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Abstract: Pupylation is a type of reversible post-translational modification of proteins, which plays
a key role in the cellular function of microbial organisms. Several proteomics methods have been
developed for the prediction and analysis of pupylated proteins and pupylation sites. However,
the traditional experimental methods are laborious and time-consuming. Hence, computational
algorithms are highly needed that can predict potential pupylation sites using sequence features. In
this research, a new prediction model, PUP-Fuse, has been developed for pupylation site prediction
by integrating multiple sequence representations. Meanwhile, we explored the five types of feature
encoding approaches and three machine learning (ML) algorithms. In the final model, we integrated
the successive ML scores using a linear regression model. The PUP-Fuse achieved a Mathew
correlation value of 0.768 by a 10-fold cross-validation test. It also outperformed existing predictors
in an independent test. The web server of the PUP-Fuse with curated datasets is freely available.

Keywords: pupylation; feature encoding; chi-squared; machine learning

1. Introduction

Pupylation is a type of prokaryotic ubiquitin-like protein (Pup), which contributes to
many cellular processes [1,2]. The Pup process connects the lysine residue with isopeptide
bonds, called pupylation, which plays an important role in controlling signal transduction
and protein degradation in prokaryotic cells [3,4]. Pup proteins tag intrinsically disordered
and misfolded proteins to be degraded [3,5]. While pupylation and ubiquitylation are
analogs in terms of function, they have different enzymologies [6]. Unlike ubiquitylation,
pupylation involves two types of enzymes: deamidase of Pup (DOP) and proteasome
accessory factor A (PafA) [3,7–10]. On the other hand, enzymes of pupylation are initiated
from microbial species and exhibit no homology to ubiquitylation enzymes [7,11].

To know the molecular mechanisms of pupylation, it is necessary to define the sub-
strates of pupylation and its sites precisely. Typically, this task is labor-intensive and
time-consuming because of the large-scale analysis of proteomics; thus, a few computa-
tional methods of predicting pupylation sites have been proposed [12–16]. Liu et al. first
developed the GPS-PUP predictor for the prediction of pupylation sites by the group-based
prediction system (GPS) method [17]. Tung et al. presented the iPUP predictor that im-
plemented the support vector machine (SVM) algorithm with the composition of pairs of
k-space amino acids (CKSAAP) [18]. Chen et al. developed the PupPred predictor based
on SVM [19], where the pairing of amino acids was used to encode the lysine-centered
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peptides. Recently, Hasan et al. proposed a web server, called pbPUP, to predict the
pupylation sites using the profile-based features [20]. The predictors of GPS-PUP, iPUP,
and pbPUP showed reasonable performance of population site prediction. However, when
they were given higher specificity, their sensitivity score was low.

In this study, we developed the PUP-Fuse as a machine learning (ML)-based predictor,
as shown in Figure 1. In brief, we employed the PupDB database [21] to compile the
positive and negative samples with a full sequence, encoded the sequence windows
into numerical feature vectors by using multiple sequence encoding schemes, selected
informative features, and inputted them to ML models. The PUP-Fuse integrated the
multiple ML scores generated by the different, single encoding-employing ML methods to
enhance the prediction performance.

Figure 1. An overview of the proposed PUP-Fuse predictor.

2. Results and Discussion
2.1. Sequence Preference Analysis

To extract the local sequence around prediction sites, we used a local sliding window
consisting of 57 residues (−28~K~28). We used the two-sample logo [22] to display every
28 residues located upstream and downstream in the protein sequence with the pupylation
site, as shown in Figure 2. Significant variances in the nearby pupylated sequences were
found between the pupylation and non-non-pupylation sites. Particularly, residues “R, Y,
and L” were more frequently observed in the enriched positions. In the depleted position
residues, “P and K” were more frequently observed. On the other hand, no amino acid
residues are stacked at some over- or under-represented positions of the surrounding
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sequences. For instance, at the enriched positions of −28, −27, −26, −25, −23, −22, −21,
−17, −15, −13, −11, −10, −8, −5, −3, +2, +5, +6, +9, +11, +13, +17, +19, and +28 no
stacked residues were found. Similarly, in the depleted position of −27, −24, −23, −22,
−20, −19, −18, −17, −15, −14, −9, −6, −5, −3, −1, +1, +3, +6, +8, +9, +11, +13, +17,
+18, +20, +21, +23, +24 and +27 no stacked residues were identified, suggesting significant
information between the positive and negative samples. The above results indicate that a
combination of the frequency- and position-based sequence encoding schemes is effective
in identifying pupylation sites.
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2.2. Performance Results on Training Dataset

We have developed the five single encoding-employing random forest (RF) models
and the combined model (PUP-Fuse) by linearly combining them. The PUP-Fuse optimized
the five weight coefficients for the AAI, Binary, tripeptide composition (TPC), Profile-Based
Composition of K-Spaced Amino Acid Pairs (pbCKSAAP), and CKSAAP-employing RF
models as 0.01, 0.1, 0.3, and 0.3, 0.2, respectively. We evaluated the Sens, Spec, Acc, MCC,
AUC values of the single encoding-employing RF models and the PUP-Fuse without any
feature selection by 10-fold CV test, as shown in Table 1. The ROC and corresponding
auPRC curves are shown in Figure 3A,C. The five measures of the PUP-Fuse were higher
than those of any single encoding-employing RF model. The PUP-Fuse achieved a very
high AUC of 0.913 and outperformed all the single encoding-employing models, which
significantly outperformed all the single encoding-employing models with a two-sample
t-test at p-value < 0.05 (Table 1).

Table 1. Prediction performance comparison among the single encoding-employing models and their
combined models without any feature selection on the training dataset.

Encoding Method Sens Spec Acc MCC AUC p-Value

AAI 0.482 0.811 0.651 0.313 0.697 <0.01
Binary 0.510 0.810 0.661 0.331 0.703 <0.01

pbCKSAAP 0.782 0.800 0.800 0.590 0.908 0.034
TPC 0.770 0.801 0.791 0.574 0.877 0.021

CKSAAP 0.773 0.805 0.789 0.583 0.895 0.038
PUP-Fuse 0.802 0.820 0.811 0.623 0.912

The PUP-Fuse is the linear combination of the RF score estimated by AAI, Binary, pbCKSAAP, CKSAAP, and TPC
encodings and their weight coefficient are 0.1, 0.1, 0.3, 0.3, and 0.2, respectively.
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The PUP-Fuse predictor was developed based on the PupDB database, where a
positive-to-negative ratio of ~1:12 was highly imbalanced. Since the prediction accuracy
of ML algorithms is seriously impaired by such unbalanced datasets [19,20], many site
predictors of PTM use a fairly balanced ratio of positive to negative samples to train
classification models [20,23,24]. On the training dataset, we compared the prediction
performance (AUC) between 1:1, 1:2, and 1:all ratios of positive to negative samples
(Figure S1). Since a 1:1 ratio provided a higher AUC value, we determined a 1:1 ratio as
the optimal one. The size of the window is also an important factor to discriminate the
positive sites from the negative ones. Based on AUC values, the window size was searched
from 25 to 61 (Figure S2). An optimal window size of 57 was obtained because the AUC
increasing rate from 45 to 57 was very low.

To investigate the validity of a high cutoff similarity of 80%, employed by CD-HIT [25],
we compared the prediction performance with a cutoff of 80% to that with an ordinary
cutoff of 30%. A cutoff of 30% produced the training dataset that contained 129 proteins
with 141 pupylation and 141 non-pupylation sites (with a 1:1 positive-to-negative ratio).
The overall performance of PUP-Fuse with a cutoff similarity of 30% a little decreased
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(AUC = 0.903) (Table S1) by the 10-fold cross-validation, but a cutoff similarity of 80%
presented almost similar performance with a cutoff similarity of 30%.

2.3. Performance Optimization by Chi-Square Test

The proposed method describes some sniping sequence patterns for a pupylation site
in a comprehensive way, while it results in a high-dimensional vector. Some redundant
or irrelevant attributes may be present that affect accuracy reduction. Thus, we selected
the informative features out of many features using a well-established chi-squared test.
For each employed scheme, different feature subsets were selected, which contained the
top-ranked features ranging from the top 20 to the top 500 with an interval of 20. All
these curated feature subcategories were inputted to RF separately, and their respective
performances were evaluated using 10-fold cross-validation (Figure S3). To end, the feature
subset that reached the highest AUC was selected as the optimal one. In this approach,
we selected the 260-, 100-, 200-, 240-, and 350-dimensional features from pbCKSAAP, AAI,
Binary, CKSAAP, and TPC encodings, respectively. In the PUP-Fuse, the weight coefficients
for the AAI, Binary, TPC, and pbCKSAAP-employing RF models were optimized as 0.1, 0.1,
0.3, 0.3, and 0.2, respectively. As shown in Figure 3B,D, the PUP-Fuse with the chi-squared
test achieved higher AUC and auPRC values than that without the feature selection.
The PUP-Fuse with feature selection achieved an accuracy of 88.4% (Sn = 88.1% and
MCC = 0.768) at a specificity control of 88.1% on the training data (Table 2). The PUP-Fuse
reached a remarkable AUC value of 0.956, which significantly outperformed all the single-
employing-based models with a two-sample t-test at the level of p-value < 0.05 (Table 2).

Table 2. Performance comparison among the single encoding-employing models and their combined
models with feature selection on the training dataset.

Encoding Method Sens Spec Acc MCC AUC p-Value

AAI 0.410 0.854 0.626 0.294 0.724 <0.01
Binary 0.417 0.855 0.629 0.305 0.731 <0.01

pbCKSAAP 0.831 0.827 0.829 0.658 0.929 0.031
TPC 0.754 0.827 0.789 0.582 0.878 <0.01

CKSAAP 0.822 0.825 0.824 0.646 0.911 <0.026
PUP-Fuse 0.886 0.881 0.884 0.768 0.956

The PUP-Fuse is the linear combination of the RF score estimated by AAI, Binary, pbCKSAAP, CKSAAP, and TPC
encodings and their weight coefficient are 0.1, 0.1, 0.3, 0.3, and 0.2, respectively.

2.4. Comparison among Different ML Methods on Training Dataset

Selecting an optimal ML method is an essential step. Therefore, to verify the effective-
ness and superiority of the RF algorithm employed by the PUP-Fuse, we compared it with
the KNN and SVM algorithms on the same training dataset by a 10-fold CV test. In order
to make a fair comparison, the KNN and SVM models implemented the same encoding
schemes as the PUP-Fuse. As shown in Figure 4, the RF model yielded a higher AUC than
the other two ML models, which was approximately 2–5% higher than the AUCs of the
other models.
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2.5. Comparison of PUP-Fuse with Existing Methods on Independent Dataset

Several computational methods had been proposed for the prediction of pupylation
sites. In order to compare the PUP-Fuse with the four existing methods (GPS-PUP, iPUP,
PUPS, and PbPUP), an independent dataset of 86 pupylation sites from 71 pupylated
proteins and 1136 non-pupylation putative sites was used. Even though the PUP-Fuse
and these existing methods did not use the same training dataset, we used the same
independent dataset for a fair comparison of performances. We submitted the independent
dataset directly to the web servers to obtain the prediction performances. The PUP-Fuse
achieved the highest performance, as shown in Table 3, with a Sens of 0.59, a Spec of 0.91,
an Acc of 0.82, and an MCC of 0.55. The PUP-Fuse provided 10–20% higher MCC than the
other existing models, demonstrating the superiority of the PUP-Fuse over the existing
predictors. The superiority of PUP-Fuse could result from a linear combination of the five
ML probability scores evaluated by the five different encodings. Note that all the encodings
contribute to prediction performance.

Table 3. Performance comparison of the PUP-Fuse with the four existing methods on the
independent dataset.

Methods Sens Spec Acc MCC

iPUP 0.40 0.88 0.73 0.32
GPS-PUP 0.21 0.89 0.68 0.13

PUPS 0.17 0.89 0.67 0.08
pbPUP 0.48 0.82 0.79 0.45

PUP-Fuse 0.59 0.91 0.82 0.55

The threshold values of iPUP, GPS-PUP, PUPS, and pbPUP were set to show high specificity (90%) in their
corresponding webservers.
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3. Materials and Methods
3.1. Data Collection and Processing

The datasets were retrieved and taken from the publication of the PupDB database [21].
The experimentally identified lysine pupylation sites were treated as positive samples,
while all existing lysine residues that were not experimentally confirmed as the sites of
pupylation in those proteins were treated as non-pupylation sites or negative samples.
After deleting 80% similar sequences using CD-HIT [25], we preserved 233 pupylated
proteins with 273 positive and 3280 negative sites. In the PupDB dataset, the ratio of the
positive to negative samples (~1:12) is very unbalanced, which would obstruct the training
model. Thus, a balanced dataset with a positive-to-negative ratio of 1:1 (186 of positive
sites and negative 186 sites) was composed by randomly excluding the negative samples.
The independent dataset consisting of 87 experimentally verified pupylation sites and 191
putative non-pupylation sites was randomly extracted from the dataset to test the various
predictors. The curated datasets are summarized in Table 4.

Table 4. The number of pupylated proteins and pupylation sites.

Training Independent

Pupylated protein 162 71
Pupylated lysine 186 87

Non-pupylated lysine 186 191

3.2. Encoding Scheme
3.2.1. pbCKSAAP

The pbCKSAAP method is widely investigated in previous studies [20,26–28]. The
k-spaced residue pair could be defined as pa {k} pb(a, b = 1, 2, . . . , 20), where pa and pb
show two residues of 20 types of amino acids. While k = 0, pa {k} pb represents a dipeptide
and considers a number of 400 (= 20× 20) dipeptides. In this study k = 0, 1, 2, 3, 4 were
considered (i.e., kmax = 4). Accordingly, the feature vector from each positive/negative
sample has a dimension of 200 (= 400× 5 ). In this process, PSI-BLAST searched each
protein sequence to produce a profile (i.e., PSSM matrix) with respect to the NCBI NR90
database (December 2010 version). For the inclusion of new sequences, the iteration time
and e-value limit were set, respectively, to 3 and 1.0× 10−4.

If residue pair pa {k} pb performs between the positions t and t + k + 1 in the PSSM
matrix, the frequency scores could be generated as follows:

Sa,b = ∑N
i=1 max{min{PSSM(t, pa), PSSM (t + k + 1, pb)}, 0} (1)

where PSSM(t, pa) denotes the amino acid score pa at the tth of PSSM in a row position,
PSSM (t + k + 1, pb) exists for an amino acid score of pb at (t + k + 1)th of PSSM in a row
position. The pupylation/non-pupylation site appears N times. Moreover, we normalize
Sa,b using the formulation below:

S′a,b =
Sa,b

L − k− 1
(2)

where L stands for the total sequence fragment length, i.e., the size of a window is L. We
have used the pbCKSAAP encoding scheme to create a 2000-dimensional feature vector for
any positive/negative sample.

3.2.2. CKSAAP Encoding

The CKSAAP encoding is widely used for representing sequence motifs [26,27,29]. If
a sequence fragment is composed of 57 windows and 20 types of residues, it contains 400
(=20 × 20) types of residue pairs (i.e., AA, AC, AD, . . . ) for every single k, where k signifies
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the space between two amino acids. In this work, the optimal kmax was set to 4 to generate
2000 (=20 × (kmax + 1) × 20)-dimensional feature vectors for a single sequence.

3.2.3. Binary Encoding

Twenty types of amino acids can encode with the sequence window to generate the
binary feature vectors [30,31]. By binary encoding, a 1140 (=20 × 57)-dimensional feature
vector was calculated for a window sequence.

3.2.4. TPC Encoding

The TPC encoding scheme implements a three-amino acid-fixed length of composi-
tion [29] to generate tri-amino acids composition with 8000 (=20 × 20 × 20)-dimensional
feature vectors.

3.2.5. AAI Encoding

The AAI encoding scheme uses the amino acid properties [32]. We selected the top 15
instructive amino acid indices after assessing different physicochemical and biological prop-
erties of amino acids (Table S2). The AAI encoding generates 855 (=57 × 15)-dimensional
feature vectors.

3.2.6. Feature Selection

Feature selection is a key step to eliminate unrelated features and to improve predictive
performance. All the features are not equally important, or even some of them are noisy and
have adverse effects on performance [15,20]. We used ChiSquaredAttributeEval and Ranker
evaluation tools of WEKA [33] to select the features that are relevant to pupylation sites.

The chi-squared (χ2) test is a standard statistical test that analyzes the variance of the
expected distribution, assuming that the presence of a given function is independent of the
class value. Details in the χ2 feature selection process can be found elsewhere [20].

3.2.7. Classification Method

Random forest algorithms are based on the classification and regression trees (CART)
techniques [26,31,34]. It raises numerous trees of classification or regression that are called
“forests”. Each tree is constructed using a deterministic algorithm, and due to two factors,
the trees are different. The best separation is initially chosen from a random subset of the
predictors at each node. In addition, a bootstrap observation sample is used to construct
each tree. The overall prediction is then calculated as the average of all the trees.

We used KNN and SVM to compare with the RF classifier employed by PUP-Fuse.
SVM is being widely used in protein bioinformatics [35–37]. For making a proper binary
prediction, a kernel radial basis function (RBF) with the LIBSVM 2019 package (http:
//www.csie.ntu.edu.tw/~cjlin/libsvm/ (accessed date: 11 September 2019)) was applied
to the training and independent datasets [38]. For tuning parameters, C and γ were
maximized based on the training dataset by using the LIBSVM grid search strategy. The
grid search strategy was carried based on 10-fold cross-validation tests to find the optimal
C and γ ∈ [2−7, 2−6, . . . , 28]. The KNN is a supervised ML algorithm that solves both
classification and regression problems. We used the KNN algorithm of the R package to
classify positive and negative samples at (https://cran.r-project.org (accessed date: 11
September 2019)).

3.2.8. Feature Integration

Features were typically integrated to improve the prediction performance. We linearly
combined the ML scores evaluated by the five encoding schemes: AAI, Binary, TPC,
CKSAAP, and pbCKSAAP, with the formula as follows:

Cl = ∑n
i=1(wi si) (3)

http://www.csie.ntu.edu.tw/~cjlin/libsvm/
http://www.csie.ntu.edu.tw/~cjlin/libsvm/
https://cran.r-project.org
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where Cl is the linear combination of the ML scores, wi and si are the weight coefficient and
score for each encoding scheme i. The total of wi equals to 1. The linear combination model
of the ML scores calculated by the five encoding schemes is named the PUP-Fuse. The
above feature integration model is widely used in different bioinformatics tasks [27,39–41].

3.2.9. Model Evaluation

In this analysis, 10-fold cross-validation was chosen to test the predictor
proposed [31,42–55]. Seven measures were used to evaluate the proposed predictor: sensi-
tivity (Sens), specificity (Spec), accuracy (Acc), Matthews coefficient of correlation
(MCC) [30,46,56–63], precision and recall. The formulas are defined as follows:

Sens =
TP

TP + FN
(4)

Spec =
TN

TN + FP
(5)

Acc =
TP + TN

TP + TN + FP + FN
(6)

MCC =
TP × TN − FP × FN√

(TP + FN)× (TN + FP)× (TP + FP)× (TN + FN)
(7)

Precision =
TP

TP + FP
(8)

Recall =
TP

TP + FN
(9)

where TP, FP, TN, and FN represent, respectively, the numbers of true positive, false-
positive, true negative, and false-negative samples. Moreover, the area under the curve
value (AUC) is evaluated from the receiver operating characteristic (ROC) curve by pROC
package at https://cran.r-project.org/web/packages/pROC/ (accessed date: 11 Septem-
ber 2019), and the area under the precision curve (auPRC) is calculated to access the overall
predictive performance.

4. Conclusions

The PUP-Fuse was developed for better prediction of pupylation sites. The PUP-
Fuse was the RF model that integrated the five types of encoding schemes to consider
various sequence patterns around protein pupylation sites. Then, the chi-squared test
was used as the feature selection method. Performance evaluated by the training and
independent tests clearly demonstrated the advantage of the PUP-Fuse over the existing
models. The performances of PUP-Fuse are assessed based on the independent test dataset
and compared with other existing methods, concluding that the predictive performance
of PUP-Fuse is better than other existing methods. The comparison between different
classifiers shows that the chi-squared feature selection algorithm optimized the curated
feature vectors and RF-based model superior to other classifiers in predicting pupylation
sites. Additionally, we found that the integration of successive ML scores by using a linear
regression model advances the prediction performances. The web implementation of
the PUP-Fuse with curated datasets are freely available for users at http://kurata14.bio.
kyutech.ac.jp/PUP-Fuse/ (accessed date: 11 September 2019).

Supplementary Materials: Supplementary materials can be found at https://www.mdpi.com/14
22-0067/22/4/2120/s1. Figure S1: Comparison of 1:1, 1:2, and 1:all ratios of positive-to-negative
samples on training dataset; Figure S2: AUC values for different window sizes based on 10-fold
cross-validation tests; Figure S3: AUC value with respect to selected features for the five encoding
schemes; Table S1: Prediction performance after the removal of 30% sequence redundancy on the
training dataset; Table S2: Fifteen types of AAI properties used in this study.
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