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ABSTRACT In plant and animal breeding studies a distinction is made between the genetic value (additive plus epistatic genetic effects)
and the breeding value (additive genetic effects) of an individual since it is expected that some of the epistatic genetic effects will be lost
due to recombination. In this article, we argue that the breeder can take advantage of the epistatic marker effects in regions of low
recombination. The models introduced here aim to estimate local epistatic line heritability by using genetic map information and
combining local additive and epistatic effects. To this end, we have used semiparametric mixed models with multiple local genomic
relationship matrices with hierarchical designs. Elastic-net postprocessing was used to introduce sparsity. Our models produce good
predictive performance along with useful explanatory information.
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SELECTION in animal or plant breeding is usually based
on estimates of genetic breeding values (GEBVs) obtained

with semiparametric mixed models (SPMMs) (Meuwissen
et al. 2001; Lee et al. 2008). In a mixed model, genetic in-
formation in the form of a pedigree or markers is used to
construct an additive kernel matrix that describes the simi-
larity of line-specific additive genetic effects. These models
have been successfully used for predicting the breeding
values in plants and animals. Studies show that using simi-
larities calculated from sufficient genome-wide marker infor-
mation almost always leads to better prediction models for
the breeding values compared to the pedigree-based models
(Meuwissen et al. 2001; Habier et al. 2007; Hayes et al.
2009). In both simulation studies and empirical studies of
dairy cattle (Hayes et al. 2009; Vanraden et al. 2009); mice
(Lee et al. 2008; Legarra et al. 2008); and biparental pop-
ulations of maize, barley, and Arabidopsis (Lorenzana and
Bernardo 2009; Heffner et al. 2011) marker-based SPMM
GEBVs have been quite accurate.

A SPMM for the n3 1 response vector y is expressed as

y ¼ Xbþ Zg þ e; (1)

where X is the n3 p design matrix for the fixed effects, b is
a p3 1 vector of fixed effect coefficients, and Z is the n3 q
design matrix for the random effects; the vector random
effects ðg9; e9Þ9 are assumed to follow a multivariate normal
distribution with mean 0 and covariance�

s2
gK 0
0 s2

e In

�
;

where K is a q3 q kernel matrix.
The similarity of the kernel-based SPMMs and reproduc-

ing kernel Hilbert spaces (RKHS) regression models has
been stressed recently (Gianola and Van Kaam 2008). In
fact, this connection was previously recognized by Kimeldorf
and Wahba (1970), Harville (1977), Robinson (1991), and
Speed (1991). RKHS regression models use an implicit or
explicit mapping of the input data into a high-dimensional
feature space defined by a kernel function. This is often
called the “kernel trick” (Schölkopf and Smola 2002).

A kernel function, kð:; :Þ maps a pair of input points x
and x9 into real numbers. It is by definition symmetric
ðkðx; x9Þ ¼ kðx9; xÞÞ and nonnegative. Given the inputs for
the n individuals we can compute a kernel matrix K whose
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entries are Kij ¼ kðxi; xjÞ: The linear kernel function is given
by kðx; yÞ ¼ x9y: The polynomial kernel function is given by
kðx; yÞ ¼ ðx9y þ cÞd for c and d 2 R. Finally, the Gaussian
kernel function is given by kðx; yÞ ¼ expð2hðx92yÞ9
ðx92 yÞÞ; where h. 0:

RKHS regression extends SPMMs by allowing a variety of
kernel matrices, not necessarily additive in the input varia-
bles, calculated using a variety of kernel functions. Some
common choices are the linear, polynomial, and Gaussian
kernel functions, although many other options are available
(Schölkopf and Smola 2002; Endelman 2011).

For the marker-based SPMMs, a genetic kernel matrix
calculated using a linear kernel matrix incorporates only
additive effects of markers. A genetic kernel matrix based on
the polynomial kernel of order k incorporates all of the one
to k order monomials of markers in an additive fashion. The
Gaussian kernel function allows us to incorporate additive
and complex epistatic effects of the markers implicitly.

Simulation studies and results from empirical experiments
show that the prediction accuracies of models with Gaussian
are often higher than those of the models with linear kernel
(De Los Campos 2008; González-Camacho et al. 2012; Heslot
et al. 2012). However, it is not possible to know how much of
the increase in accuracy can be transferred to subsequent
generations because some of the predicted epistatic effects
will be lost by recombination. This is related to the distinction
made between the commercial value of a line (defined as the
overall genetic effect, additive plus nonadditive) and the
breeding value (the potential for being a good parent, addi-
tive only). It can be argued that the linear kernel model
estimates the breeding value whereas the Gaussian kernel
model estimates the genetic value. In this article, we argue
that the breeder can take advantage of some epistatic marker
effects in regions of low recombination. Epistatic interactions
that span short map segments (i.e., �20 cM) are considered
“local.” The models introduced here aim to estimate local
epistatic line heritability by using genetic map information
and combining the local additive and epistatic effects. Since
only local epistatic effects are used, there is a reduced chance
that these effects will disappear with recombination.

The final models we propose are SPMMs with semisuper-
vised kernel matrices that are obtained as a weighted sum of
functions of many local kernels. The principal aim of this article
is to measure and incorporate additive and local epistatic genetic
contributions since we believe that the local epistatic effects are
relevant to the breeder. Locally epistatic models in this article
can be adjusted so that the genetic contribution of the whole
genome, the chromosomes, or local regions can be obtained.

In most genome-wide association studies (GWAS) the
focus is on estimating the effects of each marker and lower-
level interactions (Cantor et al. 2010). However, the number
of SNP markers can easily exceed millions. The methods
used in GWAS lack statistical power, and they are computa-
tionally exhaustive. The local kernel approach developed in
this article remedies these problems by reducing the number
of hypothesis tests by focusing on regions.

Another argument for focusing on short segments of the
genome as distinct structures comes from the “building-blocks”
hypothesis in evolutionary theory. The schema theorem of
Holland (1975) predicts that a complex system that uses evolu-
tionary mechanisms such as fitness, recombination, and muta-
tion tends to generate short, well-fit, and specialized structures.
These basic structures then serve as building blocks. For exam-
ple, when the alleles associated with an important fitness trait
are scattered all around the genome, the favorable effects can be
lost by independent segregation. Therefore, inversions that
group these alleles physically together would be selected.

The sum of the building-blocks approach we propose in
this article is parsimonious since only a few genomic regions
are used in the final model. In addition, importance scores
for genomic regions are obtained as a by-product.

The rest of this article is organized as follows: In the next
section, after briefly reviewing some multiple-kernel ap-
proaches from the statistics and machine-learning literature,
we introduce our model that is more suitable to use in the
context of traditional SPMMs. We discuss the issues of
model setup, parameter estimation, and hypothesis testing
here. We illustrate our model with four benchmark data sets
and simulations. We conclude with a section that includes
a summary of main findings and discussions.

Materials and Methods

Multiple-kernel learning

In recent years, several methods have been proposed to
combine and use multiple-kernel matrices instead of using
a single one. These kernel matrices may correspond to using
different notions of similarity or to using information coming
from multiple sources.

Some early literature related to use of multiple kernels
simultaneously included Hartley and Rao (1967) and Rao
(1971) and more recently Bach et al. (2004) and Sonnenburg
et al. (2006). Their use in the context of genetic information
and mixed models also gained attention (De Los Campos
2008; De Los Campos et al. 2010; Jarquín et al. 2013; Tusell
et al. 2014).

Multiple-kernel learning methods use multiple kernels by
combining them into a single one via a combination function.
The most commonly used combination function is linear.
Given kernels K1;K2; . . . ;Kp; a linear kernel is of the form

K ¼ h1K1 þ h2K2 þ . . .þ hpKp:

The kernel K can also include interaction terms like Ki ⊙Kj;

Ki5Kj; or perhaps 2ðKi 2KjÞ⊙ðKj 2KiÞ; where the ⊙ is the
element-wise matrix multiplication operator and the 5 is
the matrix Kronecker product operator. For example, if KE

is the environment kernel matrix and KG is the genetic ker-
nel matrix, then a component KE ⊙KG can be used to cap-
ture the gene-by-environment interaction effects.

The kernel weights h1;h2; . . . ;hp are usually assumed to
be positive, and this corresponds to calculating a kernel in
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the combined feature spaces of the individual kernels.
Therefore, once given the kernels, multiple-kernel learning
boils down to estimating the kernel weights.

A locally epistatic genomic model for genomic
association and prediction

Our model-building approach has three stages:

1. Subsets of the genome: Divide the marker set into k
subsets.

2. Local genetic values (GEVs): Use the training data to
obtain a model to estimate the local GEVs bg*j ðmÞ for each
genome region j ¼ 1; 2;   . . . ; k:

3. Postprocessing: Combine the local GEVs using an addi-
tive model fitted in the training data set.

In the rest of this section, we describe each step in more
detail.

Locally epistatic kernels from mapped marker data: To
obtain k kernels for marker data, we need k possibly nested
or overlapping subsets of the marker set. These subsets can
be obtained using any annotation of the markers. However,
since our aim is to capture the additive plus locally epistatic
genetic effects in the model, we concentrate only on contig-
uous although possibly nested and overlapping regions of
the genome.

Although it is possible to define genomic regions in an
informed fashion (for example, see Xu 2013 for a division
based on recombination hotspots), in our illustrations we
carry out this task hierarchically as illustrated for a hypothet-

ical organism with three chromosomes in Figure 1. In Figure
1, at the root of the hierarchy we have the whole genome;
the second level of the hierarchy divides the genome into
chromosomes. The third and the following levels of the hi-
erarchy are obtained in an iterative fashion by splitting each
of the partitions of the previous level into a specified number
(called “nsplit”) of “roughly equal-sized” nonoverlapping
sets of consecutive markers. For both the simulated and
the real data, we used the map positions to order the
markers; then, the splits were done such that the partitions
at a certain level of splits on a chromosome had approxi-
mately the same number of markers. The splitting is stopped
at a prespecified level that is called “depth.” The nsplit and
the depth become the hyperparameters of the model. The
Hyperparameters of the model section and the illustrations
herein give some insight into how these parameters can be
adjusted.

Multiple-kernel SPMMs: Some multiple-kernel approaches
use fixed weights for combining kernels; however, usually
the weight parameters need to be learned from the training
data. Some principled techniques used to estimate these
parameters include minimum norm quadratic unbiased es-
timation (Rao 1971), the variance least-squares approach
(Amemiya 1977; Demidenko 2004, p. 223), and the Bayesian
approaches implemented in the R package BGLR (Rodrıguez
and De Los Campos 2012). However, these methods are
more suitable for cases where only a few kernels are being
used because they fail to give satisfactory solutions in high-
dimensional settings, i.e., when the number of kernels is

Figure 1 A hypothetical hierarchical setup for an organ-
ism with three chromosomes. This division has two main
parameters, namely the “depth” and the “nsplit.” Depth
controls how many levels of splits should be performed. A
depth of zero corresponds to the root of the tree, a depth
of one corresponds to chromosomes, a depth of two cor-
responds to splitting the chromosomes, and so on. The
nsplit parameter controls the number of divisions after
the chromosome level. Here, a setup with depth two
and nsplit three is illustrated.
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large. In the rest of this section, we develop a model that is
more suitable for use in high-dimensional settings.

To obtain the local GEVs, one possible approach is to use
a SPMM with multiple kernels in the form of

y ¼ Xbþ Zg1 þ Zg2 þ . . .þ Zgk þ e; (2)

where gj � Nqkð0;s2
gjKjÞ for j ¼ 1; 2; . . . ; k; e � Nnð0;s2

e IÞ;
and g1; . . . ;   gk; e are mutually independent.

Another SPMM incorporates the marginal variance con-
tribution from each kernel matrix,

y ¼ Xbþ Zgj þ Zg2j þ ej; (3)

where gj � Nqkð0;s2
gjKjÞ for j ¼ 1; 2;   . . . ; k: g2j � Nqk

ð0;s2
g2j
K2jÞ is the random effect corresponding to the input

components other than the ones in group j and K2j stands
for the kernel matrix obtained from markers not in group j.
ej � Nnð0;s2

ej IÞ and gj; g2j; ej are mutually independent.
A simpler approach is to use a separate SPMM for each

kernel. Let ŝ2
gj and ŝ2

ej be the estimated variance components
from the SPMM model in (1) with kernel K ¼ Kj: The
markers corresponding to the random effect g2j that mainly
accounts for the sample structure can now be incorporated
as fixed effects via the first principal components. Let the
matrix of the first few principal components of the markers
not in group j be denoted by the matrix PC2j: The model is
written as

y ¼ Xbþ ZPC2jt2j þ Zgj þ ej; (4)

where t2j is considered a fixed effect, gj � Nqkð0;s2
gjKjÞ for

j ¼ 1; 2; . . . ; k; ej � Nnð0;s2
ej IÞ; and gj; ej are independent. In

the rest of this article, we combine the fixed-effect terms into
one as X*b* for notational ease.

Estimating the parameters of the model in (2) is very
difficult with a large number of kernels. The models in (3) or
(2) are more suitable for such cases. The model in (4) is our
preferred model for estimating local GEVs in the rest of this

article since there are very efficient algorithms for estimat-
ing the parameters of this model.

Once the fixed effects and the variance parameters of the
model in (4) are estimated for the jth region, the vector of
the expected value of the genetic effects (EBLUP) specific to
region j can be estimated by

ĝj ¼ ŝ2
gj KjZ9

�
ŝ
2
gjZKjZ9þ ŝ2

ej I
�21�

y2X*b̂*
�

for j ¼ 1; 2; . . . ; k:

Postprocessing: Let x be the p-dimensional vector of fixed
effects and m be the vector of markers partitioned into k
regions. Using the methods discussed in the previous section
it is possible to obtain the EBLUP specific to region j for an
individual with marker set m, which we denote by ĝjðmÞ:
Also, let bg*j ðmÞ ¼ ĝjðmÞ=ŝgj denote the standardized EBLUPs
of random-effect components that correspond to the k local
kernels for regions j ¼ 1; 2; . . . ; k and individuals with
markers m. Consider a final prediction model in the follow-
ing form:

f ðx;m;b;aÞ ¼ b0 þ
Xk
j¼1

aj
bg*j ðmÞ þ

Xkþp

j¼kþ1

bjxj: (5)

Estimate the model coefficients using

�
b̂; â

�
¼ argmin

ðb;aÞ

PN
i¼1

 
yi2

 
b0 þ

Pk
j¼1

aj
bg*j ðmiÞ þ

Pkþp

j¼kþ1
bjxji

!!2

þ   l
Pk
j¼1

��aj
��;

(6)

where l. 0 is the shrinkage operator, and larger values of l
decrease the number of kernels included in the final pre-
diction model.

Figure 2 Wheat data: accuracies of the multiple-kernel (MK) model compared to the Gaussian (Gaus) kernel model for six traits. Circles below the line
in red correspond to the cases where the MK model is more accurate than the Gaus model. (A) Two regions per chromosome. (B) Three regions per
chromosome.
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When k is large compared to the sample size N, we can
estimate the parameters of the model using the elastic-net
penalty; i.e.,

�
b̂; â

�
¼ argmin

ðb;aÞ

PN
i¼1

 
yi2

 
b0 þ

Pk
j¼1

aj
bg*j ðmiÞ þ

Pkþp

j¼kþ1
bjxji

!!2

þ   l1
Pk
j¼1

��aj
��þ l2

Pk
j¼1

�
aj
�2

(7)

to allow for more than N nonzero coefficients in the final
estimation model. l1; l2 . 0 are the shrinkage operators.

In our examples, we used dGðmÞâ as the estimated geno-
typic value for an individual with markers m, wherebGðmÞ ¼ ð bg*1ðmÞ;   bg*2ðmÞ2; . . . ;   bg*kðmÞÞ: Since dGðmÞ has stan-
dardized columns, jâj can be used as importance scores
for the regions in the model.

Hyperparameters of the model: While fitting the model in
(5) we need to decide on the values of a number of
hyperparameters. Apart from the model setup that involves
the definition of genomic regions and inclusion or exclusion
of some environmental or structural covariates, these
parameters are the kernel parameters and the parameters
related to the elastic net used in the postprocessing step.

Low accuracies due to poor selection of the bandwidth
parameter, h, for the Gaussian kernel have been docu-
mented previously. Several methods such as use of multiple
Gaussian kernels simultaneously or model averaging have been
recommended to overcome these shortcomings (González-
Camacho et al. 2012; Tusell et al. 2014). We have experi-
mented with these approaches, but they did not produce
consistent results for the data sets we analyzed. Therefore,
we chose to compare a few predetermined values
[h ¼ f1=10;  1=5;  1;  5;  10g=ðm3 nÞ; where m is the
number of markers that contribute to a kernel and n is the
number of genotypes] and selected the value that gave
the best 10-fold cross-validated accuracy within a given
training set.

The other hyperparameters we varied were the depth and
nsplit parameters of the hierarchical model setup scheme in
Figure 1. These parameters may be selected by comparing
the cross-validated accuracies within the training data set
for several reasonable choices.

Inclusion of structural components in the models by
which the local GEVs are evaluated is mainly to exclude the
cosegregation effects due to family structure in the final
model. For the examples in this article, we have used the
first five principal components as covariates during the
calculation of local GEVs. These covariates are later dropped
from the model during the postprocessing step.

In our opinion, the hyperparameter choice for the multiple-
kernel models should reflect the available resources and the
aims of the researcher. For instance, the number of regions that
we can define depends on the number of markers, and a more
detailed analysis might be suitable only when the number of
markers and the number of genotypes in the training data set
are large. The hyperparameters of the shrinkage estimators in
the postprocessing step allow us to control the sparsity of the
model. These parameters can be optimized for accuracy using
cross-validation, but their value can also be influenced by the
amount of sparsity desired in the model. The multiple-kernel
models provide the user with the flexibility of models with
a range of detail and sparsity.

Illustrations

In this section, for four data sets that represent a variety of
situations, we compare the locally epistatic model with
its counterpoints linear and Gaussian kernel SPMMs. The
last examples are simulation studies to show that the
short-range interactions can be effectively captured by
the locally epistatic models and that the cross-validated
accuracies within the training set can be used to adjust
the hyperparameters.

In the following examples, the measure of accuracy is the
correlation between the phenotypic values and the corre-
sponding estimated genotypic values. Comparisons of accu-
racy among the different models are based on repeated
evaluations of the accuracy in a randomly selected subset
(test set) based on models trained with the remaining
individuals (training set).

If two traits are similar in terms of their importance
scores, we can expect to have a genetic correlation between
these traits. Genetic trait correlations are caused by pleiot-
ropy, close linkage, or correlated physiological functions
(Chen and Lübberstedt 2010), and they are important to the
breeders for improving correlated traits simultaneously or
for reducing linkage drag. For the data sets that have several

Table 1 The mean accuracies of models compared for several models of wheat data

Model MK 2 splits MK 3 splits MK 4 splits MK 5 splits MK 6 splits Gaus Lin

FD 0.48 0.47 0.46 0.48 0.47 0.48 0.47
MD 0.46 0.46 0.42 0.42 0.42 0.41 0.41
PH 0.66 0.64 0.63 0.65 0.62 0.63 0.61
GP 0.53 0.47 0.5 0.51 0.48 0.46 0.44
YLD 0.81 0.81 0.82 0.82 0.83 0.83 0.83
HD 0.56 0.55 0.53 0.53 0.55 0.56 0.53
WX 0.51 0.57 0.53 0.55 0.51 0.55 0.51

The best two accuracies for each trait are marked by boldface characters.
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traits, we can provide a graphical representation of the im-
portance scores from which the closeness of traits can be
inferred. This representation is also useful for identifying
QTL hotspots that were observed in other studies (Gardner

and Latta 2007; Breitling et al. 2008; Weber et al. 2008;
Zhao et al. 2011).

For fitting the mixed models, we developed and used the
EMMREML package (Akdemir and Godfrey 2014) and for

Figure 3 Wheat data: associations from the multiple-kernel (MK) model for the six traits. (A) Two regions per chromosome. (B) Three regions per
chromosome.
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the postprocessing step we used the glmnet package (Friedman
and Hastie 2013), both of which are available in R (R Core
Team 2014). The remaining software packages were also
programmed in R, and some of these are provided in sup-
porting information, File S1.

Example 1 (wheat data): This data set was downloaded
from triticeaetoolbox.org. A total of 3735 markers on 21
chromosomes (1A–7A, 1B–7B, and 1D–7D) for 337 elite

wheat lines (SW-AM panel) were available for the analysis.
The traits [flowering date (FD), heading date (HD), physi-
ological maturity date (MD), plant height (PH), yield (YD),
and waxiness (WX)] were obtained in two trials during the
years 2012 and 2013. We sampled 90% of the lines for
training the models, and we used the rest of the lines to
evaluate the fit of our models. The whole genome was di-
vided similarly to that in Figure 1 with a depth of two. The
accuracies of the multiple-kernel model compared with the

Figure 4 Mouse data: accuracies and associations for multiple-kernel (MK) model and accuracies for linear kernel (Lin) and Gaussian kernel (Gaus)
models for “weight at age of 6 weeks (grams).” (A) Four regions per chromosome. (B) Nine regions per chromosome.
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linear and Gaussian kernel SPMMs and the mean genome-
wide importance scores for regions used in our multiple
kernel model over 30 replications of the experiment are
summarized for different choices of the number of splits in
Figure 2. The mean accuracies of the models for different
traits are provided in Table 1. In addition, the importance
scores from the multiple-kernel models are used to cluster
the traits, and the dendrograms describe the resulting sim-
ilarities of the traits in Figure 3.

Example 2 (mouse data): The mouse data set we use for
this analysis is available as a part of the R package
SynbreedData (Wimmer et al. 2013a). Genotypic data con-
sist of 12,545 biallelic SNP markers and are available for
1940 individuals. The body weight at 6 weeks of age
(grams) and growth slope between 6 and 10 weeks of age
(grams per day) are measured for most of the individuals.
The data are described in Valdar et al. (2006) and the her-
itabilities of these two traits are reported as 0.74 and 0.30.

Figure 5 Mouse data: accuracies and associations for multiple-kernel (MK) model and accuracies for linear kernel (Lin) and Gaussian kernel (Gaus)
models for “growth slope between 6 and 10 weeks of age (grams per day).” (A) Four regions per chromosome. (B) Nine regions per chromosome.
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Here, we present the results from replication of the following
experiment for the two traits at two different settings 30 times.
A random sample of 1500 lines was selected in the training
sample. The whole genome was divided in a similar fashion to
that displayed in Figure 1 with a depth of three. Two different
multiple-kernel models were obtained by using two vs. three
splits at each hierarchical level following the split by chromo-
somes (i.e., each chromosome was divided into four or nine
regions). In addition, a Gaussian kernel model and a linear
kernel model are fitted. The boxplots comparing accuracies of
the models and the mean importance scores for different
regions from the multiple-kernel models over the 30 replica-
tions are displayed in Figure 4 and Figure 5. For both traits,
the multiple-kernel model is substantially more accurate. In
addition, the association derived as an output of this model
supports the previously reported association of body weight-
related traits to the X chromosome (Dragani et al. 1995).

Example 3 (barley data): a-Tocotrienols are in the class of
fat-soluble chemical compounds related to vitamin E activity.
Vitamin E deficiency is connected to many health problems;
therefore, increased levels of a-tocotrienols are a desirable
property for crops. In an experiment carried out by the Barley
Coordinated Agriculture Project during the years 2006 and
2007, a-tocotrienol levels for 1723 barley lines were recorded
in a total of four environments (2 years and three locations).
A total of 2114 markers on seven chromosomes were avail-
able for the analysis.

We sampled 1500 lines for training the models, and we
used the rest of the lines to evaluate the fit of our models. The
whole genome was divided in a similar fashion to that
displayed in Figure 1 with a depth of three with two splits

at each level and only the regions at the most detailed level are
used for multiple-kernel model building. This is repeated 30
times. Accuracies and associations are summarized in Figure 6.

Example 4 (maize data): These data are given in Romay
et al. (2013) and were also analyzed in Wimmer et al.
(2013a,b). A total of 68,120 markers on the 2279 U.S. na-
tional inbred maize lines and their phenotypic means for
degree days to silking compose the data set. Accuracies for
multiple kernel (MK) (five regions per chromosome), linear
kernel (Lin), and Gaussian kernel (Gaus) models for degree
days to silking and the importance scores from the MK
model are displayed in Figure 7 and Figure 8.

Example 5 (simulated phenotypes: accuracies): The pur-
pose of this simulation study is to compare the accuracies of
the SPMM with single Gaussian kernel and the multiple-
kernel models for traits that are generated by short-range to
long-range interactions. For each replication and each setting
of the experiment a set of 2000 genotypes was generated
using the R Package “hypred” (Technow 2013), starting by
randomly mating two founders with three chromosomes
each of length 1 M and 1000 markers per chromosome. After
random mating for 300 generations and then selection on
a complex quantitative trait over 200 generations with selec-
tion intensity 50%; followed by another 100 generations of
random mating, the final traits for the analysis were gener-
ated using short-range to long-range epistatic marker effects.

The final phenotypes in this example were generated
randomly for each replication of the experiment by the
following scheme: Given the set markers and the corresponding
map, we first randomly select six markers and assign these

Figure 6 Barley data: accuracies and associations for multiple-kernel (MK) (four regions per chromosome) model and accuracies for linear kernel (Lin)
and Gaussian kernel (Gaus) models for tocotrienol levels.
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markers effects from a zero-centered normal distribution with
variance one. Second, in an iterative fashion, we select one of
the markers selected in the first step, say m1; and two addi-
tional markers from previously not selected markers, say m2

and m3; and make an interaction term using the formula

re2ðr1 3m1þr2*m2þr3 3m3Þw ; (8)

where r has a zero-centered normal distribution with vari-
ance 3 for the low-interaction case and up to 6 for the high-

interaction case. r1; r2; and r3 independently and identically
distributed random variables have a zero-centered normal
distribution with variance 1 and w is selected at random
from the set f2; 4; 6g with equal probability. While generat-
ing the local interaction scenarios, the three markers that
generate the interaction are restricted to the same chromo-
some and the maximum distance between these markers is
restricted to 1, 4, 10, 20, 30, or 50 cM, depending on the
local interaction scenario. For the genome-wide case, no
restrictions were imposed while generating the interactions.

Figure 7 Maize data: accuracies and associations for multiple-kernel (MK) (25 regions per chromosome) model and accuracies for linear kernel (Lin) and
Gaussian kernel (Gaus) models for degree days to silking.

Figure 8 Maize data: accuracies for multiple-kernel (MK) (36 regions per chromosome), linear kernel (Lin), and Gaussian kernel (Gaus) models for
degree days to silking.
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When a total of 100 interaction effects are generated, the
genotypic value of an individual is calculated by adding the
main and the interaction effects. An independent error term
from a zero-centered normal distribution is added to each
genotypic value to obtain the final phenotypic values while
the error variance is chosen such that the heritability of the
trait is 1/2. Finally, the markers that were used to generate
the phenotypic values were excluded from the marker set
before further analysis.

After the genotypes and the phenotypes are generated,
a training sample of size 500, 1000, or 1500 is selected at
random to estimate the phenotypes of the remaining
individuals (test set) with the following models: A single
Gaussian kernel model (SK) and multiple kernel models
with 2, 5, 10, 20, or 30 splits per chromosome (MK_2,
MK_5, . . ., MK_30). The performances of the models mea-
sured in terms of mean correlations between the true and
the predicted values for the test data over 50 replications are
summarized by the plots in Figure 9.

It is clear from these results that as the range or the
intensity of the interactions increases, the accuracies of all
the models decrease. As expected, all models get more

accurate as the sample size increases. For all of the cases,
there is at least one multiple-kernel model that outperforms
the single-kernel model, and the optimal number of splits
seems to be a function of interaction range and the sample
size. As the interaction range decreases, a larger number of
splits produce more accurate models. On the other hand, for
small sample sizes a relatively low number of splits should
be used. The locally epistatic models adequately capture
local interactions, leaving out the irrelevant parts of the
genome, and obtain high accuracies.

Example 6 (simulated phenotypes: associations): The
purpose of this second simulation is to evaluate the perfor-
mance of the importance scores obtained from the multiple-
kernel models. For each replication of the experiment a set of
500, 750, 1000, or 1500 genotypes was generated using the
R Package hypred (Technow 2013), starting by randomly
mating two founders with three chromosomes each of length
1 M and 1000 markers per chromosome. After random mat-
ing for 300 generations, the genotypic values were simulated
for the individuals by randomly selecting two loci per chro-
mosome and assigning the minor allele at each of these loci

Figure 9 Simulations: accuracies of models are compared for traits that are generated by short-range to long-range interactions. On the horizontal axis
the scenarios are displayed in increasing order from left to right with respect to the range of interactions (1;4; 10; 20;30; and 50 cM and genome-wide).
The vertical axis displays the accuracy.
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an effect of one. The phenotypic value for each individual was
obtained by adding to the genotypic values an independent
error from a zero-centered normal distribution with a certain
variance so that the heritability of the trait was 1/2. For each
of these data sets, multiple-kernel models with 10; 20; 30; 40;
or 50 splits per chromosome were trained. The whole exper-
iment was replicated 100 times.

The importance scores of the regions obtained from the
multiple-kernel models cannot be directly used in formal
hypothesis testing for association. Nevertheless, they pro-
vide important information about the contribution of geno-
mic regions. For each of the replications of the experiment
and the multiple-kernel models with differing numbers of
splits per chromosome, we made a confusion matrix from
the true classification of regions based on whether or not
they contained an actual QTL and the classification based on
whether the regions had zero or nonzero importance scores.
In Figure 10, we report the results of our experiments, using
four measures of classification model performance averaged
over the 100 replications. Sensitivity measures the propor-
tion of the regions that contain QTL, which are correctly
identified. Specificity measures the proportion of the regions
that contain no QTL that are correctly identified. The false
discovery rate (FDR) measures the proportion of falsely

identified positives to all positives that are identified. The
F score is a single measure of performance that is the har-
monic mean of precision and sensitivity where precision is
defined as one minus the FDR. Although these results are
promising, they should be interpreted with caution: The
elastic-net penalties we have used are tuned for accuracy
and as the sample size increases more terms are allowed
to enter the model as an artifact of linkage disequilibrium
(LD). Having a nonzero importance score does not immedi-
ately imply a formal rejection of no effect in a region since
this would also depend on many other things like the size of
the importance score, the sample size, the number of regions
being fitted, the LD in the population, etc.

In summary, the importance scores obtained from the
multiple-kernel models are indicative of the regions that
include QTL. As the sample size increases or the number of
splits decreases, the ability to identify regions (sensitivity)
improves. However, this is accompanied by a deterioration
in the ability to correctly identify regions with no QTL
(specificity and FDR). According to the F score, the overall
performance improves as the sample size increases. For
larger sample sizes, increasing the number of splits increases
the F score. However, it seems like this trend might not be
the same for smaller sample sizes.

Figure 10 Simulations: four measures of classification model performance averaged over the 100 replications for sample sizes 500, 750, 1000, and
1500 and multiple-kernel models with 10, 20, 30, 40, or 50 splits per chromosome.
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Example 7 (simulated phenotypes: number of splits): The
number of splits is an important hyperparameter affecting
the accuracies. In this example, we check the plausibility
of a cross-validation-based method for identifying the
correct number of splits. For each of the 30 replications
of the experiment a set of 1000 genotypes with 1000
markers on each of the three chromosomes was generated
as in Example 6 (simulated phenotypes: associations). The
marker set was divided into three, five, or seven regions
per chromosome and the trait values for the genotypes
were generated by summing randomly generated locally
epistatic effects from these regions and an independent
error term with variance adjusted so that the heritability
of the trait was 0.5. Models with 1–10 numbers of splits
per chromosome were fitted to the genotypic and pheno-
typic data of a randomly selected training set of genotypes
of size 800. The remaining genotypes were assigned to the
test set. During the model-fitting process, a 10-fold cross-
validated accuracy measured in terms of correlation was
obtained within the training set for each of these models.
In addition, the accuracies of the models were calculated
in the test data. The results of this experiment are sum-
marized in Figure 11. The estimates of prediction accuracy
obtained within the training set followed the same trend
as the accuracies of the models calculated in the test data.

The highest accuracies in both cases were observed at the
true number of splits.

Results and Discussion

The locally epistatic models proposed in this article have
good accuracy and explanatory value. Although the final
results seem to depend on the complexity of the trait and
population structure, similar or better accuracies were
obtained for a number of populations compared to single-
kernel models. The multiple-kernel models have the addi-
tional advantage that only a small fraction of genomic
regions are used in the final model and the importance
scores for these regions are readily available as a model
output.

The locally epistatic models incorporate only the additive
and local epistatic genetic contributions and exclude ge-
nome-wide interactions. The breeder can have confidence
that these effects can be passed on to several generations. In
addition, the information about the importance of genome
regions produced from these models is also relevant since it
points to regions that are relevant for introgression.

The approaches introduced in this article allow us to use
the markers in naturally occurring blocks. The multiple-
kernel approach overcomes the memory problems that we

Figure 11 Simulations: the estimated prediction accuracies (measured by correlation, r) by cross-validation in the training set for number of splits = 1–10
and estimated prediction accuracies in the test set for the same splits. The red vertical dotted line indicates the correct number of splits for each case.

Locally Epistatic Models 869



might incur when the number of markers is very large by
loading only subsets of data in the memory at a time. When
studying the interactions, an order of magnitude of re-
duction of complexity can be obtained by studying only the
interactions among the blocks instead of interactions among
single loci. This block interaction approach will be a subject
for future study.

The local kernels use information collected from regions
of the genome and, because of linkage, will not be affected
by a few missing or erroneous markers. In our examples, we
have used the mean imputation to impute missing markers.

The accuracy of the multiple-kernel model compared to
its genome-wide counterparts partially depends on the trait
architecture as illustrated by the contrast between the
examples where a trait is affected only by a few regions
(the multiple-kernel model has high accuracies) or effects
distributed homogeneously to the entire genome (genome-
wide models have higher accuracies).

Another factor that influences the accuracies is the
strength and structure of interactions. If the interactions
are, in fact, local, the multiple-kernel models outperform
the single-kernel ones. In conclusion, the locally epistatic
models are most accurate when a few major genes with local
interactions generate the trait under study.

We can obtain local kernel matrices by defining regions in
the genome and calculating a separate kernel matrix for
each group and region. These regions can be overlapping,
hierarchical, or discrete. If some markers are associated with
each other in terms of linkage or function, it might be useful
to combine them together. The whole genome can be
divided physically into chromosomes, chromosome arms,
or linkage groups. Further divisions could be based on
recombination hotspots or just merely based on local
proximity. We could calculate a separate kernel for introns
and exons and noncoding, promoter, or repressor sequences.
We can also use a grouping of markers based on their effects
on low-level traits like lipids, metabolites, and gene expres-
sions or based on their allele frequencies. When some
markers are missing for some individuals, we can calculate
a kernel for the presence and absence states for these
markers. When no such guide is present, we can use
a hierarchical clustering of the variables. It is even possible
to incorporate group membership probabilities for markers,
so the markers have varying weights in different groups. We
are in the process of preparing another article in which
different sources of marker annotations are used with the
multiple-kernel models.

The hierarchical setup defines nested regions from coarse
to fine, the regions are divided into subregions, and this is
repeated to the desired detail level. An advantage to using
a hierarchy is the availability of hierarchical testing proce-
dures that have good cost/power properties (Blanchard and
Geman 2005). Multiple-testing procedures where coarse to
fine hypotheses are tested sequentially have been proposed
to control the family-wise error rate or false discovery rate
(Reiner et al. 2003; Meinshausen 2008). For example, to

deal with the inflation of the error probabilities due to testing
k hypotheses in the hierarchical setup, Meinshausen’s hierar-
chical testing procedure (Meinshausen 2008) controls the
family-wise error by adjusting the significance levels of single
tests in the hierarchy. The procedure starts testing the root
node at level a. When a parent hypothesis is rejected, one
continues with testing all the child nodes of that parent while
the significance level to be used at each node is adjusted by
a factor proportional to the number of variables in that node.
Recently, there have also been some advances in significance
testing for the lasso (Lockhart et al. 2014) regression. These
procedures can be used with the multiple-kernel models to
obtain formal significance tests with desirable properties. An
article concerning the formal hypothesis testing with the mul-
tiple-kernel models will also be ready shortly.
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