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SUMMARY

Workingmemory and response inhibition are functions that mature relatively late
in life, after adolescence, paralleling the maturation of the prefrontal cortex. The
link between behavioral and neural maturation is not obvious, however, making it
challenging to understand how neural activity underlies the maturation of cogni-
tive function. To gain insights into the nature of observed changes in prefrontal
activity between adolescence and adulthood, we investigated the progressive
changes in unit activity of recurrent neural networks as they were trained to
perform working memory and response inhibition tasks. These included
increased delay period activity during working memory tasks and increased acti-
vation in antisaccade tasks. These findings reveal universal properties underlying
the neuronal computations behind cognitive tasks and explicate the nature of
changes that occur as the result of developmental maturation.

INTRODUCTION

Cognitive functions necessary for executive control such as working memory (the ability to maintain infor-

mation in mind over a period of seconds) and response inhibition (the capacity to resist immediate re-

sponses and plan appropriate actions) mature relatively late in life, after adolescence (Davidson et al.,

2006; Fry and Hale, 2000; Gathercole et al., 2004; Kramer et al., 2005; Mischel et al., 1989; Ordaz et al.,

2013; Ullman et al., 2014). This prolonged cognitive enhancement that persists after the onset of puberty

parallels the maturation of the prefrontal cortex (PFC) (Chugani et al., 1987; Jernigan et al., 1991; Pfeffer-

baum et al., 1994; Sowell et al., 2001; Ullman et al., 2014; Yakovlev and Lecours, 1967). Neurodevelopmental

and psychiatric conditions such as attention deficit hyperactivity disorder, bipolar disorder, and schizo-

phrenia are characterized by poor working memory and/or inhibitory control and they also manifest them-

selves in early adulthood (Diler et al., 2013; McDowell et al., 2002; Smyrnis et al., 2004). Changing patterns

of prefrontal activation between childhood and adulthood have been well documented in human imaging

studies for tasks that require working memory (Bunge et al., 2002; Burgund et al., 2006; Klingberg et al.,

2002; Kwon et al., 2002; Luna et al., 2001; Olesen et al., 2003, 2007) and response inhibition (Bunge

et al., 2002; Luna et al., 2001, 2008; Ordaz et al., 2013; Satterthwaite et al., 2013). Recordings from single

neurons in these tasks have been recently obtained in nonhuman primate models, at different develop-

mental stages (Zhou et al., 2013, 2014, 2016b). Monkey maturation of working memory and response inhi-

bition parallels that of humans (Constantinidis and Luna, 2019). The neurophysiological results are there-

fore highly informative about how mature cognitive functions are achieved in the adult brain. Many

empirical changes observed in neurophysiological recordings between developmental states, however,

remain difficult to interpret, and it is unclear if systematic differences in neural activity at different develop-

mental stages are causal to cognitive improvement or incidental.

A potential means of understanding the nature of computations performed by neural circuits is to rely on

deep learning methods (Cichy and Kaiser, 2019; Yang and Wang, 2020), which have been very fruitful in the

analysis of the functions of neurons along the cortical visual pathways. Convolutional neural networks have

had remarkable success in artificial vision, and the properties of units in their hidden layers have been found

to mimic the properties of real neurons in the primate visual pathway (Bashivan et al., 2019; Cadena et al.,

2019; Khaligh-Razavi et al., 2017; Rajalingham et al., 2018; Yamins and DiCarlo, 2016). It is possible to

directly compare the activation profile of units in the hidden layers of artificial networks with neurons in

the ventral visual pathway (Pospisil et al., 2018). Deep learning models are thus being used to understand
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the development, organization, and computations of the sensory cortex (Bashivan et al., 2019; Rajalingham

et al., 2018; Yamins and DiCarlo, 2016).

Another class of artificial networks models, recurrent neural networks (RNNs) has been used recently to

model performance of cognitive tasks and to study cortical areas involved in cognitive function (Mante

et al., 2013; Song et al., 2017). RNN units are capable of exhibiting temporal dynamics resembling the

time course of neural activity. RNNs can be trained to simulate performance of working memory and

response inhibition tasks (Kim and Sejnowski, 2021; Masse et al., 2019; Yang et al., 2019) and have revealed,

for example, how different neuron clusters represent different cognitive tasks (Yang et al., 2019). It has been

hypothesized that structured neural representations necessary for complex behaviors might emerge from a

limited set of computational principles (Saxe et al., 2021). RNNs have been used successfully to simulate the

changes that occur in real neural circuits during learning, providing valuable insights on the principles guid-

ing plasticity (Cao et al., 2020; Feulner and Clopath, 2021; Warnberg and Kumar, 2019; Wenliang and Seitz,

2018). We were motivated, therefore, to use RNNs achieving different levels of performance (by virtue of

controlling the number of parameter updates) as a way of probing the changes that characterize matura-

tion of real brain networks, which achieve different levels of asymptotic performance at different develop-

mental stages due to neural circuit development. Our analysis compared directly the levels of activity and

temporal dynamics of single RNN units with those of single PFC neurons. We further sought to understand

whether changes in activity we observed in PFC during brain maturation also emerged in the RNN network.

Our work provides a framework for understanding the computations underlying cognitive maturation,

simulating a wide range of cognitive tasks that may exhibit developmental differences and generating pre-

dictions for further experimental study.

RESULTS

Our approach compared the activity of real neurons recorded in the PFC of adolescent and adult monkeys

as they performed working memory and response inhibition tasks with RNN units trained to perform the

same tasks, at networks that achieved comparable performance. Neural data were obtained from four ma-

caque monkeys (Macaca mulatta) trained to perform two variants of the oculomotor delayed response task

(ODR and ODR plus distractor task - Figure 1A, B) and three different variants of the antisaccade task

differing in the timing of the cue onset relative to the fixation point offset (Figure 1D-F). Stimuli in all tasks

could appear at 8 possible locations (Figure 1C). Behavioral data and neurophysiological recordings from

areas 8a and 46 of the dorsolateral PFC were obtained around the time of puberty (the ‘‘young’’ stage

henceforth) and after the same animals had reached full maturity (the ‘‘adult’’ stage). The monkeys gener-

ally mastered the basic rules of the tasks very easily, in a matter of a few sessions. Young animals still made a

lot of errors when a delay more than 1 s was imposed in the working memory task, and this performance

level improved little with further training. Neurophysiological recordings were obtained once asymptotic

performance was reached (Zhou et al., 2013, 2016b, 2016c). In analogy, we examined responses of RNNs

at different stages of network performance, during execution of the exact same tasks. In all results that

follow, RNNs were trained to perform all task variants.

We used an approach analogous to neurophysiological recordings to identify RNN units that respond to

the task and study their responses to different task conditions (Figure 2). Such analysis of units in artificial

neural networks has been called ‘‘artiphysiology’’ and offers direct insights on the role of neuronal activity in

computation. Use of RNNs allowed us to plot the entire time series of the unit’s activation during a trial in

the task and compare it with the Peri-stimulus Time Histogram (PSTH) of real prefrontal neurons. For each

recurrent unit, we analyzed trials with the stimulus appearing at each of the eight locations and calculated

its firing rate during the cue and delay period.We identified individual units with responsiveness to the task,

evidenced by a significant increase in activity during stimulus presentation or delay period compared with

the baseline period (t test, p < 0.05) and selectivity for different stimulus locations (one-way ANOVA test,

p < 0.05). This selection procedure was meant to mirror the analysis of PFC neurons; RNN units that did not

meet the criterion may still have exhibited weak task-related responses and contributed to the functionality

of the network. The time course of their firing rate could then be plotted, in a manner similar to what we

have done for real neurons (Figure 3). Responses from responsive RNN units were averaged together to

produce population activity. Of importance, we performed this analysis at different phases of the RNN

network training, simulating different stages of the brain development. We identified three stages (early,

middle, and mature), demarcated by transition points at which the network performed each task achieving
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a percentage of correct trials of <35%, 35–65%, and >65%, with the middle interval selected as to

approximate the range of performance of adolescent monkeys in these tasks (Zhou et al., 2013, 2016b).

RNN activity in working memory tasks

We first examined RNN activity in the simplest working memory task, the ODR task. As we have reported pre-

viously, transition from the adolescent to the adult stage of maturation in monkeys is characterized primarily by

an increase in activity of prefrontal neurons during the delay period of the ODR task, after the stimulus was no

longer present. We wished to test whether elevated activity during the delay period is a property of fully trained

RNNs, particularly because the necessity of persistent neural activity in working memory itself has been a matter

of debate in recent years (Constantinidis et al., 2018; Lundqvist et al., 2018).

To avoid a sampling bias in the analysis of neuronal data, we identified neurons with stimulus-driven activ-

ity, defined as firing rate during the cue presentation period that was elevated relative to the fixation period

A B C

GD E F

Figure 1. Behavioral tasks

Successive frames illustrate the sequence of events in the working memory and antisaccade tasks simulated.

(A) Oculomotor delayed response (ODR) task. Themonkey needs to observe a cue and after a delay period tomake an eye

movement to the remembered direction of the cue.

(B) ODR + distractor task. A distractor stimulus is presented after the cue, which the monkey needs to ignore.

(C) Possible locations of the cue in the ODR and ODRD tasks.

(D) Overlap variant of the antisaccade task. The cue appears while the fixation point is still present.

(E) Zero-gap variant of the antisaccade task. The cue appears simultaneously with the fixation point disappearing.

(F) Gap variant of the antisaccade task. The cue appears after the fixation point was turned off.

(G) Schematic illustration of possible stimulus locations in the antisaccade tasks, which are the same as in the working

memory tasks.
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and then compared their delay period activity, even though the latter was not a criterion for selection.

Approximately half of the PFC neurons exhibited stimulus-driven activity thus defined (309/607 PFC neu-

rons in the young dataset and 324/830 in the adult dataset). Results of this analysis, replicated in

Figure 4A, revealed a significant increase of firing rate during the delay interval. In contrast, responses

to the visual stimulus itself remain essentially unchanged, at least relative to the baseline fixation period.

Delay period in RNN units similarly increased between stages (Figure 4B). An increase in stimulus re-

sponses was also evident early on, but this had essentially matured by the mid-trained stage. What

continued to change until the fully trained stage was RNN unit activation that persisted in the delay period.

The mean firing rate in the delay period differed significantly between phases (one-way ANOVA, F2,331 =

7.59, p = 6.0 3 10�4 for the network units on which Figure 4 was based). The average rate in each phase

can be seen in Figure S1. The full time course of changes in activity can be seen in Figures S2A and S2B.

Results based on the activity of all PFC neurons and all RNN units were essentially identical (Figure S3).

It was also possible to examine the activity of the exact same RNN units as training progressed. This analysis

A

B

Figure 2. RNN network

(A) Schematic architecture of input, hidden, and output layers of the network. Panels are arranged as to indicate

successive events in time, in a single trial, across the horizontal axis. Appearance of the fixation point in the screen (top left

panel) is simulated by virtue of activation of fixation units, a subset of the input units. Appearance of the visual stimulus to

the left of the fixation activates input units in representing this location. Input units are connected to hidden layer units

and the latter are connected to output layer units. In the ODRD task, the trained network generates a response to the

remembered location of the cue by virtue of activation of the corresponding output unit.

(B) The firing rate of a single hidden unit is plotted as a function of time, during the duration of one trial. Successive panels

now represent evolution of the unit’s response as the training progresses. The horizontal lines represent the times of

stimulus appearance in the ODRD task.
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produced very similar results with the changes we saw in the averages (Figure S4A); the activity of longitu-

dinally tracked units paralleled the changes we saw across the population, for different training stages. Not

all RNN units exhibited elevated delay period activity after training; units with decreased delay period

activity were observed in the network (Figure S4E), in analogy to prefrontal neurons with decreased delay

period activity as well (Zhou et al., 2012). These results were consistent across multiple simulations. Aver-

aged responses across 15 RNN networks, across all units, and across all stimulus conditions (not just the

best response of each neuron) are shown in Figure S4F.

A

B

Figure 3. Activity of example units in working memory tasks

(A) Firing rate of a single neuron in the monkey PFC in the ODR task. Firing rate histograms are shown for eight locations,

with plots arranged as to indicate the location of the cue stimulus in the screen. Insets above histograms indicate

sequence of frames in the screen, which define the working memory task. The horizontal line below each plot indicates

appearance of the cue at time 0; the dotted vertical line in each plot indicates the onset of the response. Polar plots are

based on the same data shown in the PSTH and represent the average firing rate during the cue period, plotted in the

radial axis, as a function of cue location, on the polar axis (from Zhou et al., 2013).

(B) Activity of unit from the adult stage of RNN for the exact same task presentations, as in (A)
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E

Figure 4. RNN and PFC activity in working memory tasks

(A) Population discharge rate from young and adult PFC stages in the ODR task. Mean firing rate is plotted across neurons

(n = 309 for young, n = 324 for adult), after subtracting the respective baseline firing rate. Insets on top of the figure

represent the sequence of events in the ODR task. Arc is meant to represent the neuron’s receptive field, indicating that

the stimulus was presented at each neuron’s most responsive location.

(B) Mean rate of responsive RNN units, during three developmental stages (n = 114 for early, n = 131 for mid, n = 144 for

late, among 256 total units in the network).

(C) Population discharge rate from the young PFC stage in the ODR + distractor task. The solid line represents

appearance of a stimulus in the receptive field, followed by a distractor out of the receptive field. Insets represent the

sequence of events in the ODRD task. The dotted line represents the appearance of a stimulus out of the receptive field,
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Other RNN characteristics related to persistent activity also resembled neuronal responses. The number of

selective RNN units for the different stimulus locations increased modestly between the different stages of

training: 45% in the early phase, 51% in the middle, 56% in the mature phase (chi-square test, p = 0.029).

Across the population, RNN units trained to perform the ODR task also exhibited a population tuning pro-

file that resembled that of the population of PFC neurons (Figure S5).

RNN dynamics during working memory

To gain insight into the changes of the temporal dynamics of unit activity as training progressed, we relied

on a dimensionality reduction technique, termed dPCA, which has been used to understand dynamics of

neuronal activity (Kobak et al., 2016), separating components relating to specific aspects of the task used.

We processed the activity of RNN units as we did for neuronal activity and identified the top components

capturing the temporal envelope of the response, selectivity for the visual stimulus location, and for mixture

of time and stimulus (Figure 5). The transition from the adolescent to the adult PFC was characterized by

more robust separation of stimulus components during the delay period of the task, by themselves (Figures

5A and 5B, middle panels) or in mixtures with time components (Figures 5A and 5B, right panels). A very

similar progression was observed in the RNN activity (Figures 5C–5E, middle panels). Whereas early in

training, stimulus components were separable only shortly after the cue appearance (Figure 5C), in the

mature network different stimuli were represented robustly through the end of the trial. However, some

differences were also present; transient stimulus representation in the delay interval also emerged in the

mature RNN (see Figure 5E, right panel), in agreement with previous studies (Orhan and Ma, 2019),

although this was absent in the PFC neural data. These conclusions were confirmed when we plotted

the timing of RNN activity across units in the network (Figure S6). Many RNN units exhibited transient re-

sponses; however, the predominant effect of training is the increase in stability of delay-period activity.

Although the majority of neurons in the early network responded only to the cue presentation and ceased

to be active in the delay period (Figure S6A), the activity of more units in the mature network spanned the

cue and at least part of delay period (Figure S6C). Cross-temporal decoding similarly revealed that stability

of the stimulus representation across the trial improved for the adult PFC (Figures S7A and S7B), as well as

for RNN units across training (Figures S7C–S7E).

We also used a more challenging working memory task to probe the maturation of working memory ability,

the ODRD task. In that task, after the original cue presentation that needed to be remembered, a distractor

presentation followed that needed to be ignored over a second delay period (Figure 1B). In neural activity,

appearance of the cue in the receptive field generated a transient response, followed by persistent activity

in the delay period of the task, which continued to be present, even after the distractor was presented (Fig-

ures 4C and 4D). Appearance of the distractor in the receptive field also generated activation; however, the

relative difference between the activity generated by the cue and by the distractor in the second delay

period of the task characterized the maturation of prefrontal neuronal activity (shaded area in Figures

4C and 4D). This can be viewed as a measure of the prefrontal network ability to filter distracting activation.

In this case, too, we wished to test whether persistent activation of the RNN network was a result of training.

In the early training stage, virtually no difference was present in the second delay period between cue and

distractor-elicited activation (Figure 4E). A difference between the two conditions began to emerge in the

mid networks (Figure 4F) and further grew in the fully trained ones (Figure 4G). Tracking the activity of the

same RNN units across training produced very similar results (Figures S4B–S4D). The mean firing rate

across units in the second delay period differed significantly between phases (one-way ANOVA, F2,579 =

5.44, p = 0.004; see also Figure S1B). In this case, too, the behavior of RNN units replicated the empirical

pattern we have reported before in the PFC.

RNN activity in response inhibition tasks

We proceeded to examine response inhibition, the ability to resist a response toward a prepotent stimulus,

which is another cognitive domain that matures markedly between adolescence and adulthood. We relied

Figure 4. Continued

followed by a distractor in the receptive field. The difference between conditions indicated by the shaded line

represents a measure of how well the distracting stimulus is filtered in the second delay period.

(D) Same as in C for adult data.

(E–G) Mean rate of RNN units plotted using the same conventions for three developmental stages. Neural data in (A), (C),

and (D), from Zhou et al. (2016a).
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on the antisaccade task that involves presentation of a visual stimulus that subjects should resist looking at

but requires them to make an eye movement in the opposite direction (Figures 1D–1G). We have trained

adolescent and adult monkeys in three different variants of the task of varying difficulty, by manipulating

the relative timing of the cue appearance and fixation point turning off. The overlap variant was the easiest,

as it allowed the monkeys to view the cue stimulus for 100 ms before both the fixation point and cue turned

off, which was the signal to the monkey to initiate the saccade (Figure 1D). The gap variant (Figure 1F) was

the hardest as the fixation point turned off for 100 ms before the cue appeared (creating a ‘‘gap’’ of 100 ms

when the screen was blank). In the absence of a fixation point where the subject can hold its gaze, it is much

more difficult to resist making an erroneous saccade to the stimulus than away from it. The zero gap variant

involved turning off the fixation point simultaneously with the cue appearance and was intermediate in

difficulty (Figure 1D).

Neural responses in the antisaccade task mature considerably between the time of adolescence and adult-

hood (Zhou et al., 2016b). In principle, improvement in performance in the antisaccade task may be

achieved by a lower level of activation following the presentation of the visual stimulus, in essence filtering

the representation of the prepotent stimulus toward which a saccade should be avoided or by an increase

of activity representing the target. The former alternative received some support, at least on the surface, by

imaging studies that show decrease of prefrontal cortical activation between the time of adolescence and

A

C

D

EB

Figure 5. Demixed PCA analysis

(A) Data are plotted for PFC neurons recorded from the youngmonkeys. Panels from left to right represent the first time (condition-independent) component

of dPCA analysis, the first stimulus-related dPCA component, and the first stimulus/time mixture dPCA component. Different color lines represent the eight

stimulus locations.

(B) Data from the Adult PFC plotted as in (A).

(C–E) Same analysis performed for RNN units in the early, mid-trained, and mature networks.
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A

C

D

B

E

F

G

Figure 6. RNN and PFC activity in response inhibition tasks

(A) Population discharge rate from young and adult PFC stages in the overlap variant of the antisaccade task, after

subtracting the respective baseline firing rate. Data have been synchronized to the onset of the saccade, which is plotted

here, at time 0.5 (indicated by vertical line).

(B) Mean rate of the RNN units responsive in the antisaccade task, during three developmental stages.

(C) Population discharge rate from the young PFC stage three variants of the antisaccade task: gap, zero-gap, and

overlap. The horizontal line represents the appearance of the cue stimulus in the receptive field, at time 0.
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adulthood (Simmonds et al., 2017). Somewhat unexpectedly, neurophysiological results supported the

latter outcome. The most salient difference in neurophysiological recordings is an increase in activity in

the adult stage for results synchronized on the onset of the saccade, even after subtracting the baseline

firing rate (Figure 6A). We wished to test therefore if RNNs would capture this property. This was indeed

the case (Figure 6B). A progressive increase in the peak of activation was observed from early, to mid, to

mature networks (Figure 6B). This difference between stages was highly significant (one-way ANOVA for

firing rate in 250 ms after cue at early, mid, mature stage of gap task, F2,638 = 12.2, p = 6.0 3 10�6).

Interestingly, differences in firing rate elicited by different variants of the task at each training phase were

also mirrored in the activity of RNN units. A higher firing rate was observed as a function of the task variant

difficulty, with the gap variant eliciting the highest firing rate among prefrontal neurons. This was true for

both the young stage (Figure 6C) and the adult stage (Figure 6D). The exact same pattern has been

observed for RNN unit activation in the early (Figure 6E), mid (Figure 6F), and mature RNN networks (Fig-

ure 6G). No neural theory to date has been proposed to explain how these differences relate to task diffi-

culty and performance. The current results demonstrate that emergent processes during the optimization

process of artificial neural networks capture actual neural properties.

Task learning and generalization

Results presented so far summarized responses of RNN units averaged over long training periods. To un-

derstand how unit activity evolved over time as the RNN mastered performance of the trained tasks, we

analyzed the responses of the same networks across training steps. Analysis of activity and task perfor-

mance during RNN network training revealed that networks typically went through a long period of weight

adjustment with little change in either performance or unit activity, before they began to master the task

over a relatively shorter period of training, which was also characterized by rapid changes in unit activity.

This was evident in the activity of the network already discussed (Figures S2A and S2B). The delay period

activity in other network instances is shown in Figures S2C and S2D. In all cases, mastery of the task

(transition from the early to the mid and late performance stages) occurred relatively rapidly, over a period

of parallel increase in unit activity. We examined unit activity around the time of this rapid transition, to

determine if a qualitative change in activity characterized an inflexion point in task improvement (Figure S8).

Unit activity around the inflection point was generally characterized by more rapid changes in the firing rate

in the direction defined by the transition from the early to the mature networks (Figure S8D).

We also examined changes in the connection weights during the course of training (Figure S9). To better

visualize changes in weights, we computed each unit’s variance across stimulus conditions at each time point

and then averaged the variance across all time points within each time epoch to get the final variance of

each epoch for this unit. We used this variance value to group recurrent units into clusters. The weight

matrix obtained this way for the ODR task is shown in Figure S9. Matrices from the same model but with the

position of units rearranged based on clusters obtained for the ODRD task is shown in Figure S10. Change

of weights during training was characterized by the emergence of additional, distinct clusters as training

progressed.

Another important question for understanding the behavior of RNN networks is whether the network general-

izes across tasks during training, i.e., represents shared task elements in the samemanner across all tasks, so that

training in one task aids performance in another, or creates specialized subnetworks for each task. Previouswork

supports the idea that RNNs exhibit compositionality and perform similar task by activation of overlapping sets

of units (Yang et al., 2019). In the context of our tasks, we wished to understand whether units were tuned to the

same stimulus location in the ODR and ODRD task. This was clearly the case, and this property persisted

throughout the training regime (Figure S11). Aweaker correlationwas observedbetween the best stimulus loca-

tion that a unit exhibited in the ODR task and the antisaccade task (Figure S11B), also in agreement with neuro-

physiological data. This can be understood when one considers that the antisaccade task is fundamentally

different from the ODR task than the ODRD is. It was notable that this divergence was amplified late in training,

when the network mastered the task performance.

Figure 6. Continued

(D) Same as in C for adult data.

(E–G) Mean rate of RNN units plotted using the same conventions for three developmental stages. Neural data in (A), (C),

and (D), from Zhou et al. (2016b).
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We also tested the RNN’s ability to generalize for different delay intervals, in two ways. First, we trained a

network with a fixed delay period of 1.5 or 3.0 s and tested it with a delay duration that was not trained (3.0

and 1.5 s, respectively). Networks trained with 1.5-s period delay exhibited some ability to perform the task

with the longer interval. On the other hand, networks fully trained with the more challenging 3.0-s delay

period activity achieved near-perfect performance (96%) when tested with the shorter, 1.5-s delay period

activity. Activity of units in the fully trained networks tested with a different delay period than that they were

trained with was also revealing (Figure S12); networks trained with a shorter delay were able to continue

generating activity if the delay was prolonged but often produced oscillatory dynamics (Figure S12). Plot-

ting performance of networks trained with a fixed, 1.5 delay interval revealed that performance tended to

be relatively high for untrained delay intervals that were approximate multiples of the trained interval (Fig-

ure S12E). We saw a similar, limited ability of networks trained with the ODRD task to generalize across

delay intervals as well (Figure S12F).

In a second approach, we trained networks with a variable delay from the outset, between 0.5 and 2.5 s.

These networks generally required longer time periods to train, but their activity tended to be much

more robust and remained stable across a range of delay periods in both the ODR task (Figures S13A–

S13C) and the ODRD task (Figures S13D–S13F). Networks trained with a variable delay period still captured

qualitatively many of the properties of networks trained with fixed intervals. For example, they tended to

generate higher levels of activity representing the cue stimulus than a distractor (Figures S13G–S13I). These

networks also achieved much more robust performance across a range of delay intervals (Figures S13J and

S13K). The stability of networks trained with variable delay intervals could be best exemplified in terms of

cross-temporal decoding performance. Mature RNN networks exhibited cross-temporal generalization

that now more strongly resembled that of PFC units (Figures S7F–S7H).

Analysis of the training phases revealed some ‘‘unnatural’’ behaviors as well. When all tasks were trained

simultaneously, the RNN network mastered the antisaccade tasks much faster (Figure S14). The variants

of the antisaccade task are conceptually very simple and require a straightforward mapping of weights

in a naive network: when a stimulus activates input unit q, prepare a saccade at output position q+p. In

the absence of a delay period, which the ODR imposes, this can be implemented easily. However, the anti-

saccade mapping is much more difficult to achieve in real brain networks, which are wired to perform

saccades to the location of the visual stimulus.

Network hyper-parameters

For the simulations we performed, we relied on parameters that were found to be effective for RNN net-

works learning to perform similar tasks (Masse et al., 2019; Yang et al., 2019). However, we wished to

consider whether the results were specific to this choice of hyper-parameters. We thus replicated these ex-

periments by systematically varying the parameters of the RNNs (Figure S15). In networks that successfully

acquired the tasks with different hyper-parameters, results were qualitatively similar and also resembled

neuronal responses. We generally confirmed, however, that the hyper-parameters previously identified

in the literature most closely resembled real neuronal responses for our results, too. In terms of weight

initialization, randomized orthogonal weights produced best results, in contrast to diagonal initialization

(Figure S15B), but random weights drawn from a Gaussian distribution also produced comparable results

(Figure S15C). The number of the units of the network also affected network responses (Figures S15D–

S15G), with results achieved by networks in the range of 128–512 units, most closely resembling neural re-

sults. Finally, the softplus activation function worked best compared with Relu, tanh, retanh, and power

functions (Figures S15H–S15K), as it most closely resembles the nonlinearity function of real neurons.

DISCUSSION

The use of artificial neural networks has exploded in recent years (LeCun et al., 2015). Convolutional neural net-

works have had remarkable success in artificial vision, and the properties of hidden layers of artificial neural net-

works have been found to mimic the properties of real neurons in the primate visual pathway (Bashivan et al.,

2019; Cadena et al., 2019; Khaligh-Razavi et al., 2017; Rajalingham et al., 2018; Yamins and DiCarlo, 2016). These

results suggest that the same fundamental operations performed by the human brain are captured by artificial

neural networks, allowing the use of such networks as scientificmodels (Cichy andKaiser, 2019; Saxe et al., 2021).

The activity of individual units of these networks can be dissected, with techniques inspired from Neuroscience

(Pospisil et al., 2018).Neuroscience principles have also been instructive for the design ofmore efficient networks

and learning algorithms (Sinz et al., 2019). In addition to convolutional networks, other architectures have had
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practical applications inNeurosciencequestions, for example, to uncover neuron spike dynamics, or encodingof

elapsed time (Bi and Zhou, 2020; Pandarinath et al., 2018). The activity of the PFC has been investigated success-

fully with RNN frameworks. Fully trained RNNmodels capturemany properties of the PFC, including its ability to

maintain information in memory and to perform multiple cognitive tasks. Examining RNN activity during the

course of training the network has also shed insights on processes such as perceptual andmotor learning (Feul-

ner and Clopath, 2021; Wenliang and Seitz, 2018) and the emergence, after training, of properties encountered

in neural circuits such as grid-like representations, low-dimensional manifolds, and illusory correlations (Cao

et al., 2020; Warnberg and Kumar, 2019).

Here, we capitalized on this approach to investigate a relatively unexplored aspect of prefrontal cortical

function, its developmental maturation. In a series of recent studies, we have addressed for the first time

the nature of changes that the PFC undergoes between the time of puberty and adulthood (Zhou et al.,

2013, 2014, 2016b, 2016c). These studies revealed a number of changes in activity between young and adult

subjects; however, the significance of changes at some task epochs relative to others and their relationship

to behavior has been difficult to interpret. By using artificial RNNs, not explicitly modeled on any brain func-

tion, we show that changes related to maturation of the primate PFC also allow performance of cognitive

tasks that require working memory and response inhibition by artificial neural networks.

Parallel neural and RNN changes

We conceptualize neural plasticity in the context of our experiment as a process that operates at two time-

scales: (1) the developmental maturation timescale, with a time constant of years and (2) the training time-

scale with a time constant in the order of weeks. This model implies that monkeys can reach asymptotic

performance after practicing the task for a few dozen sessions, at each developmental stage. At that point

further improvements may only be gained very slowly, as the brain matures. We use the RNN to model only

the former process. By comparing activity in the network at states that achieve different levels of perfor-

mance, we can determine what changes allow mature networks to achieve higher performance than imma-

ture ones, in analogy to the brain changes that allow the mature PFC to achieve higher performance than

adolescent ones. In principle, the same approach can be used to compare the neural circuits of different

species that have evolved different levels of cognitive abilities (Hasson et al., 2020).

In the working memory tasks, the most salient change that characterized networks with improved perfor-

mance was an increase in delay period activity across the network, with little change in the cue presentation

period itself. The activity of some single units spanned the entire delay period, and its magnitude increased

as performance improved. The increase in activity was most striking in averages across networks (Fig-

ure S4F), in networks fully trained to achieve near perfect performance (Figure S12A), and networks trained

with variable delay intervals (Figure S13). Stimulus representation was also more separable during the delay

period (Figures 5C–5E). This change strongly paralleled the primate prefrontal development between the

stage of adolescence to adulthood. In the ODRD task, the difference between delay period corresponding

to the cue and distractor was also characteristic of development. The results also inform the debated of the

basis of working memory and whether it depends on persistent discharges or not (Constantinidis et al.,

2018; Lundqvist et al., 2018; Miller et al., 2018; Riley and Constantinidis, 2016). We saw that RNN units spon-

taneously develop workingmemory-related activity, in agreement with previous studies (Masse et al., 2019;

Yang et al., 2019). Although it is possible for some RNN networks to perform working memory tasks without

an overt increase in firing rate, more complex tasks do require persistent activity (Masse et al., 2019). It is

also important to emphasize that units with a diversity of neuronal activity time courses emerged in the

network, including units with delay period activity that decreased in the delay period relative to the base-

line. The diversity of neuronal responses is a well-established property in the PFC, and neurons with

decreasing delay period activity have also been described (Wang et al., 2004; Zhou et al., 2012). An increase

in delay period activity was therefore not a monolithic change of RNN training and neurons with decreasing

activity likely performed important computations as part of the network, as in fact has been suggested by

prior computational studies (Barak et al., 2013; Cao et al., 2020; Cueva et al., 2020; Michaels et al., 2020;

Sussillo et al., 2015). Nonetheless, emergence of persistent activity with increasing magnitude is a devel-

opmental property that characterizes improved performance in mature networks.

Analysis of RNN activity also provided important insights about the neural basis of response inhibition.

Prefrontal responses in the antisaccade task are characterized by differential levels of activity in task vari-

ants depending on difficulty and parallel increases in maturation (Zhou et al., 2016b). We now found that
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this pattern of responses emerges spontaneously in RNN networks, providing evidence again that the pre-

frontal activity optimizes the execution of the task. Improved performance in adulthood was not the result

of more efficient filtering of the response to the stimulus but rather stronger representation of the saccade

goal.

Limitations of study

Although we have pointed out similarities in real and simulated networks, we do not wish to overstate this

analogy. We considered RNNs to be ‘‘mature’’ and ‘‘immature’’ by virtue of the performance level they

reached; however, the same network architecture was ultimately capable of reaching higher performance

with additional training. In contrast, the immature brain was characterized by lower asymptotic perfor-

mance in cognitive tasks, even when the subjects were exposed to additional training. This comparison

was still meaningful because differences between young and adult neural responses were generally subtle,

suggesting only small changes in network properties, not unlike those exhibited by RNN networks

achieving similar behavioral performance. The task themselves were simple for the monkeys to acquire

so the updating of RNN weights through supervised learning better paralleled the maturation of synaptic

connections between neurons rather than the acquisition of task rules.

The RNN networks exhibited a number of ‘‘unnatural’’ behaviors, owing to the unconstrained nature of

their weights and the complete lack of prior experience. For example, they were able to master the anti-

saccade task very easily, much faster than the working memory tasks. Although mapping an association

between a stimulus and the opposite location is computationally straightforward, the brain is wired to

direct saccades toward objects and not in diametric locations to them, which poses substantial chal-

lenges, particularly for the immature brain (Constantinidis and Luna, 2019). In essence, the real PFC

has already undergone a substantial shaping of its weights, which cannot always be captured by the

RNN networks. In the working memory tasks, in addition to exhibiting persistent activity, they also main-

tained information in the delay period in a transient fashion, which is a documented property of RNNs

trained to maintain information in short-term memory (Orhan and Ma, 2019). This was particularly prom-

inent in the distractor task, where the representation of the cue ‘‘reactivated’’ late in the trial, after the

appearance of the distractor (Figures 4F and 4G). Oscillatory dynamics were also much more prominent

in the RNNs than in prefrontal neurons. We should note, however, that such dynamics have been

observed in other neural datasets, and arguments have been made of a significant role in working mem-

ory maintenance (de Vries et al., 2020; Lundqvist et al., 2016; Roux and Uhlhaas, 2014). Networks trained

with fixed intervals were much more likely to develop oscillatory dynamics rather than stable persistent

activity, and their ability to generalize across untrained delay intervals was limited. These examples illus-

trate that RNNs are not expected to be a precise replica of the brain. The critical question, however, was

regarding the changes in neural activity across training stages, and in that respect, RNNs followed a very

similar trajectory as the maturing PFC. Our results document several aspects of activity that do in fact

characterize improved performance in both the maturing brain and trained neural networks. We do

not wish to overstate this finding, either. Although we have explored a number of parameters, we cannot

rule out that networks starting with a high initial activity state may instead mature by virtue of decreasing

activity.

Use of RNNs to study neural processes opens up a wide array of opportunities for the study of cognitive

development. In all simulations presented in the paper, we included an ‘‘early’’ training phase, meant to

simulate the pre-adolescent state of the PFC. By definition, the immature brain is unable to execute cogni-

tive tasks at full capacity. For this reason, teaching young subjects (humans and monkeys) tasks presents

challenges. Scant neurophysiological findings are available from preadolescent subjects for this reason.

Our findings make a number of predictions for immature PFC activity to be tested in future experiments:

We posit that, in the very young PFC, levels of delay period activity are even lower than adolescent ones

(Figure 4), and it is less able to represent different stimuli (Figure 5); distractors interrupt more severely ac-

tivity representing remembered stimuli (Figure 4E); and the antisaccade task elicits even lower levels of ac-

tivity than in the adolescent state (Figure 6). Furthermore, the analysis of Figure S2 suggests an abrupt tran-

sition in working memory abilities, rather than a continuous improvement.

Further use of the RNNs training paradigm that we introduce here will also allow us to simulate a wide range

of cognitive tasks and to identify ones that exhibit the widest contrasts between early and late training
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phases. These can then be implemented experimentally, and probed in terms of behavior and neurophys-

iology, allowing us to uncover hitherto unknown processes related to cognitive maturation.
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Materials availability
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lead contact upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Behavioral and neurophysiological data

We relied on analysis of behavioral and neurophysiological results from monkeys performing working

memory and response inhibition tasks, as these have been described in detail previously (Zhou et al.,

2016a, 2016b, 2016c). Briefly, the dataset was collected from four male rhesus monkeys (Macaca mulatta)

with a median age of 4.3 years at the adolescent stage (range: 4.0–5.2 years), and 6.3 years at the adult

stage (range: 5.6–7.3). All surgical and animal use procedures were reviewed and approved by the Wake

Forest University Institutional Animal Care and Use Committee, in accordance with the U.S. Public Health

Service Policy on humane care and use of laboratory animals and the National Research Council’s Guide for

the care and use of laboratory animals. Development was tracked on a quarterly basis before, during, and

after neurophysiological recordings allowing us to ascertain that data were collected during two stages: in

adolescence, and adulthood (Zhou et al., 2016b, 2016c).

The monkeys were trained to perform two variants of the Oculomotor Delayed Response (ODR) task and

three different variants of the antisaccade task (Figure 1). The ODR task is a spatial working memory task

requiring subjects to remember the location of a cue stimulus flashed on a screen for 0.5 s. The cue was

a 1� white square stimulus that could appear at one of eight locations arranged on a circle of 10� eccentric-
ity. After a 1.5 s delay period, the fixation point was extinguished and the monkey was trained to make an

eye movement to the remembered location of the cue within 0.6 s. In the ODR with distractor variant

(ODRD), a second stimulus appeared after a 0.5 s delay, followed by a second delay period. The monkey

still needed to saccade to the original remembered stimulus. In the antisaccade task, each trial starts with

themonkey fixating a central green point on the screen. After 1s fixation, the cue appears, consisting of a 1�

white square stimulus that could appear at one of four locations arranged on a circle of 10� eccentricity for

REAGENT or RESOURCE SOURCE IDENTIFIER

Experimental models: Organisms/strains

Macaca mulatta Worldwide primates N/A

Software and algorithms

Tensorflow https://www.tensorflow.org/ v. 1.9 or higher

MATLAB https://www.mathworks.com/ R2021a

Python https://www.python.org/ v. 3.0 or higher

RNN code for analysis Zenodo https://doi.org/10.5281/zenodo.5518223
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0.1 s. The monkey is required to make a saccade at the location diametric to the cue. The saccade needed

to terminate on a 5–6� radius window centered on the stimulus (within 3–4� from the edge of the stimulus),

and the monkey was required to hold fixation within this window for 0.1 s. We used three different variants

for the antisaccade task: overlap, zero gap, and gap, differing in the sequence of the cue onset relative to

the fixation point turning off (Figure 1A). In the overlap condition, the cue appears first, and then fixation

point and cue are simultaneously extinguished. In the zero gap condition, the fixation turns off and the cue

turns on at the same time. In the gap condition, the fixation turns off and a 100 or 200 ms blank screen is

inserted before the cue onset. Visual stimuli display, monitoring of eye position, and the synchronization

of stimuli with neurophysiological data were performed with in-house software (Meyer and Constantinidis,

2005) implemented on the MATLAB environment (Mathworks, Natick, MA). Behavioral and neural results

were collected from the same animals in the young and adult stage.

Neural recordings were collected with epoxylite-coated Tungsten electrodes with a diameter of 250 mm

and an impedance of 4 MU at 1 KHz (FHC Bowdoin, ME). Electrical signals recorded from the brain were

amplified, band-pass filtered between 500 and 8 kHz, and stored through a modular data acquisition sys-

tem at 25 ms resolution (APM system, FHC, Bowdoin, ME). Recordings analyzed here were obtained from

areas 8a and 46 of the dorsolateral prefrontal cortex. Recorded spike waveforms were sorted into separate

units using an automated cluster analysis method based on the KlustaKwik algorithm. Firing rate of units

was then determined by averaging spikes in each task epoch. A total of 830 neurons from the adult stage,

and 607 neurons from the young stage were used for subsequent analysis. In the ODR task, we identified

neurons with significant elevation of firing rate in the 500 ms presentation of the cue, the 1500 ms delay

period, and the 250 ms response epoch, after the fixation point turned off. Firing rate in this period was

compared to the 1 s baseline fixation period, prior to the presentation of the cue, and neurons with signif-

icant difference in firing rate were identified (paired t test, p < 0.05). Responsive neurons in the antisaccade

task were identified based on significantly elevated responses in the 250 ms window following the onset of

the cue compared to the fixation interval.

METHOD DETAILS

Recurrent neural networks

We trained Leaky, Recurrent Neural Networks (RNNs) to perform multiple tasks simultaneously, following

established procedures used to train RNNs to perform tasks used in neurophysiological experiments

(Yang et al., 2019). Implementation was based in Python 3.6, using the TensorFlow package. We

used time-discretized RNNs with positive activity, modelled with the following equation (before

descritization):

t
dr

dx
= � r + f

�
Wrecr + Winu + b +

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ts2

recx

q �

Where t is the neuronal time constant (set to 100 ms in our simulations), u the input to the network, b the

background input, f the neuronal nonlinearity, x a vector of independent white noise process with zero

mean and srec the strength of noise (set to 0.05). Each time step (iteration) in our implementation repre-

sented 20ms. That mean that a delay of 1.5 s was represented in 75 timesteps. Networks typically contained

256 units (results shown in main figures). Results from networks with numbers of units ranging from 64 to

1024 are shown in the supplementary material. We modeled the neuron nonlinearity based on the Softplus

function

f ðxÞ = logð1 + exÞ
Results of networks with other functions are shown in the supplementary material, including ReLU (rectified,

linear function),

f ðxÞ = maxðx;0Þ
tanh (hyperbolic tangent),

f ðxÞ = tanhðxÞ= ex � e�x

ex + e�x

and retanh (rectified hyperbolic tangent):

f ðxÞ = maxðtanhðxÞ;0Þ
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Output units, z read out the non-linearity from the network as:

z = g
�
Woutr

�
;

where g(x) is the logistic function

gðxÞ = 1

1+ e�x

and Wout the weights of units connected to the output units.

Our networks received three types of noisy input: fixation, visual stimulus location, and task rule. The

weights of the recurrent unit matrix (Wrect) were initialized with random orthogonal initialization (main fig-

ures), as well as diagonal, and random Gaussian values (supplementary material). Initial input weights (Win)

were drawn from a standard normal distribution divided by the square root of the unit’s number. Initial

output weights (Wout) were initialized with the Xavier uniform initializer. The background input vector (b)

was initialized with zero values.

To train an RNN to perform the workingmemory tasks and anti-saccade tasks, we used a three-dimensional

tensor as the input to the network. This fully described the sequence of events in the six behavioral tasks

used: ODR, ODRD, overlap, zero-gap, and two gap tasks (100 and 500ms). The first dimension of the tensor

encodes the noisy inputs of three types: fixation, stimulus location, and task rule. Fixation input was

modeled as a binary input of either 1 (meaning the subject needs to fixate) or 0, otherwise. The stimulus

is considered to appear at a ring of fixed eccentricity, and its location is fully determined by the angular

dimension. Therefore, stimulus inputs consist of a ring of 8 units, with preferred directions uniformly spaced

between 0 and 2p. The rule of the task was represented as a one-hot vector with a value of 1 representing

the current task the subject is required to perform and 0 for all other possible tasks. The rule input unit cor-

responding to the current task was activated throughout the whole trial. Simulations involved 6 task inputs,

therefore the first dimension of the tensor had a total of 1 + 8+6 = 15 inputs. The second dimension of the

tensor encoded the batch size (number of trials). The third dimension encoded the time series for each trial.

A ring of 8 output units (plus one fixation output unit) similarly indicated the direction of gaze at each time

point in the trial. While the fixation point was on, the fixation output unit should produce high activity. Once

the fixation input was off, the subject had to make an eye movement (e.g. in the direction of the original

stimulus in the ODR, or in the opposite direction in the antisaccade task), which was represented by activity

in the network of tuned output units. The response direction of the network was read out using a population

vector method. A trial is considered correct only if the network correctly maintained fixation (fixation output

unit remained at a value >0.5) and the network responded within 36� of the target direction.

Each task can be separated into distinct epochs which duration was equal to the duration of the corre-

sponding task in the neurophysiological experiments, described above. Fixation (fix) epoch is the period

before any stimulus is shown, and lasted for 1 s. It was followed by the stimulus epoch 1 (stim1), which

was equal to 0.5 s for the ODR and ODRD tasks, and 0.1 s for the antisaccade tasks. If there are two stimuli

separated in time, or if the stimulus and response are separated in time, then the period between the two is

the delay epoch (1.5 s in the ODR task, 0.5 s in the ODRD task) and the second stimulus is epoch 2 (stim2,

equal to 0.5 s). The period when the network should respond is the go epoch.

The RNNs are trained with supervised learning, based on variants of stochastic gradient descent, which

modifies all connection weights (input, recurrent and output) to minimize a cost function L representing

the difference between the network output and a desired (target) output (Yang andWang, 2020). We relied

on the Adam optimization algorithm (Kingma and Ba, 2015) to update network weights iterative based in

training data. For each step of training, the loss is computed using a small number M of randomly selected

training examples, or minibatch. Trials representing all six tasks were included in a single minibatch during

training of our networks. Trainable parameters, collectively denoted as q are updated in the opposite

direction of the gradient of the loss, with a magnitude proportional to the learning rate h:

Dq = � h
vL

vQ

We found that the ability of the networks tomaster the task was quite sensitive to the value of h. This was set

to 0.001 for most of the simulations included in the paper.
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The activity of recurrent units was read out at discrete time points representing 20 ms bins. These can be

compared with ‘‘Peri-stimulus Time histograms’’ of real neurons. Different stages of network training were

used to simulate different developmental stages or task-training phases. For most analyses, we used both

mixed training (the six tasks were randomly interleaved during training) and independent training (the

network learned one task rule each time). We defined three ‘‘developmental’’ stages as the trial in which

the network achieved <35%, 35-65% and >65% correct performance, respectively. Networks were allowed

to continue training, until they reached 100% performance, when no errors were detected and hence

weights would no longer be updated. Firing rates of individual units and averages across units are typically

presented as normalized rates, obtained by subtracting the unit’s baseline firing rate (obtained in the 1 s

period prior to the appearance of the cue) from the unit’s raw firing rate during the course of the trial, and

dividing by the same baseline firing rate.

QUANTIFICATION AND STATISTICAL ANALYSIS

Response dynamics

Demixed Principal Component Analysis (dPCA) was performed, as we have described elsewhere (Kobak

et al., 2016). The input is a four-dimensional array which represents number of neurons, discharge rate

within a 20ms bin, stimulus locations, and trials for each stimulus condition. The method treats the

responses of each neuron across time and stimulus conditions as one dimension, and then performs dimen-

sionality reduction to determine components that correspond to stimulus and task variables. dPCA was

performed independently on groups of RNN units and PFC neurons recorded from different maturation

stages.

Discharge rate across the length of the trial was calculated at every 200 ms window bins with an incremental

step of 20 ms, and data from eight trials for the eight stimulus locations were then used for the analysis.

Data from 256 RNN units were always used for RNN simulations. Decoding analysis was performed on

the same dataset relying on an SVM classifier. The classifier was trained with a subset of trials at one window

bin, and then tested with the remaining trials at the same window bin, and other window bins.

To visualize the timing of unit activation across the network, we sorted units by the time bin in which they

achieved their peak firing rate, then plotted their rate in a uniform scale by dividing their firing rate in each

time bin divided by each unit’s peak firing rate.

Training and testing with different delay intervals

Fully trained networks with the standard 1.5 s delay period for the ODR task were tested with a 3.0 s delay

period and vice versa. For these simulations, only the duration of the delay interval during the test runs was

altered, while the structure of the network and representation of stimuli and output remained the same.

Additionally, we trained RNNs with a variable delay interval. In these networks, each minibatch of the

ODR task contained 5 delay intervals varying from 0.5 to 2.5 seconds, spaced 0.5 s apart. Once the network

was fully trained, it was then tested with different delay periods, including a 3.0 s delay, which was longer

than any interval trained with.

ll
OPEN ACCESS

20 iScience 24, 103178, October 22, 2021

iScience
Article


	ISCI103178_proof_v24i10.pdf
	Emergence of prefrontal neuron maturation properties by training recurrent neural networks in cognitive tasks
	Introduction
	Results
	RNN activity in working memory tasks
	RNN dynamics during working memory
	RNN activity in response inhibition tasks
	Task learning and generalization
	Network hyper-parameters

	Discussion
	Parallel neural and RNN changes
	Limitations of study

	Supplemental information
	Acknowledgments
	Author contributions
	Declaration of interest
	References
	STAR★Methods
	Key resources table
	Resource availability
	Lead contact
	Materials availability
	Data and code availability

	Experimental model and subject details
	Behavioral and neurophysiological data

	Method details
	Recurrent neural networks

	Quantification and statistical analysis
	Response dynamics
	Training and testing with different delay intervals





