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Widefield calcium imaging has recently emerged as a powerful experimental
technique to record coordinated large-scale brain activity. These measure-
ments present a unique opportunity to characterize spatiotemporally
coherent structures that underlie neural activity across many regions of the
brain. In this work, we leverage analytic techniques from fluid dynamics
to develop a visualization framework that highlights features of flow
across the cortex, mapping wavefronts that may be correlated with behav-
ioural events. First, we transform the time series of widefield calcium
images into time-varying vector fields using optic flow. Next, we extract con-
cise diagrams summarizing the dynamics, which we refer to as FLOW (flow
lines in optical widefield imaging) portraits. These FLOW portraits provide an
intuitive map of dynamic calcium activity, including regions of initiation
and termination, as well as the direction and extent of activity spread.
To extract these structures, we use the finite-time Lyapunov exponent tech-
nique developed to analyse time-varying manifolds in unsteady fluids.
Importantly, our approach captures coherent structures that are poorly rep-
resented by traditional modal decomposition techniques. We demonstrate
the application of FLOW portraits on three simple synthetic datasets and
two widefield calcium imaging datasets, including cortical waves in the
developing mouse and spontaneous cortical activity in an adult mouse.
1. Introduction
Coordinated organization of neural activity among brain regions is believed to
serve many crucial roles, including performing specific computations in the
cortex [1–3] and supporting brain development [4–6]; further, its disruption
may lead to neurological disease [7–9]. One prominent characteristic of
neural activity at the scale of brain regions is the rapid and coherent propaga-
tion of activity across the cortex, which has been widely observed in a variety of
contexts, including spontaneous activity, task engagement, sleep and develop-
ment [10–12]. Qualitatively similar patterns of neural activity propagation have
also been observed in the retina, often referred to as retinal waves, during
development [13–16]. Although such spatiotemporal dynamic features are
often visually salient, it remains challenging to quantify and succinctly
summarize their behaviour directly from neural recordings.

Widefield optical imaging of calcium activity provides a unique opportu-
nity to study coordinated spatiotemporal neural activity among brain areas,
because this experimental approach achieves large fields of view with high tem-
poral and spatial resolution [17,18]. In general, widefield imaging experiments
involve fluorescence imaging of the entire brain surface of animals that express
optical indicator proteins in known populations of neurons [19–24]. Many
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experiments choose to use genetically encoded calcium indi-
cators from the GCaMP family to image neural calcium
dynamics, which is a proxy for electrical neuronal activity
[25–28]; more generally, the visualization methods we discuss
here can be applied to any widefield optical imaging exper-
iment, such as imaging with voltage-sensitive dyes [29,30].
Cortical activity has been measured using widefield calcium
imaging in a variety of experiments, notably to study percep-
tual decision making [1,3,31–35], to extract cortical functional
connectivity [8,36,37], to characterize cortical activity that
organizes brain development [38] and to study the effects
of disease in the cortex [7–9]. In all of these data, it is typical
to observe multiple regions activating transiently or in regu-
lar succession, with distinct initiation sites and wave-like
flows across the fields of view. These features can often be
described as flow of activity with coherent travelling fronts;
interestingly, all of these patterns are well studied as
nonlinear features of spatiotemporal dynamical systems [39].

The most widely applied approaches to analyse time-
varying recordings of high-dimensional neural activity are
dimensionality reduction techniques, which extract modes
that correspond to dominant, low-dimensional features of
the high-dimensional data [40–42]. These low-dimensional
features are useful as representations of the neural activity
that facilitate further analysis and modelling. A dynamical
model is needed when the analytic goals include prediction
in time or real-time control. Furthermore, the observation
that the dynamics of neuronal populations can be reduced
to a relatively small number of features may be a clue about
the mechanisms that underlie coordinated neural activity
[43–46]. Common modal decomposition algorithms used in
neuroscience [40,47] include singular value decomposition
(SVD), which is closely related to principal component
analysis (PCA), independent component analysis (ICA) and
non-negative matrix factorization (NNMF). These techniques
all solve for combinations of relatively few modes in space
and time that reconstruct an estimate of the original high-
dimensional data; their solutions differ by making different
assumptions about the statistical structure of the modes.

There are many exciting recent innovations in modal
decomposition for analysing large-scale neural data, some of
which are extensions and derivatives of SVD, ICA and
NNMF. Interestingly, while some of these methods have expli-
cit representations of the temporal dynamics (for instance,
jPCA [44], dynamic mode decomposition (DMD) [48–50]
and NNMF with temporal constraints [51–54]), they largely
set out to achieve space–time separation. Applying PCA and
NNMF to segments of synthetic and experimental data
(figure 1a) yields a set of spatial modes (figure 1b; temporal
modes not shown) that provide a representation of the activity.
However, these representations are static modes and may not
adequately summarize spatiotemporal data. As an illustrative
example, the synthetic data in figure 1 are a spatial Gaussian
that grows, translates, then shrinks with time, and such spatio-
temporal coherent features are poorly captured by PCA and
NNMF decompositions of the data.

A complementary set of methods have been developed to
describe spatiotemporal patterns in widefield neural activity
by explicitly extracting propagating waves. Travelling waves
are often characterized by their propagation speed and their
direction (see [55,56] for examples), and these measures
are then aggregated for all of the waves observed in a record-
ing to quantify the trends in wave dynamics. While this
information has proven useful in studying the roles of
waves, the approach is limited because waves need to be
identified individually. Several related methods have used
the computation of optical flow to convert widefield activity
to time-varying vector fields [57,58]. This velocity field can
then be analysed using tools from vector calculus to identify
fixed points, including classifying each fixed point as a
source or a sink of activity, and to quantify individual propa-
gating waves. Nevertheless, these methods are constrained
to wave-by-wave analyses and cannot summarize complex
global activity.

Our visualization approach is inspired by the similarity of
spatial flows observed in widefield optical imaging to flows
of physical fluids. Humans have a deep intuition about
fluid flows from our everyday experiences (e.g. the patterns
of milk mixing in coffee, a river flowing). Representing
brain data as a flow allows us to leverage this intuition and
decades of methods from flow analysis and visualization.
Propagation of neural activity has many commonalities
with and differences from physical fluid flows. In both,
there exist coherent structures whose boundaries may be
invariant even as the activity changes with time. In fluid phy-
sics, these invariant manifolds are known as Lagrangian
coherent structures (LCSs) [59–61], which act as transport
barriers in the flow, either repelling or attracting material.
LCSs are often visualized by computing ridges in the finite-
time Lyapunov exponent (FTLE) field [62–65], although
there are other computational approaches based on vari-
ational theory [66]. Some noteworthy biological applications
include the use of LCSs to study the physics of jellyfish feed-
ing [67] and understanding cardiovascular haemodynamics
[68,69]. Unlike physical flows, neural activity is not governed
by fundamental conservation laws; nevertheless, these
dynamics are well described by time-varying vector fields
[57,58,70,71].

In this work, we develop a visualization framework to
capture the spatiotemporal dynamics of neural activity by
extracting field lines in optical widefield imaging, which we
call FLOW (flow lines in optical widefield imaging) portraits.
FLOW portraits are generated by considering frame-by-
frame dynamics as time-varying optical flow vector fields,
from which we compute and integrate the ridges in its FTLE.
To validate and develop intuition for our approach, we show
that FLOW portraits give accurate and interpretable visual
summaries of simple synthetic datasets. Next, we apply
our methods to analyse bouts of activity from two widefield
calcium imaging datasets in mice, both of which exhibit spon-
taneous, widespread activity across the cortex. The first data
are recordings of spontaneous cortical activity of GCaMP6s-
expressing mouse pups during their first 8 postnatal days
[38]. The second example is a recording of spontaneous corti-
cal activity in aGCaMP6s-expressing adultmouse [35]. In both
examples, we demonstrate that FLOW portraits extract mean-
ingful and interpretable outlines of the dominant patterns in
the cortical activity that contribute to our understanding of
the animals’ developmental and behavioural states.
2. FLOW portraits
Thiswork introduces FLOWportraits, which are visualizations
that provide a concise and intuitive summary of the spatiotem-
poral dynamics, highlighting coherent structures in widefield
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Figure 1. FLOW portraits capture coherent propagation of structures that are poorly represented by common modal decompositions that aim to achieve space–time
factorization. (a) Three examples of spatiotemporal data for which we compare PCA, NNMF and our FLOW portraits. One synthetic example is a two-dimensional
Gaussian that grows, translates to the right, then shrinks. Two further in vivo examples are widefield calcium imaging data from a developing pup and an adult
mouse. The dashed white lines at 0 s indicate the midline of the brain. The mouse pup data include a pan-cortical wave from a postnatal day 7 (P7) animal; scale
bar is 1 mm. The adult mouse data show spontaneous widefield calcium activity recorded in the dark; scale bar is 2 mm. (b) FLOW portraits show a succinct
summary of the spatiotemporal flow in each example dataset, while spatial PCA and NNMF modes do not. The PCA modes are the first four spatial components;
the NNMF modes are from a four-mode solution to the factorization and are not ordered. Both sets of modes decompose the growth and translation of activity into
static spatial images, from which the flow of the activity cannot be easily appreciated. By contrast, our FLOW portraits highlight regions of activity initiation and
termination, as well as the direction and extent of activity spread. Orange structures (‘f’; forward-time FTLE) capture regions where activity propagates from, and
purple structures (‘b’; backward-time FTLE) capture regions where activity propagates towards. Videos illustrating all datasets are available as electronic supplemen-
tary material, videos 1–5. FLOW portraits were computed with integration lengths of 10 frames, 40 frames and 15 frames and the threshold percentile was set to
the 85th, 93rd and 93rd percentiles for the synthetic, mouse pup and adult mouse datasets, respectively.
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recordings. Importantly, FLOW portraits differ from modal
decomposition techniques in that they do not provide a basis
in which to approximate the data and cannot quantitatively
explain variance in the recordings. Instead, FLOW portraits
explicitly convert the image stack into time-varying vector
fields to extract patterns of activity propagation in the data
(figure 1). As our approach leverages and adapts analytic tech-
niques from fluid dynamics [61] that are unfamiliar to most
neuroscientists, this section describes how to compute the
FTLE from time-varying vector fields. We also build intuition
for how the ridges of the FTLE field can be interpreted in the
context of widefield calcium imaging, using several simple
synthetic examples.
The steps of our approach to compute FLOW portraits are
illustrated in figures 2 and 3, and in electronic supplementary
material, video S1. The input data are a video (i.e. image
stack) of the relative change in fluorescence of the imaged
optical protein indicator, ΔF/F, as it changes in time over
many frames. The raw fluorescence may drift over the
course of an experiment, so ΔF/F is considered to be a
robust proxy for the magnitude of neural activation, normal-
izing the change in fluorescence over a moving-window
baseline [72]. FLOW portraits are well suited to summarizing
data where optical activity is seen to diffuse or flow across the
field of view, with varied patterns throughout the recording.
To characterize the propagation of recorded neural activity
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across brain areas through space, we first compute the flow
vector field using optic flow. Next, the FTLE is computed
from the time-varying vector field using the standard
integration method, as outlined by Onu et al. [73]. Last, the
FTLE field is post-processed to visualize ridge-like features
that highlight the coherent features of a spatial flow [61,62].
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2.1. Optical flow of widefield imaging data
We describe the frame-by-frame spread of neural activity as
time-varying vector fields, computed by optical flow. Specifi-
cally, as regions of high pixel intensity in ΔF/F move and
diffuse across the field of view, these coherent motions can
be converted into a vector field of velocities, dx/dt and
dy/dt, at every pixel in the recording (figure 2a). We
denote this vector field as v(x, t), defined at every point in
space x at time t. Motion velocities are commonly estimated
from video data in computer vision using optical flow algor-
ithms [74], and biological visual systems of vertebrates and
invertebrates also perceive moving scenes with computations
akin to optical flow [75,76]. In addition, some prior work has
explored optical flow computations in widefield calcium ima-
ging data [57,58]. Here, we use the Horn–Schunck (HS) [77]
method because of its simplicity and its observed strong
performance on our sample data.

Figure 3a,b shows an example of snapshots of ΔF/F data
and the extracted optical flow vector fields. The magnitude
and direction of the vector at each pixel is computed by sol-
ving for the optimal vector field that describes the change
from each frame to the subsequent frame (see schematic in
figure 2a). In order to minimize the effects of noise and
numerical differentiation on the optical flow field, we apply
temporal scaling and smoothing to the computed vector
fields. Briefly, the magnitude of each optical flow vector is
scaled proportionally to the relative change in the raw pixel
intensity for the corresponding pixel over a prescribed time
delay. This scaling attenuates the magnitudes of vectors
that do not represent corresponding changes in the widefield
imaging data. To mitigate the effects of pixel noise, we also
apply temporal Gaussian smoothing to the scaled vector
fields. The scaled and smoothed HS optical flow vector
fields are used throughout the rest of the FLOW portrait
algorithm where velocity data are required. This process of
computing the optical flow vector field from widefield
imaging data is analogous to the process of extracting the
motion vector field from particle image velocimetery data
[78,79] in experimental fluid dynamics. Both approaches
approximate the velocity field from experimental data of
material transported through the studied flow.
2.2. The finite-time Lyapunov exponent
Once a flow velocity field, v(x, t), is computed, there are
numerous computational approaches that can be performed
to study and characterize the flow. These methods include
instantaneous metrics from vector calculus, such as the diver-
gence and the curl of the vector field; modal decomposition
techniques [80,81], such as POD and DMD; and Lagrangian
metrics, such as the FTLE [59,61,62]. Although instantaneous
metrics have the potential to extract relevant features from
widefield imaging optical flow fields (electronic supple-
mentary material, figure S1; [57]), the unsteady nature of
these data suggests that Lagrangian metrics may provide a
more useful summary of the activity. Here, we compute
the FTLE fields [62] to extract time-invariant features of
flow-like widefield activity.

The FTLE field is a scalar field σ(x, t0, T ) defined at every
point in space x and time t0, with respect to some relevant
time scale of integration, T. The FTLE field is a measure of
how much neighbouring initial conditions separate when
integrated through the velocity field v for a duration T.
Thus, regions of high stretching for positive T (forward
time) or negative T (backward time) provide time-varying
analogues of stable and unstable manifolds, respectively
[39,61,62]. The FTLE field is typically approximated numeri-
cally from flow-field snapshots at discrete instants in time
[62,65]. First, the flow map FT

t0 is approximated on a discre-
tized set of spatial points, typically the same discretized
domain where the velocity field is defined. The flow map
FT

t0 describes the position of an initial condition x(t0) after it
is integrated along the vector field v for a duration T
(figure 2b) and is defined as

xðt0 þ TÞ ¼ FT
t0ðxðt0ÞÞ ¼ xðt0Þ þ

ðt0þT

t0
vðxðtÞ, tÞdt: ð2:1Þ

Next, the flow map Jacobian DFT
t0 is approximated via finite-

difference derivatives with neighbouring points in the flow.
In two dimensions, the flow map Jacobian at a point x is
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where FT

x,t0 denotes the x component of FT
t0 , and FT

y,t0 denotes
the y component. The finite-time Lyapunov exponent σ is
finally computed from the largest eigenvalue λmax of the
Cauchy–Green deformation tensor D ¼ ðDFT

t0ÞTFT
t0, which is

the maximum singular value of the flow map Jacobian

sðx0, t0, TÞ ¼ 1
jTj ln

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lmax[Dðx0, t0, TÞ]

p� �
: ð2:3Þ

The FTLE value at a point x0 determines the maximum
stretching that may occur between x0 and a perturbed
location x0 + ϵ after time T

FT
t0ðx0 þ eÞ � FT

t0ðx0Þ þDFT
t0ðx0Þ � e, ð2:4Þ

where the amplification of the perturbation ϵ is bounded by

kDFT
t0ðx0Þ � ek2 � expðsjTjÞkek2: ð2:5Þ

The σ term is understood to depend on x0, t0 and T.
The FTLE field is quite robust to noisy measurements of

the vector field v(x, t) [59], since the computation involves
integration in time, which tends to average out noise. This
robustness was a major factor in its wide adoption in fluid
mechanics, where experimentally acquired velocity fields
often contain noise and outliers. The same robustness is
appealing for optical widefield imaging.

Figures 2 and 3 illustrate the intuition behind this FTLE
computation, and additional implementation details are
provided in the Methods. The key insight in the FTLE compu-
tation is that virtual particles at every pixel location flow
according to the vector field from t0 to t0 + T, and these inte-
grated optical flow fields form a flow map FT

t0 (figure 2b).
This flow stretches neighbouring virtual particles, so that
equidistant particles have stretched in some directions and
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compressed in others (see also electronic supplementary
material, video S1). Relative deformations are described by
the Cauchy–Green strain tensor at every pixel, and the
FTLE corresponds to the log-normalized leading eigenvalue
of this tensor. The same procedure is repeated by reversing
the ordering of frames to compute flow maps in backwards
time. The forward and backward FTLE fields computed for
each example time snapshot are shown in figure 3c,d.

Drawing again on our analogy to physical fluid flows,
ridges in the FTLE field correspond to time-varying analogues
of invariant manifolds, and they approximate LCSs [60,61].
In forward time, these features repel fluid material, similar
to a stable manifold in a dynamical system. The opposite is
true for backward time ridges, where material is attracted
in forward time, as with the unstable manifold. A similar
interpretation can be extended to the FTLE of optical activity
flows, where forward-time structures repel activity, while
backward-time structures attract activity. However, additional
care must be taken when interpreting the intensity of FTLE
ridges for brain activity, since the induced velocity field is
not divergence free, as is typically the case when analysing
incompressible fluid systems.When the velocity field is incom-
pressible, then the determinant of the flow map Jacobian is
equal to 1, so the largest eigenvalue is greater than or equal
to 1. However, for compressible vector fields (as is the case
for widefield imaging of neural activity), the divergence is
non-zero and the product of the eigenvalues of the flow map
Jacobian may not equal 1. In this case, we may locally have
two positive or two negative Lyapunov exponents. Here, we
consider only the non-negative Lyapunov exponents, which
correspond to repelling ridges in forward time and attractive
ridges in backward time (figure 3c,d ).

2.3. Ridge extraction for FLOW portrait visualization
By aggregating the forward and backward FTLE ridges within
a window in time, we summarize the coherent structures of
propagating activity within that window with a single FLOW
portrait. Ridges of an FTLE field have been shown to approxi-
mate LCSs, and several mathematical definitions are suggested
to extract them from data [60,62,82,83]. We found that imple-
menting existing strategies for ridge extraction on FTLE fields
of widefield calcium imaging data did not adequately extract
ridge-like features. Therefore, we developed a post-processing
approach to visualize ridges from the forward and backward
mean FTLE fields.
Ridges lie along local extremes in a field, thus we can
approximate their locations by extracting maximal regions
and computing the skeleton structure. To compute the domi-
nant features over the entire recording, we first threshold the
mean of all non-negative FTLE values (figure 4a) to isolate
local maxima in the field (figure 4b). Next, we approximate
ridges from the local FTLE maxima by performing a morpho-
logical skeletonization operation (figure 4c). Lastly, these
ridges are smoothed by applying morphological image
processing (figure 4d ). Thus, the resulting visualization
depicts the average approximate FTLE ridges in a recording
window to summarize the time-invariant patterns of activity.
We refer to this visualization as FLOW portraits because it is
designed for compressible vector fields typical of widefield
imaging of calcium activity.

There are two parameters that the user must choose: the
integration time T for the flow map FT

t0 and the threshold per-
centile for FTLE values to include in the visualization. The
choice of these parameters depends on knowledge of the time
scales of relevant coherent activity propagation in each dataset.
Larger integration time windows filter out shorter time-scale
waves; lower percentile thresholds admit more ridges with
less intense coherence, which can also admit more spurious
ridges if the data are noisy. Electronic supplementary material,
figure S4 shows how a range of these parameters yields
different FLOW portraits. As a practical recommendation to
users, we recommend repeating the computation for a range
of parameter values so that the visually salient features in a
dataset are reflected in the FLOW portraits.

2.4. How to interpret a FLOW portrait
To build intuition and illustrate how spatiotemporal patterns
are visualized by FLOWportraits, let us examine them for sev-
eral simple synthetic datasets (inspired by those used in [57]),
each capturing the types of coherent activity commonly
observed in widefield calcium imaging. The first example is
a plane wave that starts in the middle of the field of view
and travels to the right (figure 5a). In the corresponding
FLOW portrait, the forward-time FTLE structures delineate
where the wave originates in the middle of the field of view,
while the backward-time FLTE structures outline where the
wave terminates (figure 5b). This type of travelling plane
wave closely resembles the spread of neural activity observed
by widefield imaging (for instance, data from mouse pup in
figure 5). The second synthetic dataset is a circular wave that
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of activity propagation. (b) The FLOW portraits for both waves highlight the regions where the wave begins and where the wave ends. Arrows (black and white)
show the general direction of wave propagation. FLOW portraits were computed with integration lengths of 15 frames and 5 frames and the threshold percentile was
set to the 91st and the 90th percentiles for the plane-wave and mouse pup datasets, respectively.
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initiates in the middle, then grows larger towards the edges
(electronic supplementary material, figure S2). Here, the
forward-time FTLE structures mark the site of initiation,
while the backward-time FTLE structures outline the maximal
spatial extent of the circle’s spread. Our third synthetic
example combines both travelling and growing/shrinking
wavefronts. As shown in figure 1 and electronic supplemen-
tary material, video S1 and figure S2, the two-dimensional
(2D) Gaussian dataset includes a Gaussian blob that appears
in the field of view, grows in diameter, translates to the right,
then shrinks. Forward-time FLTE structures capture where
the activity originates, including the back edge of the Gaussian
as it starts to translate and the outside perimeter of the blob as
it shrinks. Similarly, backward-time FTLE structures capture
where the activity terminates, including the outside perimeter
of the blob as it grows and the centre of the shrinking blob.

In all of these examples, FLOWportraits represent succinct
summaries of spatiotemporal coherent activity, highlighting
regions of activity initiation and termination, as well as the
direction and spatial extent of how activity spreads. Specifi-
cally, activity originates from the forward-time FLOW ridges
(orange lines, analogous to stable manifolds) and goes to the
backward-time FLOW ridges (purple lines, analogous to
unstable manifolds). This visualization caricaturizes features
of coherent activity not accessible by established methods,
including modal decomposition (figure 1), instantaneous
metrics like divergence and curl (electronic supplementary
material, figure S1) and source/sink classification of fixed
points (electronic supplementary material, figures S2 and
S3). The forward- and backward-time FTLE structures carry
more information than sources and sinks because they are
not constrained to be fixed points; thus, these structures are
able to delineate travelling fronts. The intersection of two or
more FLOW structures, such as where the orange and purple
ridges intersect in figure 1b, can occur for several reasons.
First, intersections of the forward and backward FTLE ridges
are reflected as intersections in the FLOW portraits. Points
where these FTLE ridges intersect correspond to time-
dependent saddle points, as the forward and backward
FTLE ridges are time-dependent analogues of the stable and
unstable manifolds of the vector field. Second, two different
spatiotemporal structures may occur at the same spatial
location at different times during the recording, as in the
case of the 2D Gaussian synthetic dataset.
3. FLOW portraits of widefield calcium imaging
data

We demonstrate the application of our approach on several
optical widefield datasets, all recordings of spontaneous
calcium activation imaged from the cortical surface of trans-
genic mice. In each example, we have chosen to focus on
windows in time when bouts of activity are observed across
large portions of cortex. We show that FLOW portraits
extracted from these windows summarize the extent and
direction of calcium flow, highlighting cortical areas whose
neural activations can be interpreted in the context of the
behavioural and developmental context of the animals.

3.1. Example 1: Pan-cortical waves
Pan-cortical waves are bouts of activity that propagate across
large areas of the cortex [5,84–87] and are suggested to play a
critical role in cortical development [38]. These events are
defined heuristically as activity that propagates to include a
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Figure 6. Pan-cortical wave events in a P7 mouse pup are summarized as FLOW portraits. (a) Pan-cortical waves are defined as events where the fraction of active
cortex (black trace) exceeds 50%. Briefly, the fraction of active cortex is defined as the fraction of pixels whose intensity is greater than one standard deviation above
the mean (in time) for that pixel. FTLE intensity is defined as the sum of the FTLE values for each frame, normalized by the maximum value in time; this intensity is
computed for both the forward and backward FTLE time series. (b) FLOW portraits are shown for two example waves, indicated by (i) and (ii) in (a). Orange indicates
forward-time FTLE ridges where calcium activity originates. Purple indicates backward-time FTLE ridges where calcium activity propagates towards. White arrows
highlight the general direction of activity propagation during the cortical wave. The FLOW portraits are computed using an integration length of 2 s (40 frames) and
a threshold percentile of 93%.
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large fraction of the imaged cortical surface. In figure 6a, the
grey bars highlight individual cortical wave events, defined
as when the fraction of active cortex rises to above 1/2 and
falls back to the baseline (∼1/10). To contribute to our under-
standing of pan-cortical waves in development, we use
FLOW portraits to summarize the activity during each
wave event, thus facilitating direct comparisons across
individual waves and developmental time points.

We construct FLOW portraits to summarize the flow of
activity during each pan-cortical wave. Spatial integration
of the FTLE fields yields the FTLE intensity (figure 6a,
orange and purple traces), which indicates the relative
amount of time-averaged flow throughout the recording.
The resulting FLOW portraits for two pan-cortical waves
can be seen in figure 6b, alongside 12 frames of the ΔF/F
data from each wave (see also electronic supplementary
material, videos S2 and S3). The portraits of every pan-corti-
cal wave are shown in electronic supplementary material,
figure S5.

Each FLOWportrait provides a summary of the prominent
activity observed during each wave event, highlighting the
regions that repel (forward FTLE, orange) and attract (back-
ward FTLE, purple) activity. Indeed, both waves shown in
figure 6b exhibit two stages of propagation, where activity
spreads and pauses briefly at the sensorimotor cortex (out-
lined by the purple rings) before spreading towards the
frontal cortex. This concise visualization allows us to easily
compare such qualitative features of wave propagation
without having to parse through the raw data manually.

3.2. Example 2: Sleep-state cortical activity changes in
development

To further investigate the role of spontaneous cortical activity
during development, we analysed optical recordings of spon-
taneous calcium activity in mouse pups during the first 8
postnatal days of development. We computed FLOW por-
traits on bouts of spontaneous cortical activity during sleep
in 12 animals of ages P1, P2, P3, P5, P7 and P8 (figure 7).
Briefly, the sleep state was determined by binning time
points into three categories (sleep, wake and moving-wake)
using the power of the nuchal electromyography (EMG) spec-
trum [38,88,89]. We chose to focus on sleep-state cortical
activity for its proposed developmental roles and observed
changes during development [38]. For each animal, we com-
puted FLOW portraits for up to the 10 longest bouts of sleep
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Figure 7. FLOW portraits highlight developmental changes of sleep-state cortical activity. (a) FLOW portraits for five sleep bouts from 12 P1–P8 mouse pups are
shown. During the first 3 postnatal days, activity is diffuse, as indicated by many short-length structures in the FLOW portrait. As animals grow older ( postnatal days
5–8), sleep-state cortical activity becomes more structured, as indicated by a consolidation of features in the FLOW portraits. Orange indicates repelling structures,
and purple indicates attracting structures. All images are of the left hemisphere, such that the mid-line and anterior directions are oriented towards the bottom and
left of the images, respectively. FLOW portraits were computed using an integration length of 2 s (40 frames) and a threshold percentile of 93% for all sleep bouts
shown. (b) Quantification of the number of FLOW ridges seen versus developmental day. The ridge count score for a FLOW portrait is computed by counting the
number of FLOW ridges, either forward, backward or both combined, and dividing by the total area of FLOW ridges in that portrait. When the ridge count score is
high there are many smaller ridges in the image, whereas when the score is low there are fewer ridges with a larger ridge area. Here, the mean ridge count score
(black point) decreases between developmental day 1 and day 5 and then remains constant. Furthermore, the mean ridge count score over days P1–P3 (0.0038,
0.0027 and 0.0022 for forward, backward and combined, respectively) is significantly different from the mean ridge count score over day P5–P8 (0.0019, 0.0015 and
0.0010 for forward, backward and combined, respectively; paired t-test, p-values 8.70 × 10−4, 7.16 × 10−5 and 1.62 × 10−7 for forward, backward and combined,
respectively). Blue dashes show individual data points; the ridge count score for an individual FLOW portrait. Error bars show ±1 s.e. measure.
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(fewer portraits were computed for short recordings when
there were fewer than 10 sleep bouts).

Five example FLOW portraits for each animal are shown
in figure 7a, with a complete set in electronic supplementary
material, figure S6. This organization allows us to leverage
FLOW portraits to examine developmental changes in corti-
cal activity across long recordings from different animals.
We observe a qualitative change between the portraits from
the early postnatal days (P1–P3) to the later days (P5–P8).

The FLOW portraits from the early days show more dif-
fuse activity, with fewer consolidated FTLE ridges. After P5,
the FLOW portraits show cortical activity during sleep
becoming more consolidated and following more defined
flow patterns. We quantify this transition to more consoli-
dated FTLE ridges after P5 by defining a ridge count score.
Briefly, this metric is computed by counting the total
number of disconnected ridges in a FLOW portrait and divid-
ing this sum by the total area of the FLOW portrait.
We computed ridge count scores for all FLOW portraits
seen in electronic supplementary material, figure S6 and
summarized the mean over each developmental day (figure
7b). We found that the ridge count score for forward FTLE
structures, backward FTLE structures and both combined
all decreased between P1 and P5. Furthermore, we found
that the mean ridge count score over the early developmental
days (P1–P3) was significantly different ( p-values of 8.70 ×
10−4, 7.16 × 10−5 and 1.62 × 10−7 for forward, backward and
combined, respectively; paired t-test) from that over the
later developmental days (P5–P8).

3.3. Example 3: Cortical activity during spontaneous
movement

Lastly, we analyse the FLOW portraits of spontaneous cortical
activity in a head-fixed, behaving adult mouse [35]. To inves-
tigate how FLOW portraits align with an animal’s behaviour,
we analyse infrared videos of spontaneous facial and limb
movements alongside cortical calcium activity. A movement
score was assigned to each recording time point by using
the total pixel-wise difference between the current and next
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Figure 8. Examples of spontaneous cortical calcium activity associated with movements of an adult mouse summarized as FLOW portraits. (a) A movement score
extracted from an infrared video of the mouse moving spontaneously in the dark shows bouts of large movements among more quiescent periods. These bouts of
movements do not correspond necessarily to when a large fraction of the cortical surface is active (see Methods for threshold criteria). (b) FLOW portraits for two
bouts involving spontaneous movements labelled (i) and (ii) show that coherent structures that highlight activity appear in sensorimotor regions and are then
attracted to the centres of these regions bilaterally. Boundaries aligned to the Allen Mouse Brain CCF [90] are overlaid in white. FLOW portraits were computed
with a 15-frame integration length and a threshold percentile of 93%.
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frames (the forward difference) and normalizing this to
the maximum observed difference. During bouts of limb
movement or whisking the movement score was greater,
approaching the maximum score of 1, than during periods
of rest, when the score approached the minimum score of 0.

We chose two bouts of spontaneous movement (grey
shading in figure 8a highlights the two bouts, (i) and (ii)) to
compute the corresponding FLOW portraits (see also elec-
tronic supplementary material, videos S4 and S5). Large
variations in the movement score (figure 8a, blue trace) can
be observed throughout these bouts, indicating that the
animal is continuously switching from a resting to a
moving state.

We see signatures of these movement behaviours in the
calcium activity, when we expect sensorimotor cortical
regions to be more active than during periods of rest.
Indeed, the FLOW portrait for each activity bout provides a
clear summary of calcium activity surrounding the sensori-
motor cortex (figure 8b). During both bouts, a ring-like
repelling (forward, orange) field line outlines the sensori-
motor region, while attracting (backward, purple) field lines
fill in the centres of the rings. We note that these patterns
are different from our analysis of example 1 of pan-cortical
waves. Specifically, these features suggest a dominant pattern
of cortical calcium activity as diffusion of activity from the
entirety (or outer edges) of sensorimotor regions towards
the centre. In other words, our FLOW portraits point to sen-
sorimotor cortex as a terminus of cortical activity during
spontaneous movement behaviours. Interestingly, compared
with the overlaid Allen Mouse Brain Common Coordinate
Framework (CCF) (white lines in figure 8b), the attracting
(backward, purple) field lines are close to the boundary
between somatosensory and primary motor cortices. We
note that the integration length and the threshold percentile
parameters chosen for these examples determine which
ridges are highlighted in the FLOW portraits.
4. Discussion
This paper introduces FLOW portraits as a novel approach to
visualize spatiotemporal flow of coherent features in optical
widefield calcium imaging data. Viewed at this meso-scale
of temporal and spatial resolution, neural activity at the cor-
tical surface is typified by multiple brain regions activating
transiently and sometimes in spatial succession. Motivated
by an analogy between this flow of neural activity over
cortex and physical fluid flows, we leverage techniques well
established to study physical fluid flows, in particular the
FTLE. Here, we convert videos of ΔF/F over the cortical sur-
face into vector fields, and the FTLE ridges in these vector
fields form an intuitive map of dynamic calcium activity.
Importantly, our FLOW portraits do not decompose the data
into modes and are not models of the data. Instead, they cap-
ture succinct portraits of diverse, variable and non-stationary
spatiotemporal patterns, such as those often observed in spon-
taneous or task-driven widefield calcium imaging
experiments.
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The FLOW portrait analysis makes several assumptions
that are usually true of physical fluid systems but often not
met by neural data. Coherent propagation of neural activity
on the cortex does not obey mass or energy conservation, so
the extraction of FTLE ridges are only approximate ‘material’
accumulation lines. This assumption is particularly invalid
for long bouts of data and over long integration windows, so
caution must be exercised in choosing these parameters in
the analysis (the same is true of FTLE analysis in fluid
flows). Because the integration window effectively low-pass
filters the dynamics of the data, activity that is on a faster
time scale may be attenuated, and local activity may integrate
to appear more coherent. The optimal choice of FTLE par-
ameters for visualization widefield activity and how these
depend on spatiotemporal statistics will be important to
understand in future applications. Furthermore, although
widefield imaging offers much larger fields of view at a
higher temporal resolution thanmanyother imagingmethods,
there remains much unobservable neural activity. Brain areas
outside the imaging window and underneath the cortical sur-
face contribute to the imaged activity, yet the flow of neural
activity among these regions cannot be captured by our analy-
sis and may bias the extracted flow lines. This limitation is
more severe in considering brains with sulci and gyri, as our
analysis fundamentally assumes that neighbouring pixels are
also neighbours on the cortical sheet.

The quality and interpretability of FLOWportraits requires
the imaging data to have been acquired with sufficient tem-
poral and spatial resolution to support the analysis. To be
specific, we require that the sampling in time be fast enough
that successive frames of the video are very similar. If the
frame rate is too slow and neighbouring frames differ substan-
tially, then the optical flow computation infers inaccurate
vector fields and can no longer disambiguate between a gra-
dual flow of activity and sudden jumps in activation.
Despite the relatively slow dynamics of GCaMP6s compared
with single-neuron activity [27], the temporal dynamics of
lasting neural synchrony at this meso-scale is adequately
matched to the kinetics of the indicator protein in all the
data we highlight here. The choice of calcium or voltage indi-
cator also introduces filtering in time, so that our analysis relies
on the dynamics of the indicator to be faster than the dynamics
of the underlying flow across the brain. Similarly, the spatial
resolution of the data need not support disambiguation of
single neurons, but it is important that spatial averaging in
the field of view does not obscure coherent features of interest.

We suggest that our approach expands the toolbox of tech-
niques to analyse and understand widefield imaging data,
especially facilitating direct comparison of multiple bouts of
spatiotemporal activity that are interpretable in the context
of behaviour and development. This visualization framework
can be developed to explicitly quantify features of the flow
(for example, the ridge count score analysis in figure 7).
Such quantification may be of value in further work that con-
nects features of FLOW portraits with states of relevance to
behaviour, development or disease. The transformation of
widefield calcium imaging data into a vector field represen-
tation suggests multiple avenues for the development of
analytic tools. For instance, where multiple coherent waves
are present and propagate locally, future work may develop
visualizations of the direction of activity propagation, from
individual forward FLOW ridges to backward FLOW ridges.
Intriguingly, it may be possible to discover partial differential
equations that govern the flow of activity through these vector
fields using data-driven techniques [91,92].
5. Methods
5.1. Widefield calcium imaging and data preprocessing
5.1.1. Developing mouse datasets
These experimental procedures were conducted at the University
of Washington, and all protocols were reviewed and approved by
the University of Washington IACUC. Neonatal mice expressing
GCaMP6s in cortical neurons were bred by crossing mice hetero-
zygously expressing an Emx1-driven Cre (Emx1-Cre+/−; Jackson
Labs ID 005628) with mice homozygously expressing GCaMP6s
under the control of a cre promoter (Ai162+/+; donated by the
Allen Institute; Jackson Labs ID 031562). This cross resulted in
mice expressing GCaMP6s primarily in glutamatergic cortical
neurons early in development. On the day of recording, mice
were placed on a heating pad and anaesthetized using 1–2% iso-
flurane carried by 100% O2, while local anaesthetic bupivacaine
was delivered subcutaneously at the scalp. The skin over the
cortex was removed over a window spanning between the ears
to just above the eyes of the pup, to reveal the skull. The perios-
teum was then removed with fine-tip forceps and cotton swabs.
At this developmental stage, the skull is uncalcified and largely
transparent, so thinning or cutting a window was unnecessary.
A stainless steel U-shaped bracket was then attached to the skull
with cyanoacrylate glue. The bracket was clamped in place to
the heating pad and stage to stabilize the head. To prevent the
skull from drying and to preserve clarity, the exposed skull was
also sealed with a thin layer of cyanoacrylate. Silver wire hook
leads were implanted into the nuchal muscle through the same
incision to monitor neck EMG.

Once the glue had dried, isoflurane anaesthesia was removed
and the pup along with the heating pad and stage was positioned
for imaging on aNikonAZ100with 2× objective and 0.6× reducer.
Nuchal EMG activity was amplified with an AM Systems model
1700 amplifier (10 Hz high pass, 60 Hz notch, 10 kHz low pass)
and was sampled at 10 kHz using a Powerlab 4/26 and Labchart
v. 8 (AD Instruments). GCaMP6s activity was excited using an
Intensilight mercury lamp (Nikon), captured using a CCD
camera (ORCA Flash 2.8) and recorded using the HCImage appli-
cation (Hamamatsu). Frame capture rates varied from 10 Hz to
50 Hz with maximum exposure times (100–20ms, respectively).
To further increase the signal-to-noise ratio, the camera was set
to perform online hardware-based pixel binning, reducing a
1920 × 1440 pixel image to 960 × 720 pixels. Individual recordings
beganwhen the animal began cycling regularly between sleep and
wake, and recordings typically lasted between 40 and 60min, after
which the pup was euthanized.

Ca2+ records were processed using Matlab (Mathworks)
to create ΔF/F image stacks for FLOW portrait analysis.
Briefly, imaging runs were further downsampled by pixel bin-
ning the 960 × 720 pixel image down to 480 × 360 pixels. To
compensate for slow drift, a moving window of 40 s was used
to calculate baseline F for each frame; each pixel in F was set
to the minimum value for that pixel across the 40 s window.
ΔF was calculated as the difference between the raw pixel inten-
sity and this calculated moving minimum. The difference was
then normalized to relative change by dividing (ΔF/F). A small
Gaussian spatial blur was used to attenuate ‘speckled’ noise.
Region of interest (ROI) masks of the visible cortical surface
were generated by excluding any pixel whose mean-to-variance
ratio was greater than 400 : 1. This value was determined heuris-
tically to optimize exclusion of any pixels that displayed minimal
change in fluorescence over time, such as those that lie outside
the cortical window.
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5.1.2. Adult mouse dataset
These experimental procedures were conducted at University
College London, UK, according to the UK Animals Scientific Pro-
cedures Act (1986) and under personal and project licences
granted by the Home Office following appropriate ethics
review. The dataset and associated procedures were described
previously [35]. In brief, the data were from an adult (30
weeks) male mouse expressing GCaMP6s in excitatory neurons
(tetO-GCaMP6s; CaMK2a-tTa genotype [11]). The mouse was
implanted with a metal headplate, plastic light isolation chamber
and transparent covering over the dorsal skull. On the day of
recording, the mouse was head-fixed under the microscope on
a stable seat with a rubber wheel underneath the forelimbs.
Video cameras captured the frontal aspect of the mouse as well
as its eye. Imaging was conducted at 70 Hz with alternating
blue and violet illumination, and imaging data were corrected
for haemodynamic components. The data were processed by
SVD compression.

The images were aligned to the Allen CCF [90] by manually
identifying the bregma point and the orientation of the midline
in the images. Bregma was taken to be located at the coordinate
5.7 mm anteroposterior in the CCF. Since the pixel size in the
camera was known (21.7 μm/pixel), the CCF region boundaries
could then be overlaid on the images.

5.2. Imaging analysis
5.2.1. Pan-cortical wave segmentation
Pan-cortical waves, as defined by [38], are cortical activity events
where recorded activity spreads over a large area of the imaged
cortex. We defined the large cortical area to be when 50% of the
cortical pixels (pixels which show the cortex) are active. At any
time point, a pixel is active if its intensity is more than 1 s.d.
above the temporal mean for that pixel. To extract pan-
cortical wave events, we computed the fraction of active cortical
pixels throughout the recording, and noted the time points
where the active area exceeded the 50% threshold. Each wave
event was then defined by the time points when the active area
crossed 10% active prior to the time of crossing the 50% threshold
and the time when the active area crossed this 10% lower bound
following the peak. Overlapping wave events were merged into a
signal pan-cortical wave to avoid redundancy. Furthermore,
events that lasted less than the FTLE integration length (T) plus
the optical flow scaling delay (3.5 s or 70 frames for the mouse
pup data) were not analysed because the FTLE and optical
flow computations require longer bouts of data.

5.2.2. Sleep bouts during development
Sleep-state cortical activity was segmented using the nuchal
EMG as an indicator of state (sleep or awake). Time points
were clustered into three groups based on the nuchal EMG
power spectrum as in [38,88,89], where the lowest power group
is known to represent the sleep state. We defined a sleep bout
as a period of continuous classification in the sleep state, and
extracted the 10 longest bouts from each recording over the
developmental time span. Any bout that did not meet the
FTLE and optical flow length requirement (3.5 s or 70 frames
for the mouse pup data; 0.8 s or 30 frames for the adult mouse
data) was not analysed further. In cases when there were fewer
than 10 bouts that met the length requirement, we chose to
include fewer sleep bouts for that recording.

5.2.3. Movement event extraction
We extracted movement events from the video of the face and
front arms of the adult mouse during the widefield imaging
experiment. We defined a movement score for each time
point in the video based on the difference between the
current time point and the previous time point. Each video
frame was assigned a movement score given by the sum (over
all pixels in the frame) of the difference between the current
and previous frame. For time point t, the score is given by
MovementScoret ¼

P
pixels ðIt � It�1Þ, where I is the pixel inten-

sity for each of the pixels in the frame. The time series of
movement scores was normalized to the maximum observed
value for ease of interpretation and visualization. Time stamps
of video frames were determined by recording transistor–
transistor logic pulses emitted by the camera on each exposure,
for both calcium imaging and behavioural videos. We then
compared cortical activity across varying movement regimes.
5.3. Optical flow computation
5.3.1. Horn–Schunck optical flow
We computed optical flow vector fields using the HS optical flow
algorithm [77] implemented in Matlab [93]. Two parameters
must be supplied to the optical flow algorithm: the maximum
number of iterations and the α smoothness parameter. Values
for both parameters were selected such that the errors in the
HS minimization problem (see [77] for details) were simul-
taneously minimized. We set the maximum number of
iterations to 100 and α to 1 for all computations.
5.3.2. Optical flow scaling and smoothing
To minimize the effects of noise on optical flow fields, we applied
an activity-based scaling to the magnitudes of the optical flow
vectors. First, we created a time series of weights for each pixel
by normalizing change in raw pixel intensity between the current
time and the intensity of that pixel 1.5 s in the past to the maxi-
mum observed change. We chose a time delay of 1.5 and 0.5 s, for
the developmental and adult mouse datasets, respectively, to
empirically match the time scale of large changes observed in
the raw data. Next, we took the sliding windowed average,
over a window of 0.25 s, of the weights in order to further
reduce the effects of recording noise. We then scaled the magni-
tude of the optical flow vectors by applying the weights to the
corresponding vector. Lastly, we temporally smoothed the opti-
cal flow fields using a five-point Gaussian window created
with Matlab’s guasswin() function. The gausswin function
takes an additional parameter, α, which is proportional to the
inverse of the standard deviation of the Gaussian smoothing
kernel. We set this parameter to 1.25 for all smoothing operations
because of its observed ability to reduce noise in the processed
vector fields.
5.4. Finite-time Lyapunov exponent fields
We computed the FTLE of all vector fields using the LCS Tool
[73] (https://github.com/jeixav/LCS-Tool) in the Matlab soft-
ware package. We computed the FTLE using an integration
length of 2.0 s (40 frames) for the developing mouse data and
an integration length of approximately 0.5 s (15 frames) for the
adult mouse data. Additionally, we used integration lengths of
15 frames, 12 frames and 10 frames for the plane wave, the circu-
lar wave and the travelling Gaussian examples, respectively. To
choose the integration length T, we followed the criteria outlined
in [62] of choosing a value such that the FTLE ridges are suffi-
ciently resolved. Using a sample of each dataset, we computed
the FTLE for a range of integration lengths (0–100 frames) and
visualized the resulting FTLE fields. We then chose the smallest
integration length where the corresponding FTLE field had well-
resolved, sharp ridges. Electronic supplementary material, figure
4B illustrates the effects of computing FLOW portraits with a
range of integration lengths.

https://github.com/jeixav/LCS-Tool
https://github.com/jeixav/LCS-Tool
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5.5. FLOW portrait construction
FLOW portraits are constructed through several image-proces-
sing steps that aim to extract ridges from an FTLE field (see
figure 4 for a visualization of the intermediate processing
steps). It is important to note that we process the forward and
backward FTLE fields separately and overlay them on the
mean ΔF/F image to create the final FLOW portrait.

We begin by averaging the FTLE time series to aggregate the
flow features into mean forward and backward FTLE fields.
Next, we isolate possible ridge-like features by thresholding the
mean FTLE field at a chosen percentile to form a binarized
image. This thresholding step is motivated by recognizing that
a ridge can be thought of as a continuous path along a local
maximum in the field [60,62]. Therefore, the binarized mean
FTLE fields are thought to contain the ridges whose values are
above the chosen threshold value. Throughout this work, we
denote the specified threshold value as a parameter named the
threshold percentile. For each FLOW portrait analysis, we chose
the threshold percentile to extract the FTLE ridges (see black
arrows in figure 4a for example ridges). Figure 4a,b shows the
correspondence between the mean FTLE field and the binary
versions (the threshold percentile was set to 95%). We used
threshold percentiles between 90% and 93% for the mouse pup
dataset and a threshold percentile of 93% for the adult mouse
dataset. Additionally, we thresholded the plane wave, the circu-
lar wave and the travelling Gaussian examples to the 91st,
the 93rd and the 85th percentiles, respectively. Electronic
supplementary material, figure S4C illustrates that the FLOW
portraits compute with a range of threshold percentiles.

Next, we perform two sets of morphological image proces-
sing operations on each binarized mean FTLE field to produce
the final FLOW portrait. The first set of operations aims denoise
approximate ridges from the FTLE fields, while the second set
smoothes the ridges to produce the FLOW portrait. We found
that these two series of operations provide strong approxi-
mations to the ridge features that we observe in the FTLE
fields. We use the bwmorph() function in Matlab for all
morphological image-processing operations (see https://www.
mathworks.com/help/images/ref/bwmorph.html for details).
This function applies a specified morphological operation
iteratively, with the number of iterations specified by the n par-
ameter, or until the input image remains unchanged, n = Inf.
Unless otherwise specified, we performed morphological oper-
ations until the image no longer changed, with n = Inf. We
refer the reader to the Matlab documentation, Gonzales et al.
[94] and Haralick & Shapiro [95] for the mathematical details
of each morphological processing operation used.

The first set of operations aims to transform the noisy, discon-
nected ridges in the binarized images to connected ridges that
reassemble those observed in the raw data. First, we perform
the ‘close’ operation (morphological dilation followed by
erosion) to close any gaps within the binary image. Next, we
use the ‘thin’ operation to thin the blob-like structures seen
in figure 4b to a series of lines. Lastly, we skeletonize the image
by applying the ‘skel’ (performed with n = 4). Together,
these operations convert the disconnected, blob-like structures
seen in figure 4b to the connected, single-pixel structures in
figure 4c. These skeletonized structures can be thought to
approximate the centrelines of the FTLE ridges.

The second set of operations aims to smooth the skeletonized
image to produce the FLOW portrait. Here, we perform the
‘diag’ operation to connect regions where two pixels lie
corner to corner with an additional pixel. We then apply the
‘spur’ operation to remove any remaining single-pixel spurs
from the ridges. Lastly, we close any gaps introduced with the
‘close’ operation.

Lastly, we overlay the processed forward and backward
images on the corresponding mean ΔF/F image to create the
final FLOW portrait. An example FLOW portrait can be seen in
figure 4d.

5.6. Quantification of FLOW portrait consolidation
during development

In order to quantify the consolidation of FLOW portraits during
development we computed a metric that we denote as the ridge
count score. The ridge count score is defined as the number of dis-
connected ridges in the FLOW portrait divided by the total area
of the FLOWportrait. Thismetric is computed by counting discon-
nected ridges (objects) in the FLOW portrait and dividing by the
total number of pixels included in the FLOW portrait. This score
was computed for forwardFLOW,backwardFLOWandboth com-
bined for each sleep bout.We then take themean ridge count score
of all sleep bouts from animals of the same developmental age.
Lastly, we use a paired t-test to determine whether the mean
mean ridge score for developmental days P1–P3 is statistically
different from that for developmental days P5–P7.

Data accessibility. Our code is publicly available without restriction,
other than citation, on Github at https://github.com/natejlinden/
FLOWPortrait. The code and data in this repository can reproduce
all main analyses, findings and figures from our paper.
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