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Single-cell expression profiling by RNA-Seq promises to exploit cell-to-cell variation in 

gene expression to reveal regulatory circuitry governing cell differentiation and other 

biological processes. Here, we describe Monocle, a novel unsupervised algorithm for 

ordering cells by progress through differentiation that dramatically increases temporal 

resolution of expression measurements in a model of skeletal muscle differentiation. This 

reordering unmasks switch-like changes in expression of key regulatory factors, reveals 

sequentially organized waves of gene regulation, and exposes novel regulators of cell 

differentiation. A loss-of function screen revealed that many of these inhibitors act through 

regulatory elements also used by pro-myogenic factors to activate downstream genes. This 

study demonstrates that single-cell expression analysis by Monocle can uncover novel 

regulatory interactions governing differentiation.

Cell differentiation is governed by a vast and complex gene regulatory program. During 

differentiation, each cell makes fate decisions independently by integrating a wide array of 

signals from other cells, executing a complex choreography of gene regulatory changes. 

Recently, several studies carried out at single-cell resolution have revealed high cell-to-cell 

variation in most genes during differentiation1–5, even among key developmental regulators. 

Although high variability complicates analysis of such experiments6, it might define 
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biological progression between cellular states, revealing regulatory modules of genes that 

co-vary in expression across individual cells7.

Prior studies have used approaches from computational geometry8,9 and supervised machine 

learning10 to order bulk cell populations from time-series microarray experiments by 

progress through a biological process. Applying this concept to order individual cells could 

expose fine-grained gene expression dynamics as they differentiate. We have developed 

Monocle, an algorithm that harnesses single cell variation to sort cells in “pseudo time” 

according to progress through differentiation. Applying Monocle to the classic model of 

myogenesis unveiled dynamics at unprecedented resolution and exposed novel regulatory 

factors.

Skeletal myoblasts undergo a well-characterized sequence of morphological and 

transcriptional changes during differentiation11. Global expression and epigenetic profiles 

have reinforced the view that a small cohort of transcription factors (e.g. MYOD, MYOG, 

MRF4, and MYF5) orchestrates these changes12. However, efforts to expand this set of 

factors and map the broader myogenic regulatory network have been hampered by the 

temporal resolution of global expression measurements, with thousands of genes following a 

limited number of coarse kinetic trends13.

Single-cell measurements of markers of myogenesis have made clear that cells do not 

progress through differentiation in synchrony. A population of cells captured at the same 

time may thus cover a range of distinct intermediate differentiation states. Drawing 

conclusions from a group of individuals based on the properties of their average is a 

hazardous practice because the average can mask important trends among the individuals, 

resulting in phenomena such as Simpson's paradox14. Experimental synchronization or 

stringent isolation of myogenic precursors is often challenging and dramatically alters 

differentiation kinetics.

We hypothesized that capturing complete expression profiles of individual cells might avoid 

these problems and dramatically increase temporal resolution in global transcriptome 

dynamics. In essence, a single-cell RNA-Seq experiment might constitute a time-series, with 

each cell representing a distinct time point along a continuum.

To test this hypothesis we investigated the single cell transcriptome dynamics during 

myogenesis. We expanded primary human myoblasts under high mitogen conditions (GM), 

and then induced differentiation by switching to low-mitogen media (DM). We then 

captured 50–100 cells at each of four time points following serum switch using the Fluidigm 

C1 microfluidic system. RNA from each cell was isolated and used to construct mRNA-Seq 

libraries, which were then sequenced to a depth of ~4 million reads per library, resulting in a 

complete gene expression profile for each cell (Fig 1a, S1).

Averaging expression profiles of cells collected at the same time correlated well with the 

corresponding bulk RNA-Seq libraries, and moderately expressed genes were detectable (≥ 

1 FPKM) in a majority of individual cells (Fig 1b, S2, S3). However, markers of mature 

myocytes were present at all time points following serum switch, and many other genes 

showed similar temporal heterogeneity (Fig 1c) We speculated that the high variability in 
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cell-to-cell gene expression levels was due to unsynchronized differentiation, with 

myoblasts, intermediate myocytes, and mature myotubes residing in the same well 

concurrently. Indeed, large, multinucleated MYH2+ cells were abundant after 72 hours in 

DM, but these cells were present at lower frequency even at 24 hours (Fig 1c).

We reasoned that informatically ordering the cells by their progress through differentiation, 

rather than by the time they were collected, would distinguish genes activated early in 

differentiation from those activated later. To this end, we developed a novel unsupervised 

algorithm, Monocle, which re-ordered the cells to maximize the transcriptional similarity 

between successive pairs (Fig 2a). The algorithm first represents the expression profile of 

each cell as a point in a high-dimensional Euclidean space, with one dimension for each 

gene. Second, it reduces the dimensionality of this space using Independent Component 

Analysis15. Third, Monocle constructs a minimum spanning tree (MST) on the cells, an 

approach now commonly used in other single-cell settings, such as flow or mass 

cytometry16,17. Fourth, the algorithm finds the longest path through the MST, corresponding 

to the longest sequence of transcriptionally similar cells. Finally, Monocle uses this 

sequence to produce a “trajectory” of an individual cell's progress through differentiation.

Progress along a differentiation trajectory is measured in “pseudo-time”: the total 

transcriptional change a cell undergoes as it differentiates. This strategy is derived from a 

prior algorithm for temporally ordering microarray samples8, but extends it to allow for 

multiple cell fates stemming from a single progenitor cell type. As cells progress, they may 

diverge along two or more separate paths. After Monocle finds the longest sequence of 

similar cells, it examines cells not along this path to find alternative trajectories through the 

MST. These sub-trajectories are ordered and connected to the main trajectory, and each cell 

is annotated with both a trajectory and a pseudo-time value. Monocle thus orders cells by 

progress through differentiation and can reconstruct branched biological processes, which 

might arise when a precursor cell makes cell fate decisions that govern the generation of 

multiple subsequent lineages. Importantly, Monocle is unsupervised and needs no prior 

knowledge of specific genes that distinguish cell fates, and is thus suitable for studying a 

wide array of dynamic biological processes.

Monocle decomposed myoblast differentiation into a two-phase trajectory and isolated a 

branch of non-differentiating cells (Fig 2b). The first phase of the trajectory was primarily 

composed of cells collected under high-mitogen conditions and which expressed markers of 

actively proliferating cells such as CDK1, while the second mainly consisted of cells 

collected at 24, 48, or 72 hours following serum switch. Cells in the second phase were 

positive for markers of muscle differentiation such as MYOG (Fig S4). A tightly grouped 

third population of cells branched from the trajectory near the transition between phases. 

These cells lacked myogenic markers but expressed PDGFRA and SPHK1, suggesting that 

they are contaminating interstitial mesenchymal cells and did not arise from the myoblasts. 

Such cells were recently shown to stimulate muscle differentiation18. Monocle's estimates of 

the frequency and proliferative status of these cells were consistent with estimates derived 

from immunofluorescent stains against ANPEP/CD13 and nuclear phosphorylated H3-Ser10 

(Fig S4). Monocle thus enabled analysis of the myoblast differentiation trajectory without 
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subtracting these cells by immunopurification, maintaining in vitro differentiation kinetics 

that resemble physiological cell crosstalk occurring in the in vivo niche.

To find genes that were dynamically regulated as the cells progressed through 

differentiation, we modeled each gene's expression as a nonlinear function of pseudo-time. 

A total of 1,061 genes were dynamically regulated during differentiation (FDR < 5%) (Fig 

2c). Cells positive for MEF2C and MYH2, early and late markers of differentiation 

(respectively) were present at expected frequencies as assayed by both immunofluorescence 

and RNA-Seq. Moreover, the pseudo-time ordering of cells shows an increase in MEF2C+ 

cell counts prior to the increase in MYH2+ cells. Importantly, genes that play active roles at 

the early and late stages of muscle differentiation showed pseudo-temporal kinetics that 

were highly consistent with expectations, with cell-cycle regulators active early in pseudo-

time, and sarcomere components active later, confirming the accuracy of the ordering (Fig 

S5).

We next examined the pseudo-temporal kinetics of a set of genes whose mouse orthologs 

are targeted by Myod, Myog, or Mef2 proteins in C2C12 myoblasts19 (Fig S6). The kinetics 

of these genes during differentiation were highly consistent with changes observed during 

murine myogenesis, with nearly all significantly dynamically regulated genes also 

differentially expressed during murine myogenesis and vice versa. In contrast to the high 

resolution of pseudotime ordering, simply comparing gene expression levels between groups 

of cells collected on different days masked changes in key transcriptional regulators of 

myogenesis. For example, the pseudo-time reordering of the cells shows switch-like 

inactivation of ID1, which is a critical event in muscle differentiation and leads to the 

activation of MYOG12 (Fig 2e,f). Thus, Monocle's ordering of cells by progress increases 

temporal resolution of transcriptional dynamics and pinpoints key regulatory events that 

govern differentiation.

We further assessed Monocle's robustness over different experimental designs by simulating 

experiments with fewer captured cells. Monocle placed subsets as small as 50 cells in 

pseudo-temporal order highly similar (spearman >= 0.8) to their relative order within the full 

data set. The algorithm retained the ability to detect dynamically regulated genes with high 

precision (>= 95%) over all designs and with increasing recall as more of the cells were 

included. (Fig S7)

We next grouped genes with similar trends in expression, reasoning that such groups might 

share common biological functions and regulators. Clustering of genes according to 

direction and timing revealed six distinct trends (Fig 3). Genes downregulated early or 

upregulated late in pseudo-time were highly enriched for biological processes central to 

myogenesis, including cell-cycle exit and activation of muscle-specific structural proteins. 

However, the other clusters included many genes with broad roles in development, including 

mediators of cell-cell signaling, RNA export and translational control, and remodeling of 

cell morphology (Fig S8).

A timeseries analysis of myoblast differentiation with bulk RNA-Seq identified up and 

down-regulated genes, but did not identify the transient clusters or distinguish the early from 

Trapnell et al. Page 4

Nat Biotechnol. Author manuscript; available in PMC 2014 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



late regulation visible with pseudo-temporally ordered single cells (Fig S9). Furthermore, 

dynamic range of expression was compressed for most genes, confirming that failure to 

account for variability in progress through differentiation leads directly to the effects 

associated with Simpson's paradox. Pseudo-temporal cell ordering thus decomposes the 

coarse kinetic trends produced by conventional RNA-Seq into distinct, sequential waves of 

transcriptional reconfiguration.

To identify factors driving myoblast differentiation, we performed a cis-regulatory analysis 

on genes in each pseudo-temporal cluster. Cis regulatory elements were first identified based 

on DNaseI hypersensitive sites in HSMM cells and HSMM-derived myotubes20, classified 

according to function according to histone marks21, and finally annotated with conserved 

transcription factor binding sites. While downregulated genes were enriched at near 

significant levels with binding sites for genes that play roles in proliferation (e.g. MAX, E2F, 

and NMYC), nearly all significantly enriched motifs fell near upregulated genes. These 

genes were highly enriched for regulatory elements containing binding motifs for 175 

transcription factors, including numerous well-known regulators of myogenesis, such as 

MYOD, MYOG, PBX1, MEIS1, and the MEF2 family (Fig S10). Some, but not all, of these 

factors were revealed by a regulatory element analysis performed using bulk RNA-Seq data, 

underscoring the power of increased (pseudo) temporal resolution of single-cell analysis 

(Fig S11). A similar analysis of microRNA target sites identified miR-1, miR-206, miR-133, 

and numerous others as regulators of genes activated during myogenesis (Fig S12). Of these, 

only miR-1/206 target sites were significantly enriched among genes found to be transiently 

upregulated and then sharply downregulated. This may suggest that miR-1 and miR-206, 

which are expressed at an intermediate stage of myoblast differentiation, may act to strongly 

suppress a subset of genes activated earlier.

Many of the transcription factors implicated by our cis regulatory analysis to govern 

differentiation had no previously appreciated role in muscle development. To test potential 

roles of these factors we performed an RNAi mediated loss of function screen for 11 

candidates. Briefly, we virally expressed proliferating myoblasts with one of 44 distinct 

shRNAs targeting either one of these factors or a mock (non-targeting) control, followed by 

serum-induced differentiation for five days. We then measured the frequency and size of 

myosin heavy chain 2 (MYH2)-positive cells with a high-throughput immunofluorescence 

pipeline. Of the targets we tested, MZF1, ZIC1, XBP1, and USF1 showed significantly 

altered differentiation kinetics (Fig 4a,b, Fig S13) when depleted with two or more 

independent hairpins (FDR < 5%).

Knockdown of XBP1, USF1, ZIC1, and MZF1 enhanced myotube formation, with larger 

myotubes containing a higher fraction of total nuclei than mock shRNA controls. Depletion 

of CUX1, ARID5B, POU2F1, and AHR also increased differentiation efficiency, albeit less 

significantly. Importantly, whole-well nuclei counts were similar between knockdowns and 

mock controls, indicating that enhanced differentiation was not simply a result of higher 

initial cell counts or increased proliferation. With the exception of ZIC1, forced 

overexpression did not substantially alter differentiation kinetics (data not shown).
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Notably, several of these factors have binding motifs that are highly enriched in promoters 

and enhancers that also have motifs for known muscle regulators (Fig 4c). For example, 

USF1 motifs are enriched in enhancers that also have MYOD motifs. Together, these results 

confirm that the transcription factors identified as possible regulators in fact play a role in 

myoblast differentiation, and demonstrate the power of Monocle for identifying key 

differentiation genes.

Here, we report that individual myoblasts progress through differentiation in an 

unsynchronized manner, but that they can be reordered according to progress through 

differentiation. This pseudo-time ordering pinpoints key events in differentiation that are 

masked both by conventional bulk cell expression profiling, and by single-cell expression 

profiles ordered by time collected. The reordering resolves sequentially activated 

transcriptional sub-programs that are regulated by common factors. The temporal resolution 

offered by hundreds of ordered cells might enable future efforts to computationally infer 

novel gene-regulatory modules. For example, the enrichment of transiently upregulated 

genes for common microRNA target sites raises the question of whether those microRNAs 

are expressed later, curtailing what would have been higher levels of expression. 

Sequencing-based measurements of small RNAs and mRNAs from the same cell will 

provide answers to such systems-level questions. Moreover, single-cell analysis 

distinguishes cells of interest from contaminating cell types such as interstitial mesenchymal 

cells without experimental isolation that might disrupt cell-cell interactions important in the 

in vivo niche.

We identified eight previously unappreciated transcription factors that dramatically 

influence the course of myoblast differentiation, thus proving the principle of pseudo-

temporal analysis and expanding the catalog of regulators in this well-studied system. 

Several of the eight factors reported here may normally repress differentiation by competing 

with pro-myogenic factors for these regulatory elements. Alternatively, these inhibitors may 

co-occupy regulatory elements with pro-myogenic factors, preventing transactivation of 

their targets (Fig. 4d). Previous studies in other contexts provide mechanistic data 

supporting both of these models. USF1 inhibits MyoD autoactivation in Xenopus by 

competing with MyoD at its promoter through an alternative E-box22. Our results suggest 

that USF1 may repress a broad array of targets via E-box competition. CUX1 represses 

targets in several developmental contexts through binding site competition23. XBP1 was 

recently reported to inhibit myoblast differentiation in mice, potentially through the 

mechanisms proposed here24. Further experiments in these HSMM cells and myoblasts from 

other anatomic depots will be needed to confirm the mechanism of these factors.

While the positive regulators of myogenesis have been well characterized, only a handful of 

inhibitors have been identified. The eight inhibitors reported here may shed light on how the 

balance of proliferation and differentiation is maintained during development and 

regeneration. Ordering the expression profiles of individual cells by biological progress is 

thus a powerful new tool for studying cell differentiation, and could in principle be used to 

map regulatory networks that govern a much wider array of biological processes.
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Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig 1. 
Single-cell RNA-Seq of differentiating myoblasts. A) Primary human myoblasts were 

cultured in high-serum media. Following a switch to low-serum media, cells were 

dissociated and individually captured at 24-hour intervals. An RNA-Seq library was 

prepared and sequenced for each cell. B) Gene expression levels averaged across individual 

cells harvested at time zero compared against bulk RNA-Seq (n=3, biological replicates). C) 

Expression levels of late-stage markers of myoblast differentiation (Enolase 3, ENO3; 

myosin heavy chain 3, MYH3) in individual cells. D) Representative immunofluorescence 

staining at the moment of cell sampling of the indicated markers (myocyte enhancer factor 

2C, MEF2C in green; myosin heavy chain, MYH2/MHC in red; Hoechst staining in blue).
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Fig 2. 
Monocle orders individual cells by progress through differentiation. A) An overview of the 

Monocle algorithm. B) Cell expression profiles (points) in a two-dimensional independent 

component space. Lines connecting points represent edges of the MST constructed by 

Monocle. Solid black line indicates the main diameter path of the MST and provides the 

backbone of Monocle's “pseudo-time” ordering of the cells. C) Expression levels for 

differentially expressed genes identified by Monocle (rows), with cells (columns) shown in 

pseudo-time order. Fibroblasts are excluded. D) Bar plot showing the proportion of MEF2C 

and MYH2 expressing cells measured by immunofluorescence at the time of collection 

(upper panel), RNA-Seq at the time of collection (middle panel) or RNA-Seq at pseudo-time 

(lower panel). MEF2C was considered detectably expressed at or above 100 FPKM, and 

MYH2 at 1 FPKM. MEF2C exhibits a bimodal pattern of expression across the cells (not 

shown), and a threshold of 100 FPKM separates the modes. E) Expression levels of key 

regulators of muscle differentiation, ordered by time collected. (Cyclin-dependent kinase 1, 

CDK1; Inhibitor of DNA binding 1, ID1; Myogenin, MYOG) F) Regulators from panel D, 

ordered by Monocle in pseudo-time.
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Fig 3. 
Pseudo-time ordering of cells reveals genes activated or repressed early in differentiation, 

along with potential upstream regulators. (left) Relative gene expression levels were K-

means clustered. The mean expression for each cluster is shown in red, and an example gene 

with a known role in myogenesis from each cluster is highlighted in blue. (middle) Selected 

Gene Ontology terms that are associated with genes in each cluster. (right) Number of 

transcription factors with conserved binding site motifs in regulatory elements for genes in 

each cluster. Transcription factors are segregated according to the function of regulatory 

elements to which they bind. Examples are shown on the right, with known myogenic 

factors in black and factors without a known role in muscle differentiation in red.
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Fig 4. 
Loss-of-function screen on selected transcription factors. A) Fraction of nuclei within cells 

expressing MYH2 (upper panel), whole-well area of MYH2 (middle panel) and nuclei count 

(lower panel) after 4 days of culture in differentiation medium following shRNA viral 

infection for the indicated genes, normalized to mock shRNA controls. For each mRNA, 

four independent shRNA were tested and the results of the two with greatest impact on 

fraction of nuclei in MYH2+ cells are reported. Values reported are the average of 4 

technical replicates of each infection, with significance of changes w.r.t control assessed by 

two-tailed Student's t-tests and corrected by Benjamini Hochberg. Error bars indicate 2 

standard deviations from the mean. An asterisk represents a significant difference with 

respect to mock control at an FDR < 5%. B) Co-occupancy scores of conserved transcription 

factor binding site motifs in enhancers (green) and promoters (purple) identified by 

ENCODE. Scores were calculated as the log10-transformed p-values from hypergeometric 

tests following Bonferroni correction for multiple testing (See Methods). C) Inhibitors might 

prevent premature myoblast differentiation by one of two mechanisms.
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