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Abstract 
Many important scientific discoveries require lengthy experimental 
processes of trial and error and could benefit from intelligent 
prioritization based on deep domain understanding. While 
exponential growth in the scientific literature makes it difficult to keep 
current in even a single domain, that same rapid growth in literature 
also presents an opportunity for automated extraction of knowledge 
via text mining. We have developed a web application implementation 
of the KinderMiner algorithm for proposing ranked associations 
between a list of target terms and a key phrase. Any key phrase and 
target term list can be used for biomedical inquiry. We built the web 
application around a text index derived from PubMed. It is the first 
publicly available implementation of the algorithm, is fast and easy to 
use, and includes an interactive analysis tool. The KinderMiner web 
application is a public resource offering scientists a cohesive summary 
of what is currently known about a particular topic within the 
literature, and helping them to prioritize experiments around that 
topic. It performs comparably or better to similar state-of-the-art text 
mining tools, is more flexible, and can be applied to any biomedical 
topic of interest. It is also continually improving with quarterly 
updates to the underlying text index and through response to 
suggestions from the community. The web application is available at 
https://www.kinderminer.org.
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Introduction
Many important scientific discoveries are subject to lengthy 
processes of trial and error. Because the experimental search 
spaces are so large, intelligent prioritization of research direc-
tions is essential for reaching novel discoveries quickly, and this  
requires both extensive breadth and depth of domain exper-
tise. However, exponential growth in the scientific literature1,2 
presents a major challenge to remaining conversant with recent  
knowledge in any domain.

To facilitate rapid prioritization of experimental search, we  
thus present the first public web application implementation of 
the KinderMiner algorithm3, built upon a text index of abstracts 
from PubMed4. The KinderMiner algorithm is a simple text  
mining algorithm based on co-occurrence counting within a  
corpus of documents. It addresses the prioritization problem by  
filtering and ranking a list of target terms (e.g. transcription  
factors or drugs) by their association with a key phrase (e.g. 
“embryonic stem cell” or “hypoglycemia”). The output list pro-
vides researchers with an informed starting point for understand-
ing the state of literature in their domain, and for prioritizing 
potential research directions, thereby accelerating the discovery  
process. While other tools provide similar functionality, we find 
that KinderMiner’s string matching approach is more flexible  
and performs comparably or better than existing state-of-the-art 
tools.

Our web application implementation of KinderMiner improves 
on the original published algorithm in multiple ways. First, 
we have constructed our own local biomedical literature 
index backing the web application. This obviates the need for  
researchers to produce their own corpus of documents in order 
to use KinderMiner. Furthermore, providing a local text index 
speeds up query times, owing to the fact that we no longer 
need to send repeated queries to a remote web service over the 
internet. The local index also gives us complete control over  
data processing, allowing for greater extensibility. Second,  
providing a graphical user interface increases accessibility over 
a command-line tool, allowing non-technical users to get results 
without the bottleneck of relying on computational assistance.  
The interactive filtering tool also makes it easier for users 
to visually analyze their results rather than simply picking  
an arbitrary threshold. Finally, we intend to continually improve 
the tool by updating the text index quarterly, by adding enhance-
ments, and by acting on feedback from the community. In  
summary, our application is fast, easy to use, and provides the 
first publicly available implementation of KinderMiner for all to  
freely use and to help improve through their feedback.

Methods
As stated, our web application provides an off-the-shelf  
implementation of the KinderMiner algorithm built on a  
provided text corpus derived from PubMed. Here we first  
briefly describe the KinderMiner algorithm, implementation 
details of our web application, explain the user interface, and  
compare our web application results to other state-of-the-art  
tools on a cell reprogramming task.

KinderMiner algorithm
Given a list of target terms and a key phrase of interest,  
KinderMiner filters and ranks the target terms by their association  
with the key phrase. It does this via simple string matching  
and co-occurrence counting within a given document corpus.  
For every target term in the given list, KinderMiner uses 
exact token matching to count 1) the number of documents 
in which the target term occurs, 2) the number of docu-
ments in which the key phrase occurs, and 3) the number of  
documents in which the target term and the key phrase both occur.  
With these counts, KinderMiner constructs a contingency 
table of document-level co-occurrence for every target term.  
KinderMiner then performs a one-sided Fisher’s exact test on 
every contingency table, and filters out terms that do not meet 
a specified threshold of co-occurrence significance. Finally,  
KinderMiner ranks the remaining terms by the ratio of documents  
containing both the term and key phrase, over the total of docu-
ments containing the term, thereby giving a proportion of 
term association with the key phrase. Figure 1 shows a visual  
representation of the algorithm steps with an example for a  
single target term. In the web application, the filtration step is  
controllable with the interactive analysis tool.

Implementation
The original KinderMiner publication used Europe PubMed 
Central5 as the article corpus, but dependency on a remote third-
party corpus would be slower and harder to maintain for our 
web application. Instead, we constructed a local text index 
from the National Library of Medicine’s “Annual Baseline”  
Dataset4, containing roughly 30 million abstracts, and updated 
quarterly by supplementing files from the “Daily Update Files” 
Dataset. We download all data in XML format. For every  
PubmedArticle element in the XML, we extract the contents of 
the PubDate and AbstractText fields. We process the Pub-
Date field into a publication year based on the documentation  
guidelines and do no further processing on the AbstractText 
field. We then convert these fields into a JSON format for ingestion 
by Elasticsearch. Finally, we ingest the converted JSON records 
into an Elasticsearch index (version 2.4.6). Note that our corpus 
contains the entirety of the released PubMed citation records, 
which includes publication records from as far back as the 18th 
century all the way to the time of ingestion. The results presented 
here are based on the index built from an ingest of PubMed in  
June of 2020. The dataset contains 31,030,308 citation records, 
and we indexed the abstract text with Elasticsearch using  
the standard analyzer, which applies a grammar-based tokenizer 
and lowercase filter to the text.

Our web application implements the KinderMiner algorithm built 
on this provided text index of abstracts from PubMed. The web 

            Amendments from Version 1

This version provides further elaboration on statistical and 
algorithmic choices, provides a more detailed discussion of the 
use of exact string matching, and expands the limitations and 
future work section. It also corrects minor typos. 

Any further responses from the reviewers can be found at 
the end of the article

REVISED
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application is built with the Flask framework (version 1.0.2) using  
Python (version 3.7.2), and we use MariaDB (version 5.5.65)  
for the web application database. When a request is submitted 
through the application, it is added to the database on a first-come  
first-serve basis for analysis. Our analysis daemon then uses  
the Elasticsearch Query Domain Specific Language to construct  
each of the queries in JSON and stores the counts back in  
the database for user consumption. Once a request is complete,  
the results are viewable, filterable, and downloadable.

Operation
First, users have the option of either creating an account with 
their email address or using the application as a guest. With 
an account, users have indefinite access to all of their previ-
ously submitted queries and results. Guests have access to all  
of the same tools and functionality, except that their query  
history is limited to their current browser session. The two 
pages where users will spend most of their time are the query  
submission page, and the results table for each query. The query  
submission page (see Figure 2) allows users to submit a  
single query for a list of target terms and key phrase. On this 
page, users can name the query for future reference, enter their 
key phrase, list of target terms, and have the option of select-
ing an article censor year. The article censor year limits the text 
search to articles published from the beginning of the text index  
(18th century) through the end of the specified year, allow-
ing users to see what results may have looked like in years 
prior. For convenience, we provide quick fill target term lists for 
genes, transcription factors, ligands, microRNA, and drugs and 
devices. After submission, queries enter the processing queue.  
Upon completion, typically within minutes, logged in users  
receive an email notification.

When viewing the results table for a particular query (see 
Figure 3), users are presented with a dynamic list and a  

p-value threshold slider. The threshold slider controls the Fisher’s  
exact test p-value by which target terms are filtered, and  
defaults to a value of 1 × 10−5, the same p-value used for analy-
sis in the original publication. Moving the slider or entering a 
value in the threshold box automatically updates the content 
of the displayed term list. A graph shows a curve representing 
the sorted list of all target term p-values and the current selected 
cutoff, giving users a visual representation of their filter. With 
this, users can investigate their top hits further as they see  
fit. Finally, users also have the option of downloading the 
entire list of target term counts, or the current filtered list based  
on their selected threshold.

Results
Given that the corpus used for our web application is different  
from the original KinderMiner publication, we validate that 
our new index produces results of similar quality. To do this, we 
query the same cell reprogramming tasks from the KinderMiner 
algorithm publication, using the same key phrases, target lists, 
censor years, and filter thresholds. Specifically, we run queries 
to discover and rank important transcription factors for creating 
induced pluripotent stem cells (iPS cells), cardiomyocytes, and 
hepatocytes. For each of the queries, we use the same list of 
2,243 transcription factors from the original publication (avail-
able as a quick-fill option in the application) and search against 
the key phrases “embryonic stem cell”, “cardiomyocyte”, and  
“hepatocyte” respectively. To validate findings for each, we 
compare the top hits with relevant factors found by the earliest  
landmark papers for each discovery. Furthermore, we censor 
each query to only include articles from the earliest publications  
in our text index (18th century) through December 31 of the year 
two years prior to the landmark publications (e.g. for the iPS  
discovery, which was first published in 2006, we include articles 
through December 31, 2004). Thus, positive findings demon-
strate early discovery of the landmark findings and KinderMiner’s  

Figure 1. A diagrammatic example of KinderMiner for the key phrase “embryonic stem cell” and target term “NANOG.”
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potential for prioritizing and expediting the discovery process. 
For the iPS cell discovery, we censor to articles published through 
December 31, 2004, and the relevant transcription factors we  
consider are KLF4, LIN28, MYC, NANOG, POU5F1, and  
SOX26–8, though we do also note that POU5F1 and SOX2 constitute 
a sufficient subset for iPS reprogramming9. For cardiomyocytes, 
we censor to articles published through December 31, 2008, and 
consider GATA4, HAND2, MEF2C, NKX2-5, and TBX510,11. 
For hepatocytes, we censor to articles published through  
December 31, 2009, and consider CEBPB, FOXA3, FOXA2, 
GATA4, HNF1A, HNF4A, and MYC12,13. We use a term filter  
p-value threshold of 1 × 10−5 for all of them. We use this thresh-
old not for any particular statistical reason, but because it is the 
same threshold we used in the original publication, as it tends to  

produce final lists of reasonable size for further exploration. In 
every search, our KinderMiner web application recovers the  
same positive hits in the top 20 as in the original publication.

However, this initial evaluation does not necessarily confirm 
that KinderMiner performs any better than other state-of-the-art  
tools. We thus compare our cell reprogramming results from 
KinderMiner with those from other similar text mining  
tools. While there have been many algorithms proposed  
around the concept of co-occurrence counting, we found only 
three tools comparable to KinderMiner available: FACTA+14, 
Polysearch215, and BEST16. There are other similar sounding  
tools like DeepLife17 and Life-iNet18, but DeepLife serves more 
as a general biomedical web search than a term ranking tool 

Figure 2. Users enter a search for a particular key phrase and list of target terms.

Figure 3. Users can dynamically filter the results for a query using the p-value slider.
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and Life-iNet does not appear to have any code or application  
available for use. All three of FACTA+, Polysearch2, and 
BEST allow the user to rank a list of biomedical entities  
(analogous to the KinderMiner target terms) by their association  
with a query entity (analogous to the KinderMiner key 
phrase), and all allow general text entry for the query entity. 
Unlike KinderMiner, however, they all perform some form of  
biomedical entity labeling and indexing for their entity lists.  
While this approach has advantages, it also limits user queries  
to the predefined vocabularies of entities that are provided  
by each tool. KinderMiner is more flexible as it uses  
simple string matching on entity names, which thus allows  
users to rank and filter a list of any text terms they like against  
any text key phrase that they like.

Perhaps the closest comparison tool to KinderMiner is BEST, 
as it provides a “Transcription Factor” option for one of its 

predefined entity lists. It also provides the option to censor  
its corpus search by year, giving us the greatest ability to  
compare with KinderMiner’s censored results. FACTA+ and  
Polysearch2 do not have predefined transcription factor lists, 
but do have “Gene/Protein” and “Genes/Proteins” options  
respectively. We use these lists as the closest approximation. 
FACTA+ and Polysearch2 also do not have an option to censor  
the corpus by year, so they have the advantage of many more  
years of text as compared to KinderMiner and BEST. For all 
tools, we use the same three key phrases (“embryonic stem cell”,  
“cardiomyocyte”, and “hepatocyte”) as query entities. We  
performed all searches for comparison on February 3, 2020.

Table 1, Table 2, and Table 3 show the top 20 transcription  
factors determined by each method on these three cell repro-
gramming tasks. Important transcription factors that appear in 
the top 20 hits for each method and cell type are highlighted in  

Table 1. iPS cell transcription factor search. Landmark factors are highlighted in blue (duplicates in 
orange) and the bottom row shows Recall@20. All methods find a sufficient set of factors (POU5F1 and SOX2). Note 
that KinderMiner and BEST have been censored to articles published through 2004, whereas the other methods 
have no such censoring, giving them the advantage of access to the landmark papers and more.

KM-2004 BEST-2004 FACTA+ Polysearch2

NANOG POU5F1 Oct4[POU5F1] ESCS

UTF1 LBX1 OCT4 OCT3[POU5F1] 
Homeo box transcription factor nanog 

ANOP-3[SOX2]

POU5F1 TP53 Nanog

TCF7 TBX1 histone

FOXD3 GATA1 insulin DAZ homolog

DNMT3L FOS SOX2 Bladder cancer related protein XHL

SOX2 MYC alkaline phosphatase Acetyl-CoA carboxylase biotin holoenzyme 
synthetase

PITX3 STAT3 NANOG BMP-2B

MYF6 RUNX1 collagen JARID-2

HIF1A JUN p53 FOXD-3

SOX1 HOXB4 nestin E2A/HLF fusion gene

PDX1 HIF1A CD34 LIN-41

PAX4 MSC cytokine Epithelial zinc finger protein EZF[KLF4]

HOXB3 PAX3 leukemia inhibitory factor APRF

HMGA1 MYF5 osteogenic MIRN410

LMO2 NEUROD1 catenin HRIHFB2060

OLIG2 SOX2 gut ERG associated protein with SET domain

DNMT1 PDX1 erythroid DMTase

RUNX1 SPI1 c-Myc BIG-3

HOXB4 SP1 Leukemia inhibitory 
factor ER71

50% (3/6) 50% (3/6) 67% (4/6) 67% (4/6)
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blue, with duplicate hits highlighted in orange (FACTA+ only). 
Recall@20 is shown in the bottom row of each table.

Use cases
Of course, KinderMiner is designed to be general enough to 
work for other biomedical applications. In fact, it has already 
been used as part of several other published applications. In 
one, KinderMiner was used to validate phenotypes found to  
be associated with FMR1 premutation as part of electronic 
health record (EHR) analysis19. In that case, KinderMiner helped 
provide evidence that FMR1 premutation carriers experience 
a clinical profile different from that of a control population.  
In another application, KinderMiner was used to assess novelty 
of lab tests as predictors for certain diseases20. In that work,  
EHR analysis revealed that common lab tests are sometimes  

predictive of diagnoses for which they would not typically be  
used. KinderMiner was used to validate the novelty of those  
findings by using the opposite-handed statistical test and an  
inverse ranking function. KinderMiner has also been used to  
identify protein-protein interactions21, outperforming Polysearch2  
in that work as well. Finally, the original KinderMiner  
publication also demonstrated its use to identify potential drug  
repositioning candidates for diabetes3, finding several relevant  
hits and providing comparable results to a more sophisticated  
computational approach.

Discussion
From Table 1, we note that all methods perform compara-
bly on the iPS cell reprogramming task, and all do in fact find a  
sufficient set of reprogramming factors9 (POU5F1 and SOX2) 

Table 2. Cardiomyocyte transcription factor search. Landmark factors are highlighted 
in blue and the bottom row shows Recall@20. Note that KinderMiner and BEST have been 
censored to articles published through 2008, whereas the other methods have no such 
censoring, giving them the advantage of access to the landmark papers and more.

KM-2008 BEST-2008 FACTA+ Polysearch2

GATA4 HLHS2 caspase-3 Adenovirus E4 gene transcription 
factor 60 kD subunit

NKX2-5 NFKB1 collagen Apopain

TBX18 AR angiotensin II FNDC-5

HDAC9 JUN Bcl-2 ADCAD-1

TBX20 MSC ATP BAG family molecular chaperone 
regulator 3

NFATC4 TLX2 insulin Cytoplasmic nuclear factor of 
activated T-cells 3

GATA5 GATA4 p38 APRF

TBX5 TP53 Ang II GGF-2

ISL1 STAT3 sarcomeric GATA binding factor 4

HAND2 PPARA cardiac muscle FK506 binding protein 12 rapamycin 
complex assoc. protein 1

MEF2C FOS cytokine T box 20

NFATC3 NR3C2 natriuretic peptide 5’-AMP-activated protein kinase 
catalytic subunit alpha-1

HDAC5 HIF1A ERK1 KKLF

FOXO3A IRF6 myosin heavy chain T box 5

GATA6 MEF2A lactate dehydrogenase Antigen NY-CO-9

MEF2A FOSB endoplasmic reticulum HMOX-1

ILK SRF atrial natriuretic peptide CASZ-1

SRF POU5F1 MAPK AMPH-2

STAT3 TBX5 ATPase DMDL

MSC PPARG tumor necrosis factor NAD-dependent deacetylase sirtuin

100% (5/5) 40% (2/5) 0% (0/5) 40% (2/5)
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Table 3. Hepatocyte transcription factor search. Landmark factors are highlighted in 
blue and the bottom row shows Recall@20. Note that KinderMiner and BEST have been censored to 
articles published through 2009, whereas the other methods have no such censoring, giving them the 
advantage of access to the landmark papers and more.

KM-2009 BEST-2009 FACTA+ Polysearch2

HNF4A NFKB1 hepatocyte growth factor Acetyl-CoA carboxylase biotin 
holoenzyme synthetase

HNF1A IRF6 albumin HNF-4

HNF1B TP53 insulin ABC16

TCF2 HNF4A cytokine F TCF

TCF1 MYC c-Met ABC30

FOXA3 JUN collagen EGF receptor

NR1I3 PPARA HGF 5’-AMP-activated protein kinase 
catalytic subunit alpha-1

NR0B2 ESR1 epidermal growth factor AQP-7

FOXA2 HNF1A VEGF APRF

NR1I2 STAT3 cytochrome P450 FABP-1

NR1H4 NR3C1 alanine aminotransferase ACT2

IPF1 FOSB tumor necrosis factor HAMP

FOXA1 NR1I2 scatter factor Apopain

FOXF1 AHR endoplasmic reticulum HGF receptor

PBX2 FOS Met C8FW

NEUROD1 PPARG MET NR1C1

PROX1 MBD2 aspartate 
aminotransferase CPE-1

ALF ONECUT1 ATP NTCP

PAX4 HNF1B IL-6 KLHL-1

FOXO1A FKHL16 caspase-3 SREBF-1

57% (4/7) 43% (3/7) 0% (0/7) 14% (1/7)

in the top hits. Recall again, however, that FACTA+ and  
Polysearch2 have access to literature available years after the  
landmark discoveries were made, whereas KinderMiner and BEST  
have both been censored to articles published through 2004  
(two years prior to discovery). KinderMiner also finds all five 
relevant factors for cardiomyocytes in the top 11 hits of Table 2, 
and finds most factors for hepatocyte reprogramming in 
the top nine hits of Table 3, outperforming the comparison  
methods by recall for both cardiomyocyte and hepatocyte 
reprogramming. Furthermore, KinderMiner is not limited to  
predefined vocabularies like all of the comparison methods 
because of its simple string matching approach to search. The 
string matching and counting approach used by KinderMiner is 
both simpler and more flexible while performing comparably  

if not better than the predefined vocabulary approach. In  
general, approaches like KinderMiner’s tend to achieve high  
recall without requiring annotated training data22.

Even just these three results show how valuable KinderMiner 
can be in a research work flow. The resulting list provided by  
KinderMiner not only provides researchers with suggested reading,  
but also allows them to prioritize their targets for experi-
mentation. Consider the discovery of how to make iPS cells  
before it was known. If one assumes a priori that 2–3 transcription 
factors are needed, then the task quickly becomes unman-
ageable without some prioritization of the roughly 2,000 

human transcription factors (
62,000

2.0 10
2

 
= × 

   and 92,000
1.3 10

3

 
= × 

 
). 

If a researcher wants to know if NANOG is associated with 
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pluripotency, they can use a search engine to find and read  
specific articles about that single connection. That, however, 
is only one finding, and the researcher has to know what con-
nection they are looking for (NANOG and pluripotency)  
beforehand. If a researcher instead wants to know which of all 
roughly 2,000 transcription factors are most likely associated 
with pluripotency according to the current state of the litera-
ture, the required reading would be infeasible. Furthermore, after  
extensive reading, the researcher still needs to synthesize that 
knowledge into an ordered set of the most promising leads  
to try as reprogramming factors to make iPS cells. This is  
exactly the type of situation where KinderMiner shines. In a 
matter of seconds to minutes, that same researcher can get an  
ordered list of promising leads to help them prioritize their  
reading or experimentation.

Limitations and future work
While KinderMiner performs well empirically, it is not  
without limitations. One potential shortcoming is the lack 
of negation handling. Because KinderMiner only looks for  
document level co-occurrence, it cannot distinguish between a  
positive or negative association. For example, if many articles  
contain phrases like “Gene A is not associated with tissue B,”  
KinderMiner will still likely pick up on this relation between 
gene A and tissue B and produce it as a significant hit. We are  
currently exploring options for addressing negation. Nevertheless, 
even with this lack of negation handling, KinderMiner performs 
well on a variety of tasks.

Another potential shortcoming of KinderMiner is that, in some 
cases, the exact matching approach requires more curation  
from the user. Exact text matches are immediately useful  
when the list of target terms is something like genes, where 
well-defined lists are available and where it may be important to  
distinguish between similar names like TWIST1 and TWIST2, 
but it becomes more challenging when the target term list is 
more complicated. For example, a target term list of ICD9 
codes would be more challenging. ICD diagnosis descriptions 
are often very specific or contain tokens that would not typi-
cally appear in the literature, thus requiring curation if they are  
to be used for a target term list. For example, “Malignant  
neoplasm of breast (female); unspecified site” is unlikely to  
occur as an exact string or set of tokens in the literature, so this  
term would require manual modification (e.g. to “malignant  
breast cancer”) before use with KinderMiner. This minor  
difficulty is effectively a tradeoff made in exchange for the  
flexibility of being able to use any list of target terms as text.

One possible way to alleviate some of limitations of exact  
string matching is to build in a synonym matcher. However,  
KinderMiner does not currently perform synonym matching.  
Thus, a match to POU5F1, for example, will not also include 
matches to OCT4. It is important to note however that, while  
synonym matching can increase recall for individual target 
terms, it also has the potential to increase false positive hits. For  
example, OCT3 is another synonym for POU5F1, but it is also 
a synonym for SLC22A3. This problem is further exacerbated  
with synonyms like OF for genes SPI1 and TAF1, or acronyms 
like DR for diabetic retinopathy. Similarly, KinderMiner does 

not currently perform any stemming, which means that tokens 
like “pluripotent” and “pluripotency” are not counted identically.  
Nevertheless, while synonym matching and stemming are areas 
of future work that we are actively working on and evaluating,  
KinderMiner still performs well without either.

Further areas of interest include using named entity recogni-
tion and entity linking to help disambiguate tokens like the gene  
“WAS” from the verb, features to filter the corpus content by  
more than just publication year, and Bayesian methods to  
modulate term ranks. Of course, this is not an exhaustive list of 
possible improvements. There are numerous research directions we 
may investigate and incorporate into the tool as they prove useful.

Another area of interest is to build a text index from full article  
text, whereas our current text index is built from PubMed  
abstracts only. The PubMed dataset allows us to build a very  
large index of articles quickly and easily, but full article text  
could possibly improve performance because there may be 
minor but important details within a paper not mentioned in the  
abstract. While we may have been able to collect a much  
smaller set of open full text articles, we opted for the larger total 
document count afforded by using abstracts.

Regarding KinderMiner’s speed, the primary factor that  
determines the time to complete a request is the length of the  
target term list. Based on our own tests with target term lists 
ranging from thousands to tens of thousands in length, requests 
currently take roughly 12 milliseconds per target term. Thus,  
a request on a list of roughly 2,000 transcription factors works 
out to around 24 seconds, or around 4 minutes for a request on 
all roughly 20,000 human genes. Of course, heavy traffic on 
the web application could also affect response time as requests 
are queued on a first-come first-serve basis. We do not antici-
pate an issue in the short term, but we are actively investigating  
queueing and batch querying options to improve speed and  
user experience even further.

Finally, while we consider the KinderMiner web applica-
tion to be a living tool that will improve and change over 
time, we want to be able to provide users with reproducible 
results. To address this, we eventually intend to allow users to 
select from a backlog of text indices going back one or two  
years.

Conclusions
We present the first publicly available implementation of the 
KinderMiner algorithm. It includes a user-friendly interface and 
is built on top of a fast and local index of PubMed abstracts. 
We demonstrate the utility of the KinderMiner web applica-
tion on the task of identifying transcription factors likely to  
be useful to reprogram cells to a particular state, but the tool is 
general and can be used to help prioritize any biomedical experi-
ment or address any biomedical question of interest to the  
user.

Our example results suggest that, even though KinderMiner 
is simple and derives its results from correlations already 
present in the literature, it can synthesize those correlations 
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> The authors could also explain the rationale behind setting the Fisher's exact threshold to 
0.00005. 
 
We used 0.00001 for the Fisher’s Exact Test threshold. In this case we simply used the same search 
parameters as those that we used in the original KinderMiner algorithm publication. That said, 
we did not have a rigorous statistical justification for the threshold in the original paper. Instead, 
we chose the 1e-5 threshold, as it frequently resulted in final ranked lists in the range of 50 to 100 
hits, which was a reasonable size when presenting results to collaborators working at the bench. 
We stuck with that choice for our own internal use of the algorithm and for comparison to the 
original here, but we provide the interactive slider in the webapp for flexibility and exploration of 
resultant list sizes. We have elaborated on this choice in the paper. 
 
> It cannot be over-emphasized that semantically related concepts found in many 
ontologies have increasingly become an essential part of search engines. 
 
Dr. Chen and Dr. Orimaye have both commented on the limitations of using exact string 
matching. While we agree that exact string matching has potential limitations, we argue that 
exact string matching has advantages as well. Primarily, exact string matching allows for rapid 
exploration of the literature versus ontologies or semantic matching methods. Building 
ontologies or semantic models for any category of biomedical entity requires a great deal of time 
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and effort, whereas exact matching allows for the quick creation of custom lists of entities of 
interest, which we found to be a common desire among our colleagues at the bench. Instead of 
looking for a tool that provides a predefined entity set that seems closest to their interests, they 
can simply create a list on the fly and run a search. Furthermore, as new terms arise (e.g., genes 
or drugs), the ontologies or semantic models need to be reworked/retrained rather than simply 
adding a string to the end of a list. The trade-off is that some entities may require manual 
curation and a possible sacrifice in recall in some cases. Further, semantic matching approaches, 
or even simple synonym matching as we described with the embryonic transcription factor above, 
have the potential to introduce errors of their own when the simple exact match works as is. That 
said, we understand and appreciate the concern for our approach, have attempted to clarify this 
in the limitations section, and have elaborated on how we are considering more advanced 
matching for future versions. 
 
> I found minor typos such as " we need to validate..." even though the authors described 
the experiment in the past. Please check for other typos in the final version of the 
manuscript. 
 
We have corrected that typo and have checked the manuscript for other typos. 
 
We greatly appreciate Dr. Orimaye's patience, time, and feedback. We intend for this software 
tool to give more researchers access to a simple algorithm that has helped us to prioritize some 
of our own research over the years. Overall, despite limitations, we find that the empirical results 
speak for themselves and hope that others will find it useful too.  
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This paper describes a tool for efficient discovery on potential associations of terms in biomedical 
literature. Given a list of terms of interest and a query phrase, it matches and ranks the 
documents at the abstract level. It also provides a case study to demonstrate its usage. The tools 
are also publicly available. I have a few comments on the evaluation, limitation, and functionality 
summarized below. 
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My primary comment is the precision and recall of the term matching part should be quantified. 
Given only a simple string matching method is used, it will potentially miss identifying the same 
entities using different expressions or wrongly identify the entities using exact terms but 
represent differently (for example, some genes share the same names with chemicals). 
Importantly, this is the first step of the algorithm; errors would propagate to the later stages. It is 
therefore critical to provide a detailed evaluation on this part. In addition, does the indexing part 
incorporate synonyms? The descriptions are not very clear.  
 
Other comments are relatively minor. A primary comment is the limitation should also specify the 
application is limited to the abstract level only. Also, in terms of the function, please considering 
providing an API so that potential users can query the associations systematically.
 
Is the rationale for developing the new software tool clearly explained?
Yes

Is the description of the software tool technically sound?
Partly

Are sufficient details of the code, methods and analysis (if applicable) provided to allow 
replication of the software development and its use by others?
Yes

Is sufficient information provided to allow interpretation of the expected output datasets 
and any results generated using the tool?
Yes

Are the conclusions about the tool and its performance adequately supported by the 
findings presented in the article?
Partly
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I confirm that I have read this submission and believe that I have an appropriate level of 
expertise to confirm that it is of an acceptable scientific standard, however I have 
significant reservations, as outlined above.

Author Response 13 Dec 2021
Finn Kuusisto, Morgridge Institute for Research, USA 

We greatly appreciate Dr. Chen's patience, time, and effort in providing useful feedback and 
corrections. 
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> A primary comment is the limitation should also specify the application is limited to the 
abstract level only. 
 
We did not emphasize the fact that our search is only at the abstract level in the limitations 
section. This was simply an oversight, and we have now added it to the limitations section. 
 
> Please consider providing an API so that potential users can query the associations 
systematically. 
 
This is certainly a feature we have considered, and we intend to update the software with new 
backend data and features according to user demand. If it becomes a common request, we will 
absolutely implement it. 
 
> In addition, does the indexing part incorporate synonyms? 
 
We do not perform any synonym matching as implemented but have explored it as an option and 
do ultimately intend to incorporate some version of it in the future. One major issue that we have 
found with synonym matching though is that, while it has the potential to increase recall, it can 
also substantially decrease precision. For example, one synonym of the gene name POU5F1 is 
OCT3, but OCT3 is also a synonym of SLC22A3, and this is not a particularly unique case even in 
the simple domain of gene names. Similar situations also frequently occur with acronyms, such 
as DR for Diabetic Retinopathy. 
 
To elaborate further, in our exploration of synonym matching we ran the “embryonic stem cell” 
example with and without synonyms. While POU5F1, NANOG, and SOX2 show up in the top 7 hits 
without synonyms, the search with synonyms didn’t even include SOX2 in the top 20 and NANOG 
was pushed to hit 16. This is due at least in part to several hits getting inflated counts due to 
synonym collisions with other words and each other. SPI1, TAF1, PAX6, and NR4A2 show up as 
hits number 3, 4, 5, and 7 respectively when we ran the search with synonyms. This is likely 
because both SPI1 and TAF1 have the synonym “OF,” PAX6 has a synonym “AN,” and NR4A2 has a 
synonym “NOT.” It appears then that synonym matching alone could very possibly lead to a 
substantial tradeoff in precision. We have clarified that KinderMiner does not perform synonym 
matching and increased emphasis of this point in the limitations section. 
 
Given that this a software paper rather than a full research paper, we chose to share this tool 
with the simpler approach of exact string matching without synonyms because of its flexibility 
and because it has been demonstrated to work well for us under most circumstances. 
 
> My primary comment is the precision and recall of the term matching part should be 
quantified. Given only a simple string matching method is used, it will potentially miss 
identifying the same entities using different expressions or wrongly identify the entities 
using exact terms but represent differently (for example, some genes share the same 
names with chemicals). Importantly, this is the first step of the algorithm; errors would 
propagate to the later stages. 
 
Dr. Chen and Dr. Orimaye have both commented on the limitations of using exact string 
matching. While we agree that exact string matching has potential limitations, we argue that 
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exact string matching has advantages as well. Primarily, exact string matching allows for rapid 
exploration of the literature versus ontologies or semantic matching methods. Building 
ontologies or semantic models for any category of biomedical entity requires a great deal of time 
and effort, whereas exact matching allows for the quick creation of custom lists of entities of 
interest, which we found to be a common desire among our colleagues at the bench. Instead of 
looking for a tool that provides a predefined entity set that seems closest to their interests, they 
can simply create a list on the fly and run a search. Furthermore, as new terms arise (e.g., genes 
or drugs), the ontologies or semantic models need to be reworked/retrained rather than simply 
adding a string to the end of a list. The trade-off is that some entities may require manual 
curation and a possible sacrifice in recall in some cases. Further, semantic matching approaches, 
or even simple synonym matching as we described with the embryonic transcription factor above, 
have the potential to introduce errors of their own when the simple exact match works as is. That 
said, we understand and appreciate the concern for our approach, have attempted to clarify this 
in the limitations section, and have elaborated on how we are considering more advanced 
matching for future versions. 
 
> It is therefore critical to provide a detailed evaluation on this part. 
 
Dr. Chen has requested a detailed evaluation of our choice to use exact string matching versus 
others. Given that this paper is on a software implementation of a previously published 
algorithm, and because the flexibility afforded by allowing any list of entities makes an 
exhaustive evaluation of recall and precision an expansive research undertaking, we feel this 
request is out of scope for this paper. Even an evaluation of recall for our exact string matching 
on a single gene, such as HNF1A, would require a gold standard labeling of HNF1A-related 
abstracts for our entire index. In order to more generally evaluate how our exact matching 
performs on the entire human gene domain would then require nearly 20000 more distinct gold 
standard abstract labelings of our index. This in turn would be true of every other domain that 
our algorithm might encounter, including entity lists like proteins, drugs, diseases, cell types, 
species names, and so on. Because the output of the algorithm is an ordered subset of entities of 
interest, we have opted instead to present compelling results on several gold standard lists for 
important discoveries, rather than focusing on how the algorithm may miss individual entities of 
interest. Exact string matching provides great flexibility by allowing a user to search any list of 
entities, but this comes at the risk that some important entities may not surface due to say a 
particularly unpopular spelling. We think the flexibility is worth the tradeoff and that the 
promising results we have seen justify the decision. 
 
We greatly appreciate the Dr. Chen's patience, time, and feedback. We intend for this software 
tool to give more researchers access to a simple algorithm that has helped us to prioritize some 
of our own research over the years. Overall, despite limitations, we find that the empirical results 
speak for themselves and hope that others will find it useful too.  
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