs12979860 has a frequency

of 0.399 in Admixed American super-population (S1 Table). Determination of the rs8099917

genotype may benefit a significant proportion of heterozygous carriers of the rs12979860 T

non-responder allele with respect to sustained virologic response prediction [57].

Two SNPs (rs2231142 and rs11045879) have MAFs� 0.2 only in the East Asian super-pop-

ulation (Table 1). These may cause variable response to rosuvastatin and allopurinol

(rs2231142) and methotrexate (rs11045879). There is level 2A clinical annotation for all these

variant-drug combinations [37]. Ethnic differences in response to rosuvastatin (especially, the

increased systemic exposure to this drug in people with Chinese ethnicity) have been men-

tioned earlier. FDA recommends Asian patients to initiate rosuvastatin at half of the normal

dose for non-Asians [58].

rs17708472, rs2884737 and rs1876828 have MAFs� 0.2 only in the European super-popu-

lation. These SNPs may be responsible for variable response to warfarin (rs17708472 and

rs2884737, which are located in VKORC1) and budesonide, corticosteroids, fluticasone propi-

onate, fluticasone/salmeterol and triamcinolone (rs1876828). Genotype at rs17708472 and

rs2884737 may influence warfarin dose requirement [37]. There is level 2A clinical evidence

for the variant-drug combinations for these two SNPs [37]. Genotype at rs1876828 may affect

the efficacy and, therefore, response to inhaled corticosteroids may influence resulting endoge-

nous cortisol level [37]. rs1876828 is located in CHR1 gene, which is targeted with drugs to

treat asthma. There is level 2B clinical annotation for these variant-drug combinations [37].

There is currently no clinical guideline for inhaled cortecosteroids that are used to treat

asthma.

5 SNPs (rs2359612, rs8050894, rs9934438, rs9923231 and rs7196161) have MAF� 0.8 in all

East Asian sub-populations. These share absolute LD (r2 = 1) among them (S1 Fig). These

SNPs cause variability in response to warfarin (rs2359612, rs8050894, rs9934438, rs9923231

and rs7196161), acenocoumarol and phenprocoumon (rs9934438 and rs9923231), and vitamin

K-dependent clotting factors (rs9934438) [35,36]. As discussed earlier, there is level 1A clinical

annotation for rs9923231-warfarin combination and level 1B clinical annotation for

rs9934438-warfarin, rs9923231-acenocoumarol, and rs9923231-phenprocoumon combina-

tions [37]. Individuals with CT genotype at rs9923231 may require a decreased dose of warfa-

rin, acenocoumarol and phenprocoumon as compared to those with the CC genotype or an

increased dose as compared to those with TT genotype [37]. Individuals with AA genotype at

rs9934438 may require a lower dose of warfarin as compared to patients with the AG or GG

genotype [37]. Chinese patients require lower dose of warfarin than Caucasian patients and

VKORC1 genotype has already been suggested to be an important determinant of warfarin

response in Chinese patients [59]. The same study reported the high frequencies (�0.8) of the

Drug-response related genetic variants in world populations and their genetic relatedness
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global minor alleles at rs9923231 and rs9934438 loci in Chinese population. So, reduced dos-

age of warfarin, acenocoumarol and phenprocoumon for individuals from East Asian popula-

tions may be recommended. High frequency of T allele at rs9923231 in East European

populations may be the result of positive selection [60]. The absolute pairwise LD among

rs2359612, rs8050894, rs9934438, rs9923231 and rs7196161 in East Asian populations is not

an unusual finding. In fact, a 505 kb region of strong LD, which contains VKORC1 and 24

neighboring genes, is located on chromosome16 only in East Asian populations and this geno-

mic region may have been submitted to a near complete selective sweep in all East Asian popu-

lations and only in this geographic area [61].

rs1954787 has MAF� 0.8 in all African sub-populations and is responsible for variable

response to antidepressants. Currently, there is level 2B clinical annotation for this variant-

drug combination. Individuals with CT or TT genotype and depressive disorder or depression

may be less likely to respond to antidepressant treatment as compared to those with CC geno-

type [37]. Major depressive disorder (MDD) usually remains untreated and is more severe and

disabling in the African Americans and Caribbean Blacks compared with Anglo Americans

[62]. Consequently, the burden of mental disorders, especially depressive disorders, may be

higher in African Americans [62]. If the association between genotype at rs1954787 and vari-

able response to antidepressants becomes strongly definitive, this marker may be employed in

conjunction with other known predictors to anticipate the outcome of treatments with antide-

pressants [63] considering the fact that more than 80% patients with African ancestry may be

less likely to respond to antidepressants.

In addition to these, level 1A clinical annotation is available for the following variant-drug

combinations: rs887829-atazanavir; rs1142345-azathioprine, mercaptopurine, purine ana-

logues, thioguanine; rs1800460-azathioprine, mercaptopurine, purine analogues, thioguanine;

rs12248560-clopidogrel; rs28399504-clopidogrel; rs4986893- clopidogrel; rs1057910-warfarin;

rs4149056-simvastatin; rs116855232-azathioprine, mercaptopurine; rs9923231- warfarin; and

rs12979860-peginterferon alfa-2a, peginterferon alfa-2b, ribavirin [37]. Level 1B clinical anno-

tation is available for the following variant-drug combinations and rs3745274-efavirenz [37].

SNPs in the Cytochrome P450 genes

Cytochrome P450 family genes (CYP) have been extensively studied in the context of pharma-

cogenomics because of their important roles in drug metabolism [64, 65]. Ethnic differences in

these genes have been reported [14]. MAFs of CYP genes in all the super-populations are listed

in S2 Table. Among these rs1135840, rs16947, rs1065852, rs12248560, rs4244285, rs4917639,

rs3745274, rs776746, rs2740574, rs25487, rs2108622 and rs1056836 have MAF� 0.2 in multi-

ple super-populations. Level 1A clinical annotation is available for rs2108622-warfarin combi-

nation. Individuals with TT genotype at rs2108622 may require a higher dose of warfarin as

compared to those with CC or CT genotype [37]. African populations stand out different from

the other populations in terms of other SNPs in CYP genes as well. African populations are

known to have different frequencies of certain ADRs than rest of the world [66]. The major

alleles (frequency� 0.5) at the rs16947, rs776746, rs2740574 and rs1056836 loci in most Afri-

can subpopulations are actually global minor alleles. There are level 1A clinical annotations

available for rs16947 (an SNP defining CYP2D6�2 allele)- paroxetine, nortriptyline, codeine,

doxepin, trimipramine, clomipramine, atomoxetine and amitriptyline and rs776746- tacroli-

mus combinations [37]. T is the global minor allele at rs776746 and recipients of kidney, heart,

lung or hematopoietic stem cell transplant, who have CT or TT genotype at rs776746 may

require a higher dose of tacrolimus compared to those with CC genotype [37]. Differences in

the allele frequencies at rs776746 between the European descendant and the African American
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individuals is partly responsible for the lower trough blood concentration of tacrolimus in

African American kidney allograft recipients compared to the European descendants [67]. An

African American-specific genotype-guided tacrolimus dosing model has recently been devel-

oped since African Americans have 20–50% lower bioavailability, higher clearance and lower

blood concentration of tacrolimus and, as a result, require ~1.5–2 times higher doses than the

Caucasians [68]. Other African populations may also benefit from this guideline. On the other

hand, aroxetine, trimipramine, atomoxetine, clomipramine and amitriptyline are used to treat

various mental disorders, especially depressive disorder [37]. It again shows the difficulty in

selecting an efficacious drug to treat mental disorders in patients with African ancestry. There

is level 1B clinical annotation for rs16947 (an SNP defining CYP2D6�2 allele)-tramadol combi-

nation. So, tramadol and codeine, both of which are used to treat pain, may have less than opti-

mum response in the majority of individuals with African ancestry. It may have serious

clinical implications as there are racial/ethnic disparities in pain epidemiology, access to qual-

ity pain care, pain assessments and treatments and pain-related outcomes [69]. rs16497 can

reduce CYP2D6 expression by about 2 folds and thus may reduce overall CYP2D6 metabolic

activity [70]. Incorporation of rs16947 along with another SNP into CYP2D6 biomarker panel

may improve the accuracy of CYP2D6 metabolizer status prediction [71]. Poor metabolizers

with less CYP2D6 activity may have very little analgesic efficacy for codeine [72]. Codeine is

often prescribed to individuals with sickle cell disease (SCD) and precision medicine approach

is necessary to maintain it as a safe option for pain control [73]. SCD is very common through-

out much of sub-Saharan Africa [74]. African Americans with SCD are less genetically

admixed than other African Americans and have an ancestry similar to Yorubans, Mandinkas

and Bantu [75]. So, SCD may be more prevalent among individuals that are more closely

related to sub-Saharan Africans. Moreover, the only two African sub-populations with

MAF < 0.5 at rs16947 are ASW and ACB (Table 1). The sub-Saharan African populations

have MAF� 0.5 at rs16947. So, codeine may be less likely to be effective in individuals closely

related to sub-Saharan Africa. Hence, alternative drugs may be considered for managing pain

in SCD patients with African ancestry. Although we did not find extensive CYP allele fre-

quency variations among the African populations as reported in a previous study [76], our

results also emphasize the need for the population targeted optimization and development of

drugs.

Drug-response related SNP haplotypes with high frequencies

Apart from the 10 haplotypes with at least two global minor alleles and frequencies� 0.2 in at

least one super-population (Table 3), there is an important haplotype (T_T_C_T_T_G_A_G)

in the East Asian populations on chromosome 2. Although the frequency of this haplotype

(0.1052) is< 0.2, all alleles except the first one are the minor (variant) alleles at the correspond-

ing SNP loci (rs6166_ rs6165_ rs10497203_ rs7582141_ rs6432512_ rs264651_ rs264588_

rs264631) in the global population. All of these SNPs, except rs6166 and rs6165, are responsi-

ble for variable responses to radiotherapy for prostate cancer. However, currently none of

these variant-drug combinations qualifies for level 1A or level 1B clinical annotation [37].

SNPs in other haplotypes (Table 3) with high prevalence cause variability in response to anti-

depressants, citalopram, fluoxetine, mirtazapine, paroxetine, selective serotonin reuptake

inhibitors, venlafaxine (chromosome 6: T_C_T_A), phenylthiocarbamide tasting (chromo-

some 7: T_A_C), ethambutol, isoniazid, pyrazinamide, rifampin (chromosome 8: C_C_G_G
and T_T_A_A), anthracyclines and related substances (chromosome 9: A_A), warfarin, pro-

guanil, mephenytoin, amitriptyline, citalopram, clomipramine, clopidogrel (chromosome 10:

A_A_C_G_G_T), warfarin, acenocoumarol, phenprocoumon, vitamin K-dependent clotting
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factors (chromosome 16: C_A_G_A_T_G) and peginterferon alfa-2a, peginterferon alfa-2b,

and ribavirin, telaprevir, boceprevir (chromosome 19: G_T_T and G_T_G) [36, 37]. It is

worth noting that multiple SNPs in the haplotype on chromosome 10 are located in CYP2C
gene region and all except one SNP in the haplotype on chromosome 16 are located in

VKORC1 gene region. These are two very important pharmacogenes. Both of these haplotypes

(A_A_C_G_G_T and C_A_G_A_T_G, respectively) are present in global population with

frequency� 0.2. Clinical annotations for rs12777823-warfarin and rs9923231-warfarin combi-

nations have already been discussed. Among the other SNPs in the haplotype on chromosome

10, level 1A clinical annotation is available for rs4244285-clopidogrel, rs4244285-amitriptyline

and rs1799853-warfarin combinations [37]. On chromosome 16, level 1B clinical annotation is

available for rs7294-warfarin, rs9934438-warfarin and rs9923231-acenocoumarol, phenpro-

coumon combinations [37].

LD patterns of the drug-response related SNPs across populations

Presence of long stretches of genomic regions with high LD in a particular population means

that a number of neighboring SNPs are in strong or absolute pairwise LD with the functional

or causal variant within that population. So, SNPs that are in strong or absolute pairwise LD

with the causal variant will give similarly strong association signal. In that case, trans-popula-

tion analysis, which utilizes differences in LD patterns across different populations, can be

used to narrow the list of possible causal variants [77]. Hence, it is important to know the

inter-population variability in LD pattern.

Extent of LD is lower in African in comparison to non-African populations [31, 78–84].

We found only 7 SNP pairs with strong pairwise LD (r2� 0.8) in African super-population,

compared to 11 pairs in global population (Table 2). 4 SNP pairs were found to have strong

LD (r2> 0.9) in all super-populations (Table 2). Among the individual super-populations, East

Asian had the highest number of SNP loci (43) that maintain strong LD (r2�0.8) with one

another. Majority of these SNP pairs (32) maintain r2� 0.9, which is highly distinctive of the

East Asian population (Fig 2). It is known that populations with higher extent of LD or back-

ground LD are more suitable for initial mapping in GWAS, whereas populations with lower

level of LD or background LD are more suitable for subsequent fine mapping of causal variants

[5, 85]. So, East Asian population might be investigated for initial mapping in future GWAS

for pharmacognomic investigation.

Human evolution and geographic distribution of the drug-response related

SNPs

Multiple studies have used allele frequencies for inferring human population structure [86–

88]. We used the MAFs and pairwise LD measures (r2 and D’) of 159 drug response-related

SNPs for multivariate analysis using PCA, PLS-DA and hierarchical clustering (Figs 3 and 4).

African populations appear completely distinct from the other populations. Similar results

were obtained in previous studies using SNP loci, Alu insertion sites and D1S80 allele frequen-

cies [86–89]. In these studies, the East Asian populations appear to be more distant from South

Asian, European and Admixed American populations.

Fossil and genetic evidences suggest that anatomically modern humans evolved in Africa

about 150,000 to 190,000 years ago and then migrated into Europe, Asia, and finally to the

Americas in an approximately West-to-East pattern [82, 90, 91]. Geographic isolation, inter-

breeding, and adaptation in new environments differentiated human populations from each

other [82]. Consistent with the out-of-Africa model of human origin, the Africans possess the

oldest genetic pool and the highest level of genetic diversity [92]. Therefore, extent of LD is
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lower in African in comparison to non-African populations [31, 78–84]. There is more Nean-

derthal admixture into East Asian populations than into European populations and some

extent of admixture occurred after the separation of East Asians and Europeans [93–97]. Euro-

pean and South Asian populations have been reported to be closely related in multiple studies

[88, 89, 98]. South Asian populations also share Denisovan ancestry with the East Asians [96].

PCA, PLS-DA and dendrogram plotted with MAF and r2, but not D’, of drug-response related

SNPs could reproduce the human evolutionary history and geographic distribution.

Linkage disequilibrium (LD) that exists among DNA variants in the current human

genome is the result of historical evolutionary forces, particularly finite population size, muta-

tion, recombination rate, and natural selection [99]. LD between genetic variants is commonly

measured as r2 (a squared correlation) or D0 (which is equal to D normalized by its maximum

given the allele frequencies) [99, 100]. Though r2 or D’ both depend on the allele frequencies,

r2 is a more stringent measure and depends more on allele frequencies [101–103].

In PCA, PLS-DA and dendrogram with MAF and r2 values, Americans of African Ancestry

(ASW) and African Caribbeans in Barbados (ACB) clustered with the African sub-popula-

tions. Based on the historical records, the African Americans and the African Caribbeans in

Barbados are descended from slaves who were imported mostly from West Africa during the

eighteenth century [27]. African Americans have genetic admixture with approximately 80%

of their genome derived from their African ancestors and 20% from the Europeans [12, 82].

Among the African populations in this study, Mende (MSL) and Gambian (GWD) share

mostly the Western African ancestry, Esan (ESN) and Yoruba (YRI) peoples from Nigeria

share the West-Central African ancestry and the Luhya (LWK) people from Kenya belong to

the Bantu-speaking Eastern African ancestry [104]. Since, the slaves in America and Carri-

beans were brought mostly from West Africa [27], they are supposed to carry more genetic

similarity to the African populations than the Southern American ones [104, 105]. As shown

in Figs 3 and 4, ASW and ACB populations form a distinct cluster with the other African pop-

ulations, rather than with Admixed American populations. Admixed American populations

appeared more closely genetically related with European populations in dendrogram with

both MAF and r2.

Latin American populations- Colombia, Mexico, Peru, and Puerto Rico- have distinct pat-

terns of continental genetic admixture [91]. Puerto Rico and Colombia are characterized by

substantial ancestry contributions from African, European and Native American groups,

whereas Mexico and Peru have primarily Native American and European ancestry [91]. Puerto

Rico and Colombia inherited more genetic content from the European ancestry than Peru and

Mexico [91, 106–108]. In the MAF based dendrogram, CEL and PUR form a closer branch

with the European populations. Such finer distinctions were achieved with MAF and not r2. A

dendrogram recapitulates the relationships among population groups. Individuals who cluster

near each other in the tree could either share a recent common ancestry and/or experienced

gene flow [84]. Finnish in Finland (FIN) are estimated to have obtained ~7% of their ancestry

from East Asians and admixed American populations, whose Native American ancestors are

related to East Asians [96]. MAF based dendrogram could figure out such finer genetic distinc-

tions, which could not be detected with r2. So, human migration patterns and demographical

history can be more accurately reconstructed with allele frequencies than pairwise LD mea-

sures. More dependency of r2 on allele frequencies in comparison to D’ may explain why r2 is

better than D’ at reconstructing such patterns and history.

Although most of the large inter-continental differences in allele frequency may not result

from positive selection [109], there may be numerous cases of recent positive selection of phar-

macogenes [110]. We observed many drug-response related SNPs with higher MAFs in certain

super- or subpopulations compared to other populations (S1 Table). There is evidence of
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natural selection for some of these SNPs, while the others require further investigations. For

example, among the SNPs with MAFs� 0.8 in at least one super- or subpopulation the possi-

bility of natural selection has been suggested for rs776746 [111], rs2740574 [111], rs2359612

[61], rs8050894 [61], rs9934438 [61], rs9923231 [61], rs1346268 [112], rs7294 [61]. Hence, the

pattern of allele frequency distribution observed for these 159 drug response-related SNPs may

not be observed for any random 159 SNPs. Many of the SNPs chosen for this study may be

under natural selection.

Can these findings be generalized?

Considering the high similarities of MAFs in sub-populations belonging to the same super-

population, it may seem tempting to study only the super-populations to predict drug

responses in all of its sub-populations. But such generalizations may not be appropriate. Only

26 sub-populations were included in this study and most of these samples cannot be consid-

ered representatives of their source populations. There can be marked differences in the allele

frequencies of important pharmacogenes among the sub-populations belonging to the same

super-population. Such differences were observed in the allele frequencies of CYP genes in

African populations [76]. There may be large allele frequency differences even among groups

of the same population. This phenomenon is observed in India where endogamy has main-

tained signatures of strong founder effects for thousands of years [113]. So, different Indian

groups may show quite different drug responses. For example, there is a very high frequency

of homozygous silent butyrylcholinesterase (BChE) in Vysya community of India [114]. Indi-

viduals with this particular genetic variant (BChE L307P) may have negligible activity due to

its structural instability as compared to other BChE variants [115]. Administration of muscle

relaxant succinylcholine to individuals carrying BChE variants with no or reduced activity

may cause prolonged apnea [116]. Deficiency of BChE activity may also cause apnea after

administration of neuromascular blocking drug mivacurium [117]. Furthermore, even two

neighboring populations living in the same country may have differences in drug response if

they have different ancestry or different level of admixture. For example, there are differences

in allele frequencies of drug response-related SNPs between two neighboring Colombian pop-

ulations- Antioquia and Chocó- owing to their distinct ancestry profiles [118].

In our study, we looked at only the SNPs that may cause variable drug responses. But other

factors e.g., diet, chemical exposures from the environment, disease state, etc may be sources

of variability in drug response as well [37, 119]. Epigenetic modulations of ADME genes and

drug targets may be important determinant of responses to drugs [120]. Especially, epigenetics

can play an important role in the acquired resistance to chemotherapy in cancer patients and

epigenetic biomarkers may predict the outcomes of chemotherapy [121, 122]. In addition to

drug-gene interactions, drug-gene-drug interactions may also cause differences in drug

response and should be considered during prescribing drugs [123, 124].

Conclusion

There is a global concern to increase pharmacogenetic testing to ensure drug safety and

enhance drug efficacy [125, 126]. However, most GWAS to identify drug-response related var-

iants have been performed in the western populations and others have lagged behind [7, 127,

128]. It is important to understand the interpopulation or interethnic variability in drug

response so that population/ethnicity-specific guidelines can be produced. Besides, knowing

the SNP distribution and LD patterns of different populations will be helpful in causal variant

discovery. In this study, we looked at the interpopulation similarities as well as differences in

drug-response related minor (variant) allele frequencies, LD patterns and haplotype
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distributions. This study may be useful in comparative and evolutionary pharmacogenomics

studies among populations in future.
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57. Fischer J, Böhm S, Scholz M, Müller T, Witt H, George J, et al. Combined effects of different interleu-

kin-28B gene variants on the outcome of dual combination therapy in chronic hepatitis C virus type 1

infection. Hepatology. 2012; 55(6):1700–10. https://doi.org/10.1002/hep.25582 PMID: 22234924

58. Wu HF, Hristeva N, Chang J, Liang X, Li R, Frassetto L, et al. Rosuvastatin pharmacokinetics in Asian

and white subjects wild type for both OATP1B1 and BCRP under control and inhibited conditions. J

Pharm Sci. 2017; 106(9):2751–7. https://doi.org/10.1016/j.xphs.2017.03.027 PMID: 28385543

59. Lam MP, Cheung BM. The pharmacogenetics of the response to warfarin in Chinese. Br J Clin Phar-

macol. 2012; 73(3):340–7. https://doi.org/10.1111/j.1365-2125.2011.04097.x PMID: 22023024

60. Ross KA, Bigham AW, Edwards M, Gozdzik A, Suarez-Kurtz G, Parra EJ. Worldwide allele frequency

distribution of four polymorphisms associated with warfarin dose requirements. J Hum Genet. 2010;

55(9):582–9. https://doi.org/10.1038/jhg.2010.73 PMID: 20555338
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