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ABSTRACT
Objective  Compare performance between an injury 
prediction model categorising predictors and one that 
did not and compare a selection of predictors based 
on univariate significance versus assessing non-linear 
relationships.
Methods  Validation and replication of a previously 
developed injury prediction model in a cohort of 1466 
service members followed for 1 year after physical 
performance, medical history and sociodemographic 
variables were collected. The original model dichotomised 
11 predictors. The second model (M2) kept predictors 
continuous but assumed linearity and the third model 
(M3) conducted non-linear transformations. The fourth 
model (M4) chose predictors the proper way (clinical 
reasoning and supporting evidence). Model performance 
was assessed with R2, calibration in the large, calibration 
slope and discrimination. Decision curve analyses were 
performed with risk thresholds from 0.25 to 0.50.
Results  478 personnel sustained an injury. The original 
model demonstrated poorer R2 (original:0.07; M2:0.63; 
M3:0.64; M4:0.08), calibration in the large (original:−0.11 
(95% CI −0.22 to 0.00); M2: −0.02 (95% CI −0.17 to 
0.13); M3:0.03 (95% CI −0.13 to 0.19); M4: −0.13 (95% 
CI −0.25 to –0.01)), calibration slope (original:0.84 (95% 
CI 0.61 to 1.07); M2:0.97 (95% CI 0.86 to 1.08); M3:0.90 
(95% CI 0.75 to 1.05); M4: 081 (95% CI 0.59 to 1.03) 
and discrimination (original:0.63 (95% CI 0.60 to 0.66); 
M2:0.90 (95% CI 0.88 to 0.92); M3:0.90 (95% CI 0.88 to 
0.92); M4: 0.63 (95% CI 0.60 to 0.66)). At 0.25 injury risk, 
M2 and M3 demonstrated a 0.43 net benefit improvement. 
At 0.50 injury risk, M2 and M3 demonstrated a 0.33 net 
benefit improvement compared with the original model.
Conclusion  Model performance was substantially worse 
in the models with dichotomised variables. This highlights 
the need to follow established recommendations when 
developing prediction models.

INTRODUCTION
Injury to the musculoskeletal system enacts 
a significant health burden at both the indi-
vidual and societal levels.1 This has prompted 
an entire line of research aimed at identifying 
methods to accurately predict which indi-
viduals are at higher risk for injury.2 3 Valid 
prediction models have the potential to iden-
tify targets for intervention and prevention 

strategies aimed at reducing injuries. A 
substantial problem currently in the field of 
modelling prediction (ie, risk) within medi-
cine in general revolves around the use of 
suboptimal practices in the planning, devel-
opment and execution of these studies4, and 
the sports and musculoskeletal injury liter-
ature are no exception.5 This poor practice 
can lead to substantial bias. This problem has 
also led to the development of guidelines and 
checklists to improve the quality of executing 
prediction modelling studies.6–8

Two practices that go against published 
recommendations, but continue to be 
common, are dichotomising continuous-level 
predictors 9–11 and choosing predictors based 
on their significance in univariable analysis.12 
The arguments for these practices are that 
they simplify the process, create clearly defined 
decision points and are easier to implement 
in real-world settings. For example, our prior 
research found ankle dorsiflexion asymmetry 
>5° to be a predictor of injury risk in a multi-
variate model.13 14 Although this provides a 

WHAT IS ALREADY KNOWN ON THIS TOPIC
	⇒ Dichotomising predictors often result in suboptimal 
prediction models (poor model fit, calibration in the 
large, calibration slope and discrimination) com-
pared with models that keep predictors continuous.

	⇒ Dichotomising predictors reduces the ability to ac-
curately identify tactical athletes at risk for injury.

WHAT THIS STUDY ADDS
	⇒ This study provides real-world examples of how 
model performance is affected with these subopti-
mal practices and how much better injury prediction 
science can be when using proper methods.

HOW THIS STUDY MIGHT AFFECT RESEARCH, 
PRACTICE OR POLICY

	⇒ It is imperative to keep injury predictors continuous 
when evaluating injury risk, which is currently not 
standard practice.

	⇒ Personalising prediction models that are informative 
and simple to implement are still possible when us-
ing continuous-level predictors.
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simple and easy method to interpret cut-off value, these 
practices oversimplify the process, potentially including or 
excluding relevant predictors, and needlessly decreasing 
the predictive value of the individual variable.2 15 These 
practices may also limit the validity of injury prediction 
models, considering the multivariate nature of the muscu-
loskeletal injury and the complexity and interrelationship 
of predictors associated with injury risk.2 15

The historical use of dichotomising continuous predic-
tors16 or using univariate analysis to prioritise predictors 
of interest4 12 may be an oversimplification that could 
come with consequences to model performance.17 In 
fact, while the findings may seem easier to implement, 
they could also be incorrect, failing to fully account for 
the complexity of injuries.2 18 Our objective was to investi-
gate how both dichotomisation of continuous predictors 
and selection of predictors based on univariable signif-
icance influence model development and subsequent 
performance. Using a prediction model previously 
developed using univariable screening and dichotomis-
ation of continuous predictors, we aimed to quantify the 
impact on predictor selection and performance of the 
prediction model performance if best practice modelling 
approaches were implemented.19 Specifically we sought 
to (1) determine if and how model performance would 
improve if continuous predictors were not dichotomised, 
(2) determine how model performance would change if 
predictors were selected appropriately rather than based 
only on univariable significance and (3) demonstrate 
that a personalised and pragmatic prediction model can 
still be generated when continuous predictors were not 
dichotomised.

METHODS
Study design and overview
This is a validation and replication study. Our team 
originally derived a model for predicting musculoskel-
etal injury by dichotomising continuous predictors and 
choosing predictors based on univariable significance.13 
Briefly, the original study enrolled 1466 military service 
members who, at study entry, were considered healthy and 
without any physical duty restrictions. Following initial 
recruitment, 11 withdrew from the study, and 25 had an 
undisclosed injury at baseline, leaving 1430 final partici-
pants. At baseline, 158 potential predictors of injury risk 
were collected from participants. Injury surveillance took 
place over 1 year within two diverse subgroups based on 
occupational requirements. The first cohort consisted of 
320 US Army Rangers14 and the second cohort consisted 
of 1146 regular US Army Soldiers.13

Predictors
Possible predictors included physical performance 
measures (Functional Movement Screen [FMS], Y-Bal-
ance Test for the upper and lower quarter, and hop 
testing),20–22 medical history to include prior injuries, 
surgeries and lost work days due to a previous injury, 
and perceived recovery using the Single Assessment 

Numerical Evaluation (SANE; 0%–100%). Physical 
fitness scores that included sit-ups, push-ups and a two-
mile run were also collected based on most recent test 
score at the beginning of the data collection period 
(within 6 months).23 24 Specific details for the physical 
performance testing have been published.25

Outcome definition
An injury was defined in the original study as a care-
seeking encounter in which an injury diagnosis code 
(International Classification of Diseases, Ninth Edition) 
was rendered in the participant’s electronic medical 
record with associated time lost from military duties.26 
Time loss was captured from the e-profile database within 
the Military Operational Data System (MODS), which 
lists the total number of days assigned to restricted duty 
and reason for that restriction.

Statistical analyses
Participant characteristics were described using median 
(min, max) for continuous predictors, and frequencies 
and percentages for categorical predictors. Injury inci-
dence was calculated per 1000 military exposure days.

Summary of statistical approach in original prediction model
The original model was developed using logistic regres-
sion to calculate individual risk of injur. All continuous 
predictors were dichotomised at cut points based on values 
from literature or thresholds determined during the data 
analyses (eg, median cut point, receiver operating char-
acteristic curves). Please refer to the model development 
section for further information on each predictor cut 
point (ie, threshold). All count and nominal predictors 
were collapsed into binary predictors. Predictors were 
originally chosen based on significance in univariable 
testing (t-test with p<0.20 or OR>2.0) and then entered 
into a final multivariable model where only predictors 
with a p≤0.05 were retained. Participants who sustained 
an injury, but did not seek medical care, were excluded 
from the model. A simplified tool was then created based 
on a count of the presence of the resulting 11 predictors 
that were retained in the model (ranging from 0 to 11), 
with a score of 7 or more used as an indication that an 
individual is at high risk for injury.

Statistical approach for model validation (new approach)
All data were investigated for missingness prior to anal-
yses, with missing data being low (age: 0%, military years: 
0%, body mass index: 0%, SANE: 0%, Y-Balance Test 
(Lower and Upper Quarter: <0.1%), 2 Mile Run 2%, Sit 
Ups: 2%). Complete-case analyses were performed.

Prior to model development, continuous predictors 
were assessed for non-linear relationships with sustaining 
a musculoskeletal injury through restricted cubic splines 
using three, four and five knots.27 A restricted cubic 
spline is a non-linear piecewise polynomial (non-linear 
calculation) joined at specific knots throughout the data. 
Knots are quantile mark points in which each segment 
(between each knot) is assessed for potential non-linear 
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relationships.27 The range of data is joined at each 
successive knot, allowing for different non-linear rela-
tionships to be assessed throughout the entirety of the 
data.27 A data-driven approach using Akaike information 
criterion was used to determine potential non-linear 
transformations. It was determined that military service 
years, number of injuries over the prior year and timed 
sit-ups were best explained by a non-linear relationship 
of 3 knots, while two-mile run time was best explained 
by four knots (online supplemental appendix SA.1.1). 
All other continuous predictors had a linear relationship 
with sustaining a musculoskeletal injury.

Sample size calculation
A priori sample size calculations were performed prior 
to model development, using the R package pmsampsize. 
Sample size requirements for developing a multivariable 
risk prediction model involve specifying three compo-
nents: the anticipated model R2, the injury prevalence, 
and the total number of predictor parameters.28 As we 
used an existing dataset, with a fixed sample size of 1430 
participants, the number of predictors was determined 
through the sample size calculations. The Cox-Snell R2 
of 0.12 from the originally developed model was used,13 
and the prevalence of musculoskeletal injury was 0.34. It 

was determined that a total of 21 predictor parameters 
could be examined for potential inclusion in the predic-
tion model.

Model development
The Transparent Reporting of a multivariable prediction 
model for Individual Prognosis or Diagnosis (TRIPOD) 
was followed for reporting all aspects of model develop-
ment.19 All models were fit using logistic regression, with 
the occurrence of a time loss musculoskeletal injury as 
the outcome, and internally validated with 2000 boot-
straps to correct for performance optimism. The original 
model (M1) choose variables based on univariable signif-
icance and dichotomised all 11 predictor variables. The 
first variation of the model (M2) kept the predictor 
continuous (instead of dichotomising) but assumed 
all predictors were linear. The next model (M3) kept 
predictors continuous and appropriate non-linear trans-
formations were accounted for (rather than assuming 
all relationships with linear predictors would be linear). 
Model 4 was developed to further highlight the impact 
of dichotomising predictors even when predictors 
were selected the recommended proper way (based on 
evidence to support the variable and clinical reasoning/
consensus) rather than based on univariable significance. 

Table 1  Participant descriptive statistics

Predictor
All participants
(n=1430)

Injured
(n=478)

Non-injured
(n=952)

Age (years) 23.0 (18.0, 45) 23.0 (18.0, 44.0) 23.0 (18.0, 45.0)

Male sex (%) 1353 (94.6) 435 (91.0) 914 (96.0)

Body mass index (kg/m2) 26.5 (18.5, 39.1) 26.5 (18.4, 39.1) 26.5 (18.5, 37.7)

Military service years 3.0 (0, 8) 3.0 (0, 7) 3.0 (0, 8)

SANE 100 (0, 100) 100 (15, 100) 100 (0, 100)

Individuals with history of orthopaedic surgery (%) 100 (7) 43 (9) 67 (7)

Current smoker (%) 415 (29.0) 149 (31.2) 267 (28.0)

Individuals with previous limited duty status in 
previous year (%)

601 (42.0) 263 (55.0) 343 (36.0)

Individuals who report pain (%) 286 (20.0) 120 (25.1) 172 (18.1)

FMS total score 14 (3.0, 21) 14.(3, 20) 15 (4, 21)

FMS total asymmetries 1 (0, 9) 1 (0, 7) 1 (0, 9)

Closed chain dorsiflexion asymmetry (cm) 3.0 (0.0, 30) 2.0 (0.0, 27) 3.0 (0.0, 30)

Y-Balance lower quarter composite (%LL) 98.9 (67.8, 139.0) 99.5 (71.0, 123.0) 98.7 (67.8, 139.0)

Y-Balance anterior reach (%LL) 67.6 (45.5, 98.9) 67.0 (45.5, 93.6) 68.4 (48.4, 98.9)

Y-Balance upper quarter composite (%LL) 90.2 (56.1, 117.9) 89.5 (56.1, 116.6) 90.6 (57.4, 117.9)

Y-Balance superolateral reach (%LL) 67.0 (35.1, 118.0) 66.6 (35.1, 118.0) 67.5 (37.3, 111.0)

Y-Balance inferolateral asymmetry (%LL) 4.5 (0, 90.5) 4.5 (0, 90.5) 4.5 (0, 84.5)

Triple hop (cm) 451.1 (141.0, 684.0) 445.0 (141.0, 683.0) 453.0 (189.5, 684.0)

2 mile run time (s) 855 (2310) 870 (672, 2310) 848 (590, 2220)

2 min sit ups 71.4 (27, 131) 70.0 (27, 111) 71.0 (35, 131)

Statistics are reported as median (min, max) for continuous variables or N (%) for count variables unless otherwise noted.
.FMS, Functional Movement Screen; %LL, % limb length; SANE, Single Assessment Numeric Evaluation.

https://dx.doi.org/10.1136/bmjsem-2022-001388
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This model resulted in 4 additional predictor variables 
(15 total) being added to the model (none of the orig-
inal ones excluded), but kept them dichotomous like 
the original model. Finally, one last model (M5) was 
created following best practices in all regards; predictors 
were chosen based on rationale from the literature and 
clinical expertise (like M4) and all predictors were kept 
continuous along with accounting for non-linear trans-
formations (like M3).

The five models included:
	► Model 1: The original model13 included the following 

11 predictors chosen based on univariable signifi-
cance (p>0.25): (1) age (≥ 26.0), (2) sex, (3) prior 
injury (≥1), (4) SANE (≤92.5%), (5) Profile Time 
During Past Year (>1), (6) Pain on Movement Tests 
(>= 1), (7) Dorsiflexion Asymmetry (≥4.5°), (8) 
YBT-LQ Anterior Reach Distance (≤72.0%), (9) 
YBT-UQ Superolateral Reach Distance (≤80.1%), 
(10) YBT-UQ Inferolateral Asymmetry (≥7.75%), 
(11) 2 Mile Run Time (≥919.5 s).

	► Model 2: The original model except for all continuous 
predictors were kept continuous and was assumed to 
be linear.

	► Model 3: The original model except for all contin-
uous predictors were kept continuous and non-linear 
transformation was conducted when appropriate.

	► Model 4: A model developed conforming to the a 
priori sample size calculations. Based on rationale 
from the literature and clinical reasoning, 15 predic-
tors (continuous variables; 11 from the original 
model plus 4 new ones) were dichotomised based 
on the original study cut points. The additional four 
prredictors included: (1) body mass index (≥ 27.5), 
(2) Number of Sit Ups (≤85.5), (3) Triple hop test 
score (<= 450), (4) FMS total score (≤14).

	► Model 5: Predictor variables from M4 and treatment 
of continuous variables as was done in M3 (keeping 
continuous predictors as continuous; proper non-
linear transformation when appropriate).

Table 2  Comparing model performance of the injury prediction models

Model 
performance 
metric

Original model
(M1)

Original model 
with linearity 
assumed for 
continuous 
predictors
(M2)

Original model 
with continuous 
predictors 
and non-linear 
transformations
(M3)

Original model 
with further 
included 
predictors that 
are dichotomised 
(M4)

Predictor selection 
based on rationale from 
literature and clinical 
reasoning and kept 
continuous with non-
linear transformations 
(M5)

Discrimination† 0.63
(0.60 to 0.66)

0.89
(0.87 to 0.91)

0.90
(0.88 to 0.92)

0.63
(0.60 to 0.66)

0.90
(0.87 to 0.93)

Calibration in the 
Large

−0.11
(−0.22 to 0.00)

−0.02
(−0.17 to 0.13)

0.03
(−0.13 to 0.19)

−0.13
(−0.25 to –0.01)

0.04
(−0.12 to 0.20)

Calibration slope 0.84
(0.61 to 1.07)

0.97
(0.86 to 1.08)

0.92
(0.76 to 1.10)

0.81
(0.59 to 1.03)

0.87
(0.72 to 1.02)

R2 0.07
(0.05 to 0.09)

0.56
(0.48 to 0.64)

0.64
(0.58 to 0.70)

0.08
(0.05 to 0.11)

0.63
(0.56 to 70)

Brier Score 0.21 0.12 0.11 0.21 0.12

Discrimination, calibration in the large, calibration slope and R2 are reported with 95% CIs.
*All model performance is reported following 2000 bootstraps.
†Discrimination is reported as area under the curve where 0.50=no discrimination and 1.00=perfect discrimination.

Figure 1  Calibration slope of original developed model 
(M1). Calibration is the relationship between predicted 
and actual probability of the event. The calibration slope 
plots the predicted risk graphically against the observed 
outcome; displaying the calibration intercept and calibration 
slope. perfect calibration would result in a 45° line. Within 
this calibration plot, risk does not begin until 0.20. What 
this clinically means is that everyone’s risk cannot be 
lower than 0.20. Individuals with little risk of injury may be 
inappropriately referred for clinical care.
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Following model development and internal validation, 
a dynamic multivariate nomogram was created with the 
rms package.29 Because coefficients alone are less helpful 
in real-world practice, nomograms facilitate implementa-
tion of findings by reducing statistical prediction models 
to a single numeric estimate of the probability of the 
event. As values for predictors are adjusted in the nomo-
gram, the user can see this estimate for the probability of 
the event change accordingly. A probability of 0 indicates 
that injury is unlikely whereas a score closer to 1 indicates 
a strong likelihood of injury.

Model performance
Model performance was investigated by assessing Nagelk-
erke R2, Brier score, calibration in the large, calibration 
slope and discrimination. The Brier score is a prediction 
performance measure that combines discrimination and 
calibration. A lower score is improved performance. 
Calibration in the large assesses the average predicted 
outcome compared with the average actual outcome, 
with a calibration in the large of zero demonstrating 
optimal performance. Calibration slope measures agree-
ment between predicted risks from the model and what 
was observed, while discrimination evaluates how well the 

model differentiates between those with and without the 
outcome. Calibration was plotted graphically with the 
the predicted risk against the observed outcome using 
a loess smoother. Calibration shows the predicted risk 
graphically against the observed outcome, displaying the 
calibration intercept and calibration slope. Discrimina-
tion was evaluated by the area under receiver operating 
characteristic curve (AUC). An AUC of 0.5 implies the 
model is no better than random guessing. An AUC of 1.0 
demonstrates perfect (100%) discrimination.

Decision curve analysis, by using 10-fold cross-
validation, was performed to determine the net benefit 
of incorporating the arm injury prediction model into 
clinical practice.30 31 The net benefit is the fraction of 
true positives gained by making decisions based on 
predictions over a range of plausible risk thresholds.30 31 
The a priori risk threshold probability was defined in 
cooperation with stakeholder groups and from review of 
previous military injury risk literature.14 32 33 As injury risk 
can vary between military personnel, the net benefit was 
calculated through a range of predicted risks, ranging 
from 0.25 to 0.50.14 32 33 For each model, net benefit 
was compared with strategies that assume all military 
personnel are at high risk (‘treat all’) and assuming all 
are at low risk (‘treat none’).31 34 To put in further clin-
ical context, ‘treat all’ would be equivalent to providing 

Figure 2  Calibration slope of original developed model 
replicated with continuous predictors; linearity assumed 
(M2). Calibration is the relationship between predicted and 
actual probability of the event. The calibration slope plots 
the predicted risk graphically against the observed outcome; 
displaying the calibration intercept and calibration slope. 
perfect calibration would result in a 45° line. The predicted 
risk is lower between 0.20 and 0.40, compared with the 
actual risk for these individuals. What this means clinically is 
that these individuals would be under estimated for their true 
risk of injury, and potentially not referred to the appropriate 
clinical care or injury prevention strategies.

Figure 3  Calibration slope of original developed model 
replicated with continuous predictors and non-linear 
transformations (M3). Calibration is the relationship 
between predicted and actual probability of the event. The 
calibration slope plots the predicted risk graphically against 
the observed outcome; displaying the calibration intercept 
and calibration slope. Perfect calibration would result in a 
45° line. Predicted risk between 0.20 and 0.40 is slightly 
lower than actual risk, which may alter clinical decisions for 
individuals within this risk threshold.
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every soldier with an individualised injury prevention 
programme targeting these risk factors. On the other 
hand, ‘treat none’ would entail ‘watchful waiting’ or 
potentially providing only generic programmes to all 
military personnel. These analyses are performed to help 
improve resource allocation (ie, providing unnecessary 
individualised injury prevention programmes) preci-
sion of efforts towards at-risk military personnel.31 34 All 
analyses were performed in R V.3.5.1. The rms and Hmisc 
packages were used for prediction model development, 
the caret package was used for internal validation, the 
CalibrationCurves package was used to visualise calibra-
tion, and the rmda package was used for decision curve 
analyses and plotting.

Multivariable nomograms
Multivariable nomograms were created for the original 
model replicated with continuous predictors and non-
linear transformations (M3) and also for the model 
using all optimal practices (M5) found in SA1.7 to SA1.8. 
A dynamic multivariable nomogram for the newly devel-
oped model was created using the rms package 29 (link 
and legend provided in SA1.9).

Patient and public involvement statement
This was a secondary analysis of prior collected data. 
As such, no patients or other public stakeholders were 
involved in this study.

RESULTS
A total of 1466 military personnel were included in this 
cohort. After removing 11 that withdrew and 25 with an 
undisclosed injury at baseline, 1430 remained for the 
final analysis (table 1). Injury incidence was 1.3 per 1000 
military exposure days with 478 personnel sustaining an 
injury during the study period.

Comparison of model performance
The original model replicated with continuous predictors 
with linearity assumed (M2) and non-linear transfor-
mations (M4) demonstrated improved overall model 
performance compared with the original model, with a 
0.26–0.27 improvement in AUC, a 0.06–0.13 improve-
ment in calibration slope, 0.49–0.57 increase in R2, and 
a 0.08–0.09 improvement in Brier score.13 Including a 
greater number of predictors, but keeping them dichot-
omised (M3) demonstrated similar performance to the 

Figure 4  Calibration slope when using best practices 
to choose predictors (added several new predictors), but 
keeping them all dichotomised (M4). Calibration is the 
relationship between predicted and actual probability of 
the event. The calibration slope plots the predicted risk 
graphically against the observed outcome; displaying the 
calibration intercept and calibration slope. Perfect calibration 
would result in a 45° line. Within this calibration plot, risk 
does not begin until 0.20. What this clinically means is that 
everyone’s risk cannot be lower than 0.20. Individuals with 
little risk of injury may be inappropriately referred for clinical 
care.

Figure 5  Calibration slope of optimal model developed 
based on appropriately chosen predictors, keeping 
predictors continuous and conducting appropriate non-linear 
transformations (M5). Calibration is the relationship between 
predicted and actual probability of the event. Perfect 
calibration would result in a 45° line. The calibration slope 
plots the predicted risk graphically against the observed 
outcome; displaying the calibration intercept and calibration 
slope. This calibration model demonstrates risk from 0.00 
to 1.0, and has the most uniform predicted risk to the actual 
risk. Predicted risk between 0.20 and 0.40 is lower than 
actual risk, which may alter clinical decisions for individuals 
with the least risk of injury.
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original model (table 2). The original model (M1) did 
not calibrate below 0.20 risk (figure 1). The M2 model 
did not demonstrate stable calibration across risk thresh-
olds (figure 2). The M4 model did not calibrate below 
0.20 risk (figure 3). Wide CIs were noted for M3 below 
0.30 risk (figure  4). Finally, the optimal model (M5) 
performed similarly to M3 (figure 5). Full mathematical 
descriptions of all models are in the online supplemental 
appendix (SA1.2-SA1.6).

Decision curve analyses
The original model with continuous predictors and 
linearity assumed (M2) and the original model with 
non-linear transformations (M3) demonstrated a greater 
net benefit at the a priori range of 0.25 to 0.50 injury 
risk compared with the original model (M1) and larger 
dichotomised model (M4) (table 3 and figure 6). At 0.25 
injury risk, the M3 model demonstrated a 0.47 net benefit 
improvement compared with the original model (M1). 
In other words, out of 100 military personnel the orig-
inal model with continuous predictors and non-linear 
transformations and the newly developed model would 
improve injury identification by 47 military personnel 
compared with the original model. At 0.50 injury risk, 
the M3 demonstrated a 0.36 net benefit improvement 
compared with the original model (M1). In other words, 
out of 100 military personnel the M3 would improve 
injury identification by 36 military personnel compared 
with the original model.

DISCUSSION
The main findings of this study were that the original 
model (M1) with dichotomised predictors demonstrated 
decreased performance compared with models that 
maintained continuous models as continuous (M2 and 
M3). Even when choosing predictors, the proper way 
(rather than relying on univariable significance) model 
performance was still suboptimal when those predictors 
remained dichotomised (M4). Model performance did 
not improve with new predictors compared with the 
original model, suggesting that properly using contin-
uous predictor variables (eg, not dichotomising and not 
assuming linearity) may be a more important task than 
predictor selection when developing optimal injury 
prediction models in this population.

Our results highlight stark differences in model deriva-
tion and performance when using different approaches. 
When replicating the original model (M1) with proper 
use of predictors (eg, not dichotomising continuous 
predictors (M2) and assessing for non-linear relation-
ships (M3)), all model prediction performance metrics 
(ie, discrimination, calibration and model fit) and clin-
ical decisions improved. These findings support previous 
literature detailing how artificially dichotomising contin-
uous predictors lose information, decrease prediction 
precision and impair clinical decisions.9–11 16 When appro-
priately choosing predictors based on clinical reasoning 
and supporting evidence but still dichotomising the 
continuous predictors (M4), model performance was still 
suboptimal and similar to the original model. When those 
same continuous predictors were accounted for appro-
priately in the model (M5), the performance improved 

Table 3  Net benefit of military personnel injury risk identification using a ‘treat all’ approach, the original model, the original 
model with continuous predictors and non-linear transformations, and a newly developed model

Injury 
risk

Cost: 
benefi† ‘Treat all’

Original 
model
(M1)

Original 
model with 
linearity 
assumed 
for 
continuous 
predictors 
(M2)

Original model 
with continuous 
predictors 
and non-linear 
transformations
(M3)

Original 
model with 
further 
included 
predictors 
that are 
dichotomised 
(M4)

Predictor selection 
based on rationale 
from literature 
and clinical 
reasoning and 
kept continuous 
with non-linear 
transformations 
(M5)

Treat 
none

0.25 1:3 0.35 0.36 0.79 0.79 0.38 0.77 0.00

0.30 3:7 0.16 0.25 0.69 0.70 0.25 0.70 0.00

0.35 7:13 −0.05 0.19 0.61 0.61 0.14 0.59 0.00

0.40 2:3 −0.31 0.08 0.47 0.45 0.08 0.47 0.00

0.45 9:11 −0.60 0.06 0.39 0.39 0.06 0.39 0.00

0.50 1:1 −0.96 0.03 0.36 0.36 0.07 0.36 0.00

*The threshold probability was defined as the population risk of injury within military personnel of 0.25–0.50. The original model with 
continuous predictors and non-linear transformations and the newly developed model demonstrated improved net benefit (ie, resource 
allocation) compared with ‘treat all’ and the original model at these threshold probabilities.
†Cost:benefit reports the acceptability of performing a certain number of screens to find one patient with the outcome (eg, injury). For 
example at an injury risk threshold of 0.20, clinicians would be willing to perform screens on 5 patients to find one military personnel truly at 
risk for an injury.

https://dx.doi.org/10.1136/bmjsem-2022-001388
https://dx.doi.org/10.1136/bmjsem-2022-001388


8 Rhon DI, et al. BMJ Open Sp Ex Med 2022;8:e001388. doi:10.1136/bmjsem-2022-001388

Open access

substantially and was similar to M3. This suggests that 
the predictors originally chosen were appropriate and 
robust for predicting injuries, even if the way they were 
initially selected was based on univariable relationships 
with injury. Conceptually, using dichotomised predic-
tors, even when predictors were selected appropriately, 
was almost no better than taking a ‘treat all’ approach 
without an attempt to identify more personalised injury 
risk. The constructs for predicting injury were correct, 
but their original definition and use in the model were 
suboptimal. These results highlight in a practical way how 
the many advances in prediction modelling approaches 
made over recent years can apply to the sports sciences. 
Statistical guidelines provide warning about the poten-
tial consequences of various substandard approaches 
to deriving prediction models.9–11 Our results highlight 
real-world examples of these consequences.

One common argument for dichotomising predic-
tors is that they are simpler to interpret. But continuous 
predictors are continuous for a reason, often reflecting 
a wide range of values. For example, a cut point of 93 
for perceived recovery after injury (0 indicating no 

recovery to 100 indicating full recovery) places individ-
uals with a score of 92.5 and 10 in the same category, 
below the dichotomous cut-point. The model cannot 
discriminate between the wide range of values once it has 
been dichotomised, leading to an improper and biased 
assessment of the utility of that variable as a predictor. In 
the original injury prediction model, the 11 final predic-
tors were entered into a prognostic accuracy profile to 
calculate sensitivity, specificity and likelihood ratios. The 
appeal was in the value for the stakeholder (eg, the indi-
vidual, the unit commander), who could simply assess the 
change in injury likelihood by counting the number of 
predictors present.

There are solutions however for personalising 
prediction models and making them easier to inter-
pret. Multivariable nomograms can plot all predictors, 
including continuous predictors and provide similar prob-
abilities. This can improve the precision of the prediction 
models at the single-person level and improve interpre-
tation of interdependent relationships of the predictors. 
For example, as values from continuous predictors go up 
and down, the end-user can see how the probability of 
injury changes. Online supplemental appendix (SA1.13–
15) provide a multivariable nomogram tool created 
specifically for the two additional developed models. 
An example of the dynamic nomogram is provided in 
figure 7 We feel this is a more meaningful and accurate 
tool to inform individual risk for injury. Another frame-
work to help simplify this could be to develop certain 
actions based on specific risk thresholds. Using a traffic 
light example which is common in military settings, a risk 
score of <0.25 may be interpreted as a ‘green light’ (low 
risk, no action needed), a score of 0.25–0.50 as a ‘yellow 
light’ (moderate risk) and a score of >0.50 as ‘red light’ 
(high risk). Yellow light individuals could be flagged for 
further assessment and treatment. Red light individuals 
could be held back from returning to duty until identi-
fied risk factors were properly addressed and a lower risk 
score was observed.

It should be noted that these models used a complete 
case analysis, as the prevalence of missing data was low, 
with a missing mechanism of missing at random. However, 
data prototypically have a higher missing prevalence, and 
require methods to handle missing data bias.35 In these 
cases, multiple imputation is advised.36 Multiple imputa-
tion involves predicting (ie, imputing) missing values to 
estimate the distribution of the data.36 37 Imputation is 
performed multiple times to account for uncertainty in 
the missing data, creating many individual data sets. Data 
sets are analysed independently, with each dataset aggre-
gated into one uniform result.35 37

This study has limitations. First, the original cohort was 
broken down into two occupational subgroups,13 14 each 
with its own independent prediction model. The repli-
cation of the previous model and the derivation of the 
new model occurred using the entire cohort. Performing 
an internal–external validation strategy would have 
improved generalisability for the analyses38; however, this 

Figure 6  Decision curve for the prediction models to 
predict injury risk in military personnel. The figure reports 
the expected net benefit compared with not predicting 
injuries. ‘Treat all’ assumes that all military personnel are 
at a high risk for injury and should be intervened on, while 
treat none assumes that all military personnel are at a low 
risk for injury and NO interventions should be performed. 
The threshold probability was defined as the population 
risk of injury within military personnel of 0.25–0.50. The 
models keeping predictors continuous (M2, M3, M5) non-
linear transformations (M3, M5) all demonstrated improved 
net benefit (ie, correct injury identification) compared with 
‘treat all’ and the original (M1) model and the original model 
with further added dichotomised predictors (M4) at these 
threshold probabilities.
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was not possible with the relatively small size of the Army 
Ranger unit. Including everyone in the cohort makes the 
results more practical, as all these individuals would be 
present in real-world use of the model. However, future 
external validation is required to understand the gener-
alisability of these models to other military populations.

CONCLUSION
Our previously derived injury prediction model based on 
dichotomous cut points for most predictors was no better 
than not trying to predict individualised injury risk (eg, 
treat all). It demonstrated worse performance compared 
with proper statistical approaches to modelling injury risk 
that properly accounted for continuous-level predictors. 
When the original predictors were kept continuous, the 
model performed extremely well. Although models using 
continuous predictors may be harder to interpret, the use 
of multivariable nomograms and categorical frameworks 
of injury risk can provide an equally meaningful individ-
ualised risk profile. This highlights even further the need 
to follow best practices and guidelines for developing 
prediction models and to clearly report the methods to 
maximise transparency and reproducibility.
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