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Abstract

The ability of mucus to function as a protective barrier at mucosal surfaces rests on its viscous and elastic properties, which
are not well understood at length scales relevant to pathogens and ultrafine environmental particles. Here we report that
fresh, undiluted human cervicovaginal mucus (CVM) transitions from an impermeable elastic barrier to non-adhesive objects
sized 1 mm and larger to a highly permeable viscoelastic liquid to non-adhesive objects smaller than 500 nm in diameter.
Addition of a nonionic detergent, present in vaginal gels, lubricants and condoms, caused CVM to behave as an
impermeable elastic barrier to 200 and 500 nm particles, suggesting that the dissociation of hydrophobically-bundled
mucin fibers created a finer elastic mucin mesh. Surprisingly, the macroscopic viscoelasticity, which is critical to proper
mucus function, was unchanged. These findings provide important insight into the nanoscale structural and barrier
properties of mucus, and how the penetration of foreign particles across mucus might be inhibited.
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Introduction

Mucus is a highly viscous and elastic barrier that protects

mucosal surfaces by selectively trapping and shedding pathogens,

toxins, and ultrafine particles [1–3], while allowing rapid flux of

nutrients, antibodies, and cells of the mucosal immune system [4–

6]. Under shear, mucus becomes a low viscosity lubricant that

prevents intra-organ adhesion and enables fundamental processes,

including peristalsis, blinking, and copulation [3]. The selective

permeability and dynamic viscoelastic behavior of mucus are

biochemically regulated by mucins in concert with lipids, salts,

cells, DNA, and other macromolecules [7,8], and strongly varies

across length scales. However, classical rheological techniques are

incapable of probing viscous and elastic characteristics at

submicron length scales.

The mechanical properties of biopolymer networks are

accessible by optical-based microrheology techniques [9–14].

The time scale-dependent displacements of non-interacting beads

allow quantitative measurements of the frequency-dependent local

viscous (G0(v)) and elastic (G9(v)) forces impeding their Brownian

motions [9,10,15,16]. Here, we used fresh, undiluted and

unmanipulated human cervicovaginal mucus (CVM), obtained

from female donors with healthy vagina flora, as a model of

physiological mucus ex vivo [17]. Using high resolution multiple-

particle tracking [9,18–20], we observed the translational

movements of hundreds of fluorescent probe beads coated with

a non-mucoadhesive surface [21,22], ranging from 100 to

1,000 nm in diameter, and determined the viscoelastic barrier

properties of CVM at length scales relevant to pathogens.

Results and Discussion

We first studied non-mucoadhesive beads 100 to 500 nm in

diameter, which represent the relevant sizes for most viruses,

environmental ultrafine particles, and synthetic drug delivery

systems [21,23], and compared their motions to those of non-

mucoadhesive beads 1 mm in diameter, which are similar in size to

bacteria and toxins, such as anthrax. The Brownian trajectories for

100–500 nm beads, probing distances far larger than their sizes

over 20 s movies, suggest that mucus acts as a low viscosity fluid at

length scales up to 500 nm (Fig. 1A–C and Videos S1, S2, S3). In

contrast, the constrained nature of the time lapse traces of 1 mm

beads is indicative of the elevated mechanical response of a

viscoelastic solid that impedes particle motion (Fig. 1D and Video

S4). Indeed, to beads 500 nm and smaller, CVM poses a low

elastic modulus (G9) at all frequencies probed, with an average G9

as low as 1.0 and 4.3 mPa on 200 and 500 nm beads at the lowest

shear frequency measured, respectively (Fig. 1E–G). In compar-

ison, the effective G9 exerted by CVM on 1 mm beads and the

bulk G9 of CVM are 400 and 154,000 mPa at the same shear

frequency, respectively (Fig. 1H). To submicron entities, CVM

exhibits a distinctly higher viscous modulus than elastic modulus
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(Fig. 1E–G), another indication that it behaves as a viscoelastic

liquid for 100–500 nm particles. The phase angle, d, of CVM,

defined as tan d= G0/G9, becomes larger with increasing

frequency, reflecting a progressively more liquid-like behavior as

expected for a shear-thinning polymer network. In contrast, the

elastic modulus of CVM probed by 1 mm beads is significantly

higher than the viscous modulus (Fig. 1H). These results suggest

that unsheared CVM transitions from an impermeable viscoelastic

solid at length scales 1 mm or larger to a highly permeable

viscoelastic liquid at length scales 500 nm and below.

A simple lattice model of individual mucin fibers in a mucus

mesh, based on the biochemistry of mucin fibers and mucin

content [3], yields an estimate of ,60 nm for the average mesh

spacing between fibers (Supporting Information Text S1). Since

200 and 500 nm beads diffuse in CVM largely unhindered, the

structural elements of physiological CVM are expected to include

largely bundled or aggregated mucin fibers, with many spacings

$500 nm. The rheology of mucus is governed by both viscous

drag from interstitial fluids within the mesh spacings and elastic

recoil from the mesh fibers. Thus, the low viscosity behavior of

CVM at submicron length scales can likely be attributed to low

elastic contributions by the mucus mesh. At short time scales (high

frequencies), beads sufficiently small relative to the mesh spacing

will only experience the viscous drag of the low viscosity interstitial

fluid. At longer time scales, steric obstruction by the CVM mesh

contributes to an increasing effective viscosity and elastic behavior,

but remains within the realm of a permeable viscoelastic liquid.

The highly constrained movements of 1 mm beads are likely the

consequence of strong steric hindrance and substantial elastic

recoil by the CVM mesh, suggesting that the average mesh

spacings must be below 1 mm. At larger length scales (up to the

bulk rheology), the viscoelastic behavior of CVM increasingly

reflects the mechanical strength of the mucus fibers.

The bundling and aggregation of mucin fibers may be driven by

hydrophobic interactions between naked protein or lipid-coated

domains along the fibers [3,21,24]. Therefore, we hypothesized

that the nonionic detergent nonoxynol-9 (N9), a spermicide and

microbicide widely used in vaginal gels, lubricants, and condoms

[25], may alter the structure and rheology of CVM. We treated

the same CVM samples with N9 at minimal dilution but

physiological concentration (,1% by volume dilution of CVM

with 10% N9 to a final N9 concentration of 0.1%), and measured

the local elastic and viscous moduli of N9-treated CVM at

submicron length scales. N9 treatment of CVM led to greatly

hindered motions for 200 and 500 nm beads and increased the

viscoelastic moduli they probed, but did not significantly affect

100 nm beads (Fig. 2A–C and Videos S5, S6, S7). Addition of the

same volume of saline instead of N9 did not affect the motions of

200 and 500 nm particles in mucus (visual observations; data not

shown). At the 200–500 nm length scales, CVM shifts from

behaving as a viscoelastic liquid (phase angle in excess of 60u) to a

viscoelastic solid (phase angle ,35u) upon N9 treatment (Fig. 2D).

The liquid-solid transition is also reflected by a ,100–150-fold

increase in the dynamic viscosity, g0 = G0/v, experienced by 200

and 500 nm beads (Fig. 2E). The rapid transport of 100 nm beads

under either condition (with or without N9 treatment) indicates

that N9 did not cause beads to adhere to CVM. Thus, the induced

changes in the rheology at selected length scales are likely due to a

marked reduction in the mesh spacing, subjecting the 200 and

500 nm beads to viscoelastic steric constraints by the structural

elements of CVM. Since N9-induced changes in mesh micro-

structure did not perturb the movements of 100 nm beads, N9-

treated CVM remains a low viscosity fluid at a length scale of

100 nm. These results highlight the ability to chemically transform

the size-dependent barrier properties of CVM by greatly reducing

the critical length scale for its viscoelastic solid-liquid transition.

Figure 1. Nanoscale viscoelastic properties of fresh, undiluted human cervicovaginal mucus (CVM). (A–D) Representative trajectories of
100 nm (A), 200 nm (B), 500 nm (C), and 1,000 nm (D) probe particles in CVM traced over 20 s. Particles exhibit an effective diffusivity within one
s.e.m. of the ensemble mean. (E–H) Local elastic (G9, solid lines) and viscous (G0, dashed lines) moduli as a function of frequency for the same probe
particles: 100 nm (E), 200 nm (F), 500 nm (G), and 1,000 nm (H).
doi:10.1371/journal.pone.0004294.g001

Microrheology of Human Mucus
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Since N9 markedly altered the nanoscale rheology of CVM, we

next tested if the bulk rheology was likewise perturbed. The bulk

rheology of human mucus (i.e., its response to shear) is critical to

maintaining proper mucus clearance rates in the body and the

ability of mucus to act as a lubricant [3,26–29]. The bulk viscous

and elastic moduli were quantified by measuring the torque

required to apply a small, fixed-amplitude oscillatory stress at

specified frequencies using a sensitive strain-controlled cone-and-

plate rheometer [23,30]. Surprisingly, the bulk viscous and elastic

moduli of mucus were both minimally changed upon N9

treatment (Fig. 3A,B). Macroscopically, native and N9-treated

CVM both behaved as a highly viscoelastic gel, with a low phase

angle even under relatively high shear (Fig. 3C). CVM in both

conditions also exhibited log-linear shear-thinning of viscosity, a

classical feature of mucus secretions [3,21,23,31]. Thus, N9 altered

only nanoscale mechanical properties of mucus without signifi-

cantly affecting the bulk, macroscale rheological properties.

In classical theories of polymer network mechanics [32–34], the

bulk elastic modulus of concentrated isotropic solutions of

entangled semiflexible polymers is described by G9,(k2 j22

Le
23)/kT, where j represents the mesh size, Le the chain segment

length, kBT the thermal energy, and k is related to the persistence

length of the chain, Lp, by Lp<k/kBT. Models for the elastic

behavior of stiff and crosslinked networks [33] predict G9,(k 2

j25)/kBT, and for networks of flexible chains G9,kBT j23.

Assuming only j changes, a hypothetical 3-fold reduction in the

average mesh spacing of CVM would be expected to increase the

measured bulk elasticity, G9, by ,9, ,250, or ,27–fold

depending on whether CVM is modeled as a semiflexible, stiff

and crosslinked, or flexible polymer network, respectively. Since

the bulk elasticity was only minimally perturbed, classical models

of polymer networks fail to describe the molecular interactions

contributing to the bulk mechanical properties of CVM. To

understand this, consider that the bulk rheology of CVM likely

reflects a combination of entropic contributions arising from the

entanglement of mucin mesh elements [35], and enthalpic

contributions from adhesive interactions between the lipid-coated

hydrophobic domains of mucins [36,37] and disulphide crosslinks.

Enthalpic contributions are not considered in classical theories

(which would predict that N9 would strongly increase the bulk

viscoelasticity due to greater entropic contributions from the

increased entanglements of unbundled mucin fibers). However,

the detergent nature of N9 likely compensates for the expected

entanglement-driven increase in the mechanical properties of

CVM by strongly reducing adhesive hydrophobic interactions

between mucin fibers and bundles. These two opposing effects

offset each other to the extent that even a sensitive cone and plate

rheometer is unable to detect the structural and nanoscale

rheological changes to mucus caused by N9 (Fig. 4). We do not

expect that N9-treatment of CVM eliminated adhesive interac-

Figure 2. Effect of nonoxynol-9 (N9) on the nanoscale viscoelastic properties of fresh human cervicovaginal mucus (CVM). (A–C)
Local elastic (G9) and viscous (G0) moduli as a function of frequency for 100 nm (A), 200 nm (B), and 500 nm (C) probe particles in N9-treated CVM.
Representative trajectories of 200 nm (B inset) and 500 nm (C inset) probe particles, with an effective diffusivity within one s.e.m. of the ensemble
average. (D) Phase angle (d) at a frequency of 2p rad/s for probe particles in native or N9-treated CVM compared to bulk values (‘‘B’’) at the same
frequency (mean6s.e.m.). The phase angle for a purely viscous fluid is 90u, while that for a purely elastic solid is 0u. (E) Dynamic viscosity (g0) at a
frequency of 2p rad/s for probe particles in native or N9-treated CVM compared to bulk values (‘‘B’’) at the same frequency (mean6s.e.m.). The
dashed line represents the viscosity of water. * denotes statistical significance (P,0.05).
doi:10.1371/journal.pone.0004294.g002

Figure 3. Macrorheological characterization of fresh human
cervicovaginal mucus (CVM) under dynamic oscillatory shear.
(A–D) Elastic modulus (G9) (A), viscous modulus (G0) (B), phase angle (d)
(C), and dynamic viscosity (g0) (D) for untreated (2N9), saline-treated
(+Saline), or nonoxynol-9-treated (+N9) CVM.
doi:10.1371/journal.pone.0004294.g003
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tions between mucins at the N9 concentrations used here. This can

be inferred by the unperturbed viscoelasticity of CVM as probed

by 100 nm beads in the presence of N9, which suggests that the

effective mesh spacing is still markedly larger than the estimated

mesh spacing from a lattice model of individual, unbundled mucin

fibers. Thus, mucin fibers likely remain partially bundled in N9-

treated CVM in this study.

The viscoelastic behavior of mucus, and perhaps other

biopolymer networks, changes sharply based on the length scale

of interest. Importantly, we demonstrate here that the nanoscale

rheology of mucus may be altered, without affecting the

macrorheological properties that are essential to the proper

functioning of mucus as a lubricant and proper mucus clearance.

Although it is speculative, selectively altering the nanoscale

rheology of mucus without changing its bulk rheology warrants

investigation as a potential prophylactic strategy to prevent

infections by reducing the mucus-penetration of pathogens.

Materials and Methods

Human cervicovaginal mucus (CVM) collection
CVM was collected as previously described [17,21]. Briefly,

undiluted cervicovaginal secretions from women with normal

vaginal flora were obtained using a self-sampling menstrual

collection device following a protocol approved by the Institutional

Review Board of the Johns Hopkins University. Written informed

consent was obtained from all participants. The device was

inserted into the vagina for ,30 s, removed, and placed into a

50 mL centrifuge tube. Samples were centrifuged at 1,000 rpm for

2 min to collect the secretions. Mucus samples were visually

observed for a substantial increase in vaginal secretion volume and

a marked reduction in the viscoelasticity, hallmarks of mucus from

women with abnormal vaginal flora (e.g. women with bacterial

vaginosis) [38].

Macrorheological characterization
To allow comparison with our microrheological characterization,

macrorheological characterization of CVM was performed with a

strain-controlled cone and plate rheometer (ARES-100, Rheo-

metrics, Piscataway, NJ) using techniques described previously [23].

Cervicovaginal mucus from 4–5 different donors was pooled (total

volume ,1.3 mL), stored at 4uC and used within 8 hr of collection.

The temperature of specimens was maintained at 37uC during

measurements. Oscillatory deformations of small amplitude (1%

strain) and controlled frequency were applied to extract the

frequency-dependent viscoelastic properties with minimal shearing

damage to the CVM. We report the frequency-dependent elastic

and viscous moduli, G9(v) and G0(v), which are the in-phase and

out-of-phase components, respectively, of the stress induced in

CVM samples divided by the maximum amplitude of the applied

deformation. The rheology of untreated, saline-treated, and N9-

treated CVM was evaluated in sequential order, with saline or 10%

N9 added at 1% volume of the sample, gently stirred, and incubated

for 17 min prior to subsequent measurements. Three independent

experiments were performed.

Preparation and characterization of non-mucoadhesive
microrheology beads

Yellow-green (Ex/Em 505/515 nm) or red (Ex/Em 580/605 nm)

fluorescent carboxyl-modified polystyrene particles sized 100, 200,

500, and 1,000 nm (Molecular Probes, Eugene, OR) were covalently

modified with amine-terminated polyethylene glycol (molecular mass,

2–3.4 kDa; Nektar Therapeutics, San Carlos, CA) by a carboxyl-

amine reaction in 6:1 excess, as previously described [21]. Size and f-
potential were determined by dynamic light scattering and laser

Doppler anemometry, respectively, using a Nanosizer ZS90 (Malvern

Instruments, Southborough, MA). Size measurements were per-

formed at 25uC at a scattering angle of 90u, and measurements were

performed according to instrument instructions. For 1,000 nm beads,

Figure 4. Summary of the interpretation of results. (A) The mesh structure of native human cervicovaginal mucus (CVM) consists of individual
mucin fibers bundled together, leading to large mesh spacings. (B) The microrheology of CVM, quantified using different sized probe nanoparticles,
suggests that CVM is largely a viscoelastic fluid at length scales 500 nm or below, whereas at length scales 1,000 nm or higher the mesh elements
contribute to a markedly greater local elasticity characteristic of viscoelastic solids. (C) The macrorheology of CVM reflects contributions from
entanglements as well as hydrophobic adhesive interactions between the mesh elements. (D) Treatment of CVM with nonoxynol-9 (N9) leads to
unbundling of the mesh elements and significantly reduced mesh spacings, due to reduced hydrophobic interactions between mucin fibers. (E) The
microrheology of N9-treated CVM becomes that of a viscoelastic solid at length scales down to 200 nm, but remains largely unperturbed at length
scales ,100 nm or below. (F) The effect of N9 cannot be probed by macrorheology, as the reduction in adhesive interactions by N9 is likely balanced
by increased entanglements between mucin fibers.
doi:10.1371/journal.pone.0004294.g004
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the size was determined by transmission electron microscopy using a

Philips 420 electron microscope (N. V. Phillips). Size and surface

charge measurements are available in Table S1. The neutral surface

charge of all particles is in good agreement with a fluorimetric assay

[22] that estimated the number of PEG molecules on the surface of

the particles to be in excess of 1 molecule of PEG per nm2.

Multiple particle tracking
Particle transport rates were measured by analyzing trajectories of

yellow-green or red fluorescent particles, recorded using a silicon-

intensified target camera (VE-1000, Dage-MTI, Michigan, IN)

mounted on an inverted epifluorescence microscope (Zeiss, Thorn-

wood, NY) equipped with a 1006oil-immersion objective (N.A., 1.3)

and the appropriate filters. Experiments were carried out in 8-well

glass chambers (LabTek, Campbell, CA), where diluted particle

solutions (0.0082% wt/vol) were added to 250–500 mL of fresh

mucus to a final concentration of 3% v/v (final particle concentration,

8.25610 27 wt/vol) and incubated at 37uC for 2 hr before

microscopy. After microscopy of beads in untreated CVM, 10%

N9 was added to mucus at 1% volume, gently stirred, and again

incubated at 37uC for 2 hr prior to microscopy. Trajectories of

n$120 particles were analyzed for each experiment, and three

independent experiments were performed for each condition. Movies

were captured with MetaMorph software (Universal Imaging,

Downingtown, PA) at a temporal resolution of 66.7 ms for 20 s.

The tracking resolution was 10 nm, as determined by tracking the

displacements of particles immobilized with a strong adhesive [9].

The image size was 5126512 pixels with ,0.23 mm/pixel and a 16-

bit image depth. The amplifier gain was adjusted to avoid signal

saturation. The coordinates of nanoparticle centroids were trans-

formed into time-averaged mean-squared displacement (MSD),

calculated as ,Dr2(t). = ,[x(t+t)2x(t)]2+[y(t+t)2y(t)]2., where

x(t) and y(t) represent the nanoparticle coordinates at a given time

and t is the time scale or time lag [20,39]. Distributions of MSDs and

effective diffusivities were calculated from this data, as demonstrated

previously [21,22].

Microrheological characterization
Microrheological data was extracted from the amplitude and time

scale-dependence of the geometrically averaged ensemble mean

square displacements of the particles [9,15,16,23]. These values can

be used to calculate the viscoelastic spectrum G(s) = 2kBT/

3pas,Dr2(s)., where kB is the Boltzmann constant, T is the absolute

temperature, and a is the particle radius [10,34]. Here, s represents

the Laplace frequency, and ,Dr2(s). is the unilateral Laplace

transform of ,Dr2(t).. The Fourier transform equivalent of G(s) is

the complex shear modulus G*(v), from which the elastic modulus

G9(v) and viscous modulus G0(v) can be calculated. Thus, time scale-

dependent MSD can be directly related to the traditional frequency-

dependent elastic and viscous moduli. Readers are referred to existing

literature for further details [9,15,16,23]. All microrheological data is

reported as a function of shear frequency in units of rad/s for easy

comparison with macrorheological values. Since observations of

native and N9-treated mucus were performed in the same sample, a

one-tailed, paired t-test was used to evaluate statistical significance at

an alpha level of 0.05.

Supporting Information

Video S1 Transport of 100 nm non-mucoadhesive probe beads

in native human cervicovaginal mucus over the course of 20 s

(shown at 26 speed). The trajectories of the beads are largely

unhindered and Brownian.

Found at: doi:10.1371/journal.pone.0004294.s001 (0.78 MB

MOV)

Video S2 Transport of 200 nm non-mucoadhesive probe beads

in native human cervicovaginal mucus over the course of 20 s

(shown at 26 speed). The trajectories of most beads are largely

unhindered and Brownian.

Found at: doi:10.1371/journal.pone.0004294.s002 (0.55 MB

MOV)

Video S3 Transport of 500 nm non-mucoadhesive probe beads

in native human cervicovaginal mucus over the course of 20 s

(shown at 26 speed). The trajectories of most beads are largely

unhindered and Brownian.

Found at: doi:10.1371/journal.pone.0004294.s003 (0.27 MB

MOV)

Video S4 Transport of 1 mm non-mucoadhesive probe beads in

native human cervicovaginal mucus over the course of 20 s (shown

at 26 speed). The bead motions are highly constrained and non-

Brownian.

Found at: doi:10.1371/journal.pone.0004294.s004 (0.10 MB

MOV)

Video S5 Transport of 100 nm non-mucoadhesive probe beads

in nonoxynol-9-treated human cervicovaginal mucus over the

course of 20 s (shown at 26 speed). The trajectories of the beads

are largely unhindered and Brownian.

Found at: doi:10.1371/journal.pone.0004294.s005 (0.99 MB

MOV)

Video S6 Transport of 200 nm non-mucoadhesive probe beads

in nonoxynol-9-treated human cervicovaginal mucus over the

course of 20 s (shown at 26 speed). The trajectories of most beads

are highly constrained and non-Brownian.

Found at: doi:10.1371/journal.pone.0004294.s006 (0.21 MB

MOV)

Video S7 Transport of 500 nm non-mucoadhesive probe beads

in nonoxynol-9-treated human cervicovaginal mucus over the

course of 20 s (shown at 26 speed). The trajectories of most beads

are highly constrained and non-Brownian.

Found at: doi:10.1371/journal.pone.0004294.s007 (0.11 MB

MOV)

Text S1

Found at: doi:10.1371/journal.pone.0004294.s008 (0.04 MB

DOC)

Table S1

Found at: doi:10.1371/journal.pone.0004294.s009 (0.03 MB

DOC)
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