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Abstract
Background Emerging evidence has shown that SARS-CoV-2 may affect the circulatory system in addition to the human 
respiratory system. However, no study has indicated whether patients with leukemia have a greater likelihood of SARS-
CoV-2 infection or have poor treatment outcomes.
Objective The study aimed to demonstrate the relationship between essential blood proteins and the major SARS-CoV-2 
proteins by network pharmacology bioinformatics analysis.
Methods Bioinformatics analysis was used to establish eight differentially expressed gene hubs in leukemia through dif-
ferential gene screening, protein–protein interaction network analysis, and gene enrichment analysis. Molecular docking 
analysis was also conducted to dock the two up-regulated proteins with the spike glycoprotein in leukemia and the critical 
protease enzyme (Mpro) of SARS-CoV-2.
Results We identified two up-regulated genes (PTPRC and BCL6) among the eight differentially expressed genes. The 
PTPRC and BCL6 also docked perfectly with the main SARS-CoV-2 structural proteins.
Conclusion and Recommendation This study indicates that SARS-CoV-2 is likely to affect with the blood in patients with 
chronic leukemia. Therefore, patients with chronic leukemia require greater medical attention and precautions during the 
COVID-19 pandemic.
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1 Introduction

Coronaviruses (family Coronaviridae) are viruses whose 
genomes comprise single-stranded positive-sense RNA 
ranging from 27 to 34 kb in size [1]. Coronaviruses gained 
substantial scientific attention in early 2000 after the 
severe acute respiratory syndrome (SARS-CoV) and Mid-
dle East respiratory syndrome (MERS-CoV) epidemics, 
which caused approximately 700 and 400 deaths, respec-
tively [2]. In early December, the reporting of SARS-
CoV-2 in and around Wuhan, China, alarmed scientific 
communities about a disease known as COVID-19 [3–5]. 
Patients infected with SARS-CoV-2 show severe respira-
tory abnormalities and difficulty breathing, which may 
eventually result in death [6]. A highly contagious mode of 
transmission and the prolonged stability of the virus in the 
air and inert surfaces such as steel are major reasons for 
its spread worldwide [7]. Thus, in the present global emer-
gency of the COVID-19 pandemic, an urgent need exists to 
develop an efficient treatment against SARS-CoV-2 infec-
tion. With its single-strand positive-sense RNA genome 
and limited structural and functional protein resources, 
SARS-CoV-2 can infect host cells and proliferate within 
them [8]. SARS-CoV-2 hijacks the host machinery at the 
molecular level to complete its life cycle and produce 
functional virion progeny [9]. Awareness of the process 
of COVID-19 is scarce but rapidly growing among patients 
with cancer, particularly hematologic malignancies. The 
infection rate in patients with cancer may be higher than 
that in the general population [10, 11]. In two studies in 
China, only 10 out of 1099 and 18 out of 1590 patients 
with COVID-19 were diagnosed with cancer [12, 13]. In 
one study, 60% of patients with COVID-19 with blood 
cancer recovered from COVID-19 within a 14-day obser-
vation period [14].

The scientific community has published findings on 
COVID-19 in patients with cancer worldwide [15–18]. 
Patients with leukemia are frequently myelosuppressed, 
immunosuppressed, and possibly immunoglobulin defi-
cient, thus making them potentially highly vulnerable to 
COVID-19 [19]. Because of the disease biology of leu-
kemia subtypes, associated therapy, underlying comor-
bidities, patient-specific aspects, and specific COVID-
19-related risk factors, patients with leukemia may be at 
a significantly greater threat of developing SARS-CoV-2 
infection [19]. Unfortunately, because of minimal reports 
related to leukemia, the implications are poorly understood 
in this particular population. Because COVID-19 is a new 
human virus, whether variations exist relative to other 
blood cancers and how the virus affects people with leuke-
mia remain unknown. Patients with blood cancer, because 
of their immunocompromise due to both cancer and the 

effects of cancer treatment, are likely to be particularly 
prone to SARS-CoV-2 infection.

Our current study aimed to measure the likelihood of 
patients with leukemia acquiring SARS-CoV-2 infection, 
on the basis of a theoretical network biology approach. We 
studied the interaction of target genes/proteins between 
leukemic chronic lymphocytic and chronic myelogenous 
tissue and the SARS-CoV-2 virus by using computational 
techniques such as screening differentially expressed genes 
(DEGs), gene enrichment analysis (GEA), construction, 
protein–protein interaction network analysis (PPINA), and 
molecular docking analysis (MDA).

2  Materials and Methods

The detailed study workflow is depicted in Fig. 1.

2.1  Microarray Dataset Collection 
and Preprocessing

Three microarray datasets comprising mRNA expression 
profiles for leukemia and healthy groups were downloaded 
from NCBI’s Genome Expression Omnibus (GEO) [20]. 
The blood datasets included GSE8835 [21], GSE24739 
[22], and GSE39411 [23]. These datasets met the following 
conditions: (1) samples from chronic lymphocytic leukemia 
(CLL) and chronic myelogenous leukemia (CML) in Homo 
sapiens, (2) presence of control groups, (3) expression pro-
filing by array category, and (4) inclusion of five samples or 
more. The overall sample size reliably indicates DEGs or 
non-coding RNAs; therefore, GEO datasets encompassing 
at least ten samples were selected for further examination. 
Background data correction/normalization were performed 
by multiarray average (RMA) in the R affy and Lumi pack-
ages to ensure unbiased and dysregulated gene expression 
data. The RMA approach, including quantile normalization, 
was used to eliminate variations attributable to the individual 
Affymetrix GSE series standardization. In the fold-change 
calculation to identify DEGs, the sensitivity and specific-
ity of the RMA technique were acceptable. We additionally 
used the Bioconductor Package (Lumi pipeline) designed 
to study Illumina data (BeadChip). The results verified the 
consistency, normalization, and stable variance of the data.

2.2  Identification of DEGs

To examine DEGs in every GEO dataset, we used the linear 
model for microarray analysis (limma) package in R. By 
using the empirical Bayes method and decreasing the stand-
ard errors, it calculates simple t test, moderate t test, and f 
test results, and offers reproducible results. The limma pack-
age [24] was used to determine the DEGs between healthy 
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and leukemia groups. DEGs were characterized as genes 
with p < 0.05, and logFC (0.2 ≥ logFC ≤  − 0.2) for up- and 
down-regulated DEGs, respectively.

2.3  Meta‑Analysis of DEGs in the Gene Expression 
Dataset

Using the MetaMa package [25] and limma [26] in R, we 
performed meta-analysis of the normalized gene expres-
sion datasets by using Fisher's combined probability 
test technique [27]. False discovery rate adjustment was 
performed with Benjamini–Hochberg correction [28] by 

combining the p-values and fold-change values of the 
shared genes. Meta-analysis of datasets was conducted 
through generic methods of combining information by 
vote-counting (Table 1). BRCW (http:/jura.wi.mit.edu/
bioc/tools/compare.php) was used to identify the mutual 
DEGs in at least two gene expression profile datasets, thus 
increasing the accuracy of DEG selection; the chances 
of a biased data compilation thus became nil. The probe 
numbers in the expression profile were translated to gene 
symbols with the Synergizer database, on the basis of the 
equivalent similarity between the probe and the gene in 
the data [29].

Fig. 1  Schematic workflow of 
the methods implemented in 
our study
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2.4  Functional and Pathway Enrichment Analyses

We classified DEGs by biological process (BP), molecular 
function (MF), cellular component, and Kyoto Encyclopedia 
of Genes and Genomes (KEGG) pathways to understand 
the significance of the listed DEGs, on the basis of Data-
base for Annotation Visualization and Integrated Discovery 
(DAVID) v.6.7 [30]. The Gene Ontology (GO) and KEGG 
databases are used by DAVID for gene enrichment study. 
Pathways and roles with a p value < 0.05 were considered 
significant. Subsequently, ggplot2 [31] was used to construct 
an enrichment plot of critical biological processes, molecu-
lar, cellular components, and function pathways.

2.5  Construction of a PPI Network

For PPI network construction and analysis, we obtained spe-
cific DEGs through enrichment analysis. We used the simple 
concept of the correspondence of one gene to one protein 
and developed the DEGs' primary leukemia PPI network. 
The network was built with the STRING v.10.5 database 
[32], and the Cytoscape [33] file has been uploaded for fur-
ther literature verification.

2.6  Overlap Between Leukemia 
and SARS‑CoV‑2‑Associated Proteins

We identified reported COVID-19 associated genes, which 
were searched with GenCLiP3 [34]. GenCLiP 2.0 (http:// 
ci. smu. edu. cn/ gencl ip3/) is an online tool used to analyze 
human genes for literature mining. The literature mining 
gene retrieval of COVID-19-associated genes was based on 
user-defined query keywords. The keywords, grouped by a 
fuzzy algorithm, can be input by users or generated for the 
relevant gene established on accessible terms in the prior art. 
Associated Medline abstracts were linked by using the asso-
ciations between genes and keywords. The co-occurrence of 
genes and keywords was highlighted in our literature mining.

2.7  Module Analysis

We used the molecular complex detection (MCODE) app in 
Cytoscape [35] to perform module analysis with the degree 
cutoff criteria = 2, node density cutoff = 0.1, node score 

cutoff = 0.2, k-core = 2, and maximum depth = 100. We also 
studied GO and KEGG pathway enrichment for important 
genes in hub modules (p value < 0.05).

2.8  Correlation of Gene Expression 
with Tumor‑Infiltrating Immune Cells

Given the importance of immune dysregulation in leukemia, 
we explored the correlations between MTG1, PPP2R5B, and 
ANXA5 mRNA expression and tumor-infiltrating immune 
cells. The TIMER tool (https:// cistr ome. shiny apps. io/ timer/) 
[36] was used to analyze the association between gene 
expression with tumor-infiltrating cells. Six tumor-infiltrat-
ing immune subsets, including B cells, CD8+ T cells, CD4+ 
T-cells, macrophages, neutrophils, and dendritic cells, were 
analyzed.

2.9  Protein Preparation

The BCL6 (PDB ID: 6XWF), KIT (PDB ID: 2EC8), and 
PTPRC (PDB ID: 5FMV) crystal structures were from the 
RCSB Protein Data Bank (PDB). Using RCSB PDB, we 
also downloaded the recently submitted crystal structures of 
COVID-19 spike glycoprotein with a single receptor-binding 
domain and the main protease (Mpro) of COVID-19 in com-
plex with an inhibitor N3. PyMOL was used to optimize 
the structures, mainly through removal of ligands and water 
molecules.

2.9.1  Molecular Docking

Rigid molecular docking of proteins was performed with the 
Cluspro 2.0 [37] server. The files were downloaded from the 
top ten predictions from the Cluspro web server. Prodigy 
(https:// bianca. scien ce. uu. nl/ prodi gy/) was used to evaluate 
the effects of protein docking interactions and provide the 
binding affinity (ΔG). The ΔG specifies the solvation free 
energy (kcal/M) expansion after the formation of the inter-
face. The ΔG value is computed as the difference in total 
solvation energies of isolated and interfacing structures. On 
the basis of the anticipated ΔG (Eq. 1), the dissociation con-
stant (Kd) was determined,

(1)ΔG = RTlnK

Table 1  List of datasets used in the meta-analysis

GEO Accession Sample size Platform Tissue

Healthy Leukemia

GSE8835 24 42 GPL96: Affymetrix Human Genome U133A Array Chronic lymphocytic
GSE39411 48 104 GPL570: Affymetrix Human Genome U133 Plus 2.0 Array Chronic lymphocytic
GSE54536 8 16 GPL570: Affymetrix Human Genome U133 Plus 2.0 Array chronic myelogenous

http://ci.smu.edu.cn/genclip3/
http://ci.smu.edu.cn/genclip3/
https://cistrome.shinyapps.io/timer/
https://bianca.science.uu.nl/prodigy/
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where R is the ideal gas constant (in kcal  K−1  mol−1), T is 
the temperature (in K), K is the equilibrium constant, and 
ΔG is the anticipated free energy 298.15 K (25 °C). Nega-
tive ΔG is associated with hydrophobic interfaces or positive 
protein affinity. PRODIGY [38] (PROtein binDIng enerGY 
prediction) is a web server for calculating binding affinity in 
biological complexes and determining biological interfaces 
from crystallographic ones. PyMOL [39] was used for the 
visualization of the docked structure.

3  Results

The flowchart of our bioinformatics analysis of network 
pharmacology is shown in Fig. 1.

3.1  Extraction and Preprocessing of Microarray 
Data

Built on the exclusion/inclusion criteria described in the 
methods, the microarray gene expression profiles with acces-
sion numbers GSE8835, GSE24739, and GSE39411 contain 
expression data from tissues from patients with CLL and 
CML, and healthy controls. Information associated with 
these datasets, such as GEO accession number, platform 
type, number of samples, type of study, and species, is 
shown in Table 1. The heatmap visualization of expression 
profiles for tissue samples from patients with CLL and CML 
and controls is shown in Fig. 2A.

3.2  Meta‑analysis and Identification of DEGs 
in Patients with Leukemia

The three described datasets were used to identify DEGs 
between patients with leukemia and healthy participants, and 
to perform meta-analyses for identifying mutually expressed 

Fig. 2  A Expression heatmap showing expression levels of signifi-
cant DEGs for the GSE8835, GSE24739, GSE39411 datasets. Color 
indicates high expression (red) and low expression (green). B Venn 
diagram showing the DEGs in GSE8835, GSE24739, and GSE39411 

after overlap analysis. C Venn diagram showing the common genes 
after mapping of DEGs in leukemia and SARS-CoV-2-associated 
proteins
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genes across these datasets. A total of 556 DEGs were 
obtained after meta-analysis, 261 of which were up-regu-
lated and 295 of which were down-regulated in patients with 
leukemia vs. controls on the basis of the statistical threshold 
of log2 (fold change) and Benjamini–Hochberg p-value.

3.3  Functional and Pathway Enrichment Analysis

We conducted GO enrichment analysis to illustrate the pos-
sible biological functions of DEGs in leukemia. GO enrich-
ment analysis and KEGG pathway analysis for the up-and 
down-regulated DEGs (Supplementary Files 3 and 4) were 
performed. The significant enrichment of up- and down-
regulated DEGs in CLL and CML is shown in Figs. 3 and 4, 
respectively. The common up-regulated DEGs were enriched 
in BPs including B-cell receptor signaling pathway, immune 
response, positive control of transcription, DNA-templated, 
innate immune response, control of cell adhesion, control 
of immune response, positive control of B-cell activation, 

phagocytosis, DNA-templated response to estradiol, T-cell 
distinction, antigen processing and presentation of peptide 
antigen via MHC class I, and negative regulation of cellu-
lar senescence (Supplementary File 3 and Fig. 3A). Down-
regulated DEGs were significantly enriched in BPs including 
the Wnt signaling pathway, the planar cell polarity path-
way, the T-cell receptor signaling pathway, mitochondrial 
respiratory chain complex I assembly, antigen processing 
and presentation of exogenous peptide antigen via MHC 
class II, intracellular protein transport, control of the cel-
lular amino acid metabolic process, negative control of gene 
expression, negative control of cell migration, protein het-
eromerization, B-cell lineage commitment, immunoglobu-
lin V(D)J recombination, etc. (Supplementary File 4 and 
Fig. 4A). Additionally, the MFs of the up-regulated DEGs in 
blood were protein binding, antigen binding, immunoglobu-
lin receptor binding, protease binding, R-SMAD binding, 
etc. (Supplementary File 3 and Fig. 3B). Furthermore, the 
MFs of down-regulated DEGs in the blood were poly(A) 

Fig. 3  Functional and pathway enrichment analyses of up-regulated DEGs in leukemia (chronic lymphocytic and myelogenous). A Biological 
process enrichment analysis of up-regulated DEGs. B Molecular function. C Cellular component. D KEGG pathway enrichment analysis
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RNA binding, protein binding, cadherin binding implicated 
in cell–cell adhesion, myosin V binding, NAD binding, 
catalytic activity, etc. (Supplementary File 4 and Fig. 4B). 
The significant cellular components of up-regulated DEGs 
included nucleoplasm, extracellular exosome, mast cell 
granule, spliceosomal complex, MHC class I protein com-
plex, phagocytic vesicle, immunoglobulin complex, circulat-
ing, viral nucleocapsid, Golgi apparatus, crucial elements 
of the membrane, etc. (Supplementary File 3, Fig. 3C). The 
significant cellular components of down-regulated DEGs 
included proteasome accessory complex, respiratory chain, 
mitochondrial respiratory chain complex I, endosome mem-
brane, extracellular exosome, etc. (Supplementary File 4, 
Fig. 4C). The significant KEGG pathways in up-regulated 
DEGs included salivary secretion, pathways in cancer (i.e., 
Wnt-pathways, GSK3 pathways, and FGF signaling path-
ways), signaling pathways controlling pluripotency of stem 
cells, cell adhesion molecules, the Jak-STAT signaling 
pathway, HTLV-I infection, Influenza A, the FoxO signal-
ing pathway, the HIF-1 signaling pathway, the Ras signaling 

pathway, melanogenesis, endocytosis, etc. (Supplementary 
File 3, Fig. 3D). Most down-regulated DEGs were involved 
in KEGG pathways involving the blood, including biosyn-
thesis of antibiotics, Fc gamma R-mediated phagocytosis, 
metabolic pathways, the Wnt signaling pathway, the Hippo 
signaling pathway, proteoglycans in cancer, etc., as shown 
in Fig. 4D (Supplementary File 4).

3.4  PPINA

Using the STRING v.10.5 databases, we built PPI networks 
and visualized and analyzed them in Cytoscape software 
v.3.4.0. The PPI evidence acquired from STRING's online 
DEGs and the PPI network is shown in in Fig. 5A. Net-
work Analyzer, a Cytoscape plugin, was used to analyze 
the network topological properties (Supplementary File 6: 
Table S10) of DEGs. The 500 genes showed a considerable 
degree distribution, with the highest degree of 41 and low-
est degree of 1.0. The average degree value was 7.029. The 
PPI network consisted of 385 nodes and 1353 interactions 

Fig. 4  Functional and pathway enrichment analyses of down-regulated DEGs in leukemia (chronic lymphocytic and myelogenous). A Biological 
process enrichment analysis of up-regulated DEGs. B Molecular function. C Cellular component. D KEGG pathway enrichment analysis
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(Fig. 5A). Finally, the top ten high-grade hub genes, includ-
ing CDC42, EP300, KIT, PTPRC, DVL2, BCL6, GART, 
HNRNPA1, HNRNPC, and SMAD3, were selected.

3.5  Overlap Between Leukemia 
and SARS‑CoV‑2‑Associated Proteins

The overlap between the 500 leukemia DEGs and SARS-
CoV-2-associated proteins (560 proteins) was analyzed 
with Venn diagrams (Fig. 2C). A total of 27 leukemia-reg-
ulated SARS-CoV-2-associated proteins were identified, 
including ANXA1, CD38, HLA-E, BCL2, CXCL8, CDK6, 
FURIN, KIT, BCL6, TMEM41B, CR1, PARP1, PTPRC, 
BST2, CTLA4, ITPA, ABL1, CYBB, PMAIP1, HIF1A, 

IL7R, LY6E, CD47, NDUFA10, KPNB1, ATG16L1, and 
IFI44. Of the ten hub genes, three hubs, KIT, PTPRC, 
and BCL6, were common between leukemia and SARS-
CoV-2-associated proteins. PPI network constructs with 27 
genes commonly involved in leukemia and COVID-19 are 
shown in Fig. 5C. According to GO and KEGG pathway 
enrichment examination, most of the genes were impli-
cated in multiple responses, including response to inter-
feron, cellular response to type I interferon, viral response, 
control of viral genome replication, control of immune 
effector process, T-cell differentiation, B-cell activation, 
and immune response-controlling cell surface receptor 
signaling pathways.

Fig. 5  Protein–protein interaction (PPI) network and hub cluster-
ing modules. A The PPI network of overlapping DEGs. Green nodes 
represent up-regulated DEGs, and cyan nodes represented down-
regulated DEGs. B Module 1 (MCODE score = 7.917), Module 2 

(MCODE score 7.818), Module 3 (MCODE score = 5.2). Module 5 
(MCODE score = 3.2). Module 6 (MCODE score = 3.2) and Module 
13 (MCODE score = 2.667)
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3.6  Potential Mechanisms of the Critical Genes

The TIMER web tool [36] indicated that expression of the 
KIT, PTPRC, and BCL6 genes was meaningfully associ-
ated with one or more blood cancer (lymphoma)-infiltrating 
immune cell subsets. For B-cells, the expression of PTPRC 
and BCL6 displayed the most meaningful connection, and 
the expression of CDC42 was the most important relation-
ship. CD4+ T cells have been demonstrated to support B 
cells to produce antibodies and help CD8+ T cells eradi-
cate cells infected with SARS-CoV-2 viruses. Interferon-
gamma, the leading player governing viral infection, is a 
major cytokine made by T cells [40].

3.7  Network module analysis

We imported the PPI network into Cytoscape to detect sig-
nificant clustering modules. Module analysis and modules 
with top high scores were screened out (Fig. 6B). Eight hub 
nodes were present in the six modules (Table 2). According 
to GO and KEGG pathway enrichment analysis (p < 0.05), 

BCL6 in module 5 (MCODE score = 3.2) was closely asso-
ciated with negative control of transcription from RNA 
polymerase II promoter, negative management of immune 
response, and negative regulation of the Notch signal-
ing pathway. KIT in module 6 (MCODE score = 3.2) was 
involved in T-cell differentiation, mast cell degranulation, 
the RAS signaling pathway, MAPK cascade regulation of 
cell proliferation protease, and positive regulation of GTPase 

Fig. 6  Correlation analysis of MTG1, PPP2R5B, and ANXA5 
mRNA expression with blood cancer (lymphoma)-infiltrating 
immune cells. The data are from the TIMER database (https:// cistr 
ome. shiny apps. io/ timer/). A Correlation of KIT mRNA with blood 

cancer-infiltrating immune cells. B Correlation of BCL6 mRNA 
with blood cancer-infiltrating immune cells. C Correlation of PTPRC 
mRNA with blood cancer-infiltrating immune cells. D Correlation of 
CDC42 mRNA with blood cancer-infiltrating immune cells

Table 2  Hub gene module information

Hub Module MCODE score

EP300 Cluster Module 6 3.2
PTPRC Cluster Module 3 5.2
KIT Cluster Module 6 3.2
BCL6 Cluster Module 5 3.2
HNRNPC Cluster Module 1 7.917
HNRNPA1 Cluster Module 1 7.917
GART Cluster Module 2 7.818
SMAD Cluster Module 13 2.667

https://cistrome.shinyapps.io/timer/
https://cistrome.shinyapps.io/timer/
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activity. PTPRC in module 3 (MCODE score = 5.2) was 
closely associated with antigen binding. EP300 was associ-
ated with the Jak-STAT signaling pathway, HTLV-I infec-
tion, transcriptional dysregulation in cancer, Influenza A, the 
FoxO signaling pathway, and melanogenesis.

3.8  Molecular docking

Only BCL6, KIT, and PTPRC were identified as up-reg-
ulated proteins common among the ten hub genes and 27 
genes common in leukemia and SARS-CoV-2-associ-
ated proteins. The molecular docking of BCL6, KIT, and 
PTPRC with SARS-CoV-2 spike glycoprotein and Mpro is 
shown in Fig. 7. The ΔG of BCL6 and the spike protein 
of SARS-CoV-2 was − 56.7 kcal/mol, and the ΔG of BCL6 
and the Mpro of the virus was − 6.8 kcal/mol. The ΔG of 
KIT and the spike glycoprotein was − 52.5 kcal/mol, and 
the ΔG of KIT and the Mpro of the virus was − 12.3 kcal/
mol. Finally, the ΔG of PTPRC and the spike glycoprotein 
was − 52.5 kcal/mol, and the ΔG of PTPRC and the Mpro 
of the virus was − 16.1 kcal/mol. The reported ΔG indicates 
the solvation free energy gain after interface formation; a 

negative ΔG indicates hydrophobic interfaces or positive 
protein affinity. The dissociation constant (Kd) for each dock-
ing is given in Table 3. The three up-regulated proteins in the 
CLL and CML exhibited good interaction with the SARS-
CoV-2 spike glycoprotein and Mpro, thus indicating that 
the blood tissues of patients with leukemia are vulnerable to 
SARS-CoV-2. The molecular docking for CDC42 (PDBID 
1AJE) and SARS-CoV-2 spike glycoprotein, and CDC42 
and Mpro is shown in Fig. 8. The ΔG of CDC42 and the 
spike glycoprotein was − 5.6 kcal/mol, and the ΔG of KIT 
and the Mpro of the virus was − 43.6 kcal/mol (Table 3).

4  Discussion

In this study, we selected the spike glycoprotein and Mpro 
as the SARS-CoV-2 target proteins by using molecular 
docking technologies. Through the analysis of microarray 
datasets, we detected 385 overlapping DEGs. Enrichment 
analysis revealed 500 overlapping DEGs mainly associ-
ated with genes involved in the interferon response, type I 
interferon cellular response, virus response, viral genome 

Fig. 7  Molecular docking interactions and orientations for three com-
mon hub proteins in leukemia, and SARS-CoV-2 spike protein and 
Mpro. Docking interactions of A BCL6, B KIT, and C PTPRC. Visu-

alization of interactions of these protein drug molecules with spike 
protein and Mpro, through PyMOL



42 Dr. Sulaiman Al Habib Medical Journal (2022) 4:32–45

1 3

replication regulation, immune effector process regulation, 
differentiation of T cells, activation of B cells, and signaling 
pathways of immune response-regulating cell surface recep-
tor. Through molecular analysis, we selected ten hub genes 
from these 500 overlapping DEGs. The MAPK cascade, 
GTPase regulatory activity, and other factors listed herein 
were associated with leukemia. Subsequently, we identified 
only 27 leukemia-regulated SARS-CoV-2-associated pro-
teins. Of the ten hubs, three genes (KIT, PTPRC, and BCL6) 
were common to both leukemia and SARS-Cov-2-associated 
proteins, which have been further studied in patients with 
COVID-19. CDC42 in human immunodeficiency virus 
(HIV)-1 cell entry is the most examined aspect of CDC42 
function in viral cell entry processes [41]. Prior studies have 
demonstrated the role of CDC42 in cell entry of other RNA 
viruses—a critical area for further research through similar 
methods.

CDC42, a protein-coding gene, is involved in pathways 
including nerve growth factor (NGF) and the integrin 

pathway. Annotations associated with this gene in GO 
include similar protein binding and protein kinase binding. 
Furthermore, RAC1 is an essential paralog of this gene. 
In our study, CDC42 was the top hub (degree = 41). In 
addition, CDC42 has a crucial role in the entry process of 
mouse hepatitis coronavirus (MHV CoV) [42]. In the initial 
phases of infection, MHV infectivity and the use of actin 
cytoskeleton modifying agents had related restrictive events 
on infection, directing to GTPase, and explicitly to the par-
ticipation of CDC42 in the entry process [41, 43]. Ethyl 
isopropyl amiloride (EIPA) is well known for its ability to 
inhibit macropinocytosis through inhibiting CDC42 signal-
ing. The findings of diminished infectivity due to Arp2/3 
knockdown, disruption of the actin cytoskeleton, and EIPA 
have indicated that CDC42 signaling is involved in the MHV 
cell entry process. Because the CDC42 hub gene is a cru-
cial protein in leukemia, we performed molecular docking 
between CDC42 protein in leukemia (in CLL and CML) 
tissues and the spike glycoprotein and Mpro, the essential 
structural proteins of the SARS-CoV-2 virus. The hub pro-
teins in leukemia successfully docked with the virus's essen-
tial proteins, thereby confirming our hypothesis that patients 
with leukemia can have a more significant threat of being 
attacked by SARS-CoV-2.

Clinical studies have shown that people of all ages are 
generally susceptible to COVID-19. By contrast, the risk 
of infection with the virus increases in older people and 
people with underlying diseases [44]. Management of 
patients with leukemia in the COVID-19 pandemic can 
be complicated. The risk of infection with SAR-Cov-2 
remains low during high-risk COVID-19 periods when 
optimal preventive measures and mass testing are used; 
however, mortality may be elevated in patients with both 
leukemia and COVID-19. The effects of the COVID-19 
pandemic on leukemia have been evaluated in recent 
reports, including a study of the incidence of anxiety in 
patients with leukemia during the COVID-19 pandemic 
[14, 18], a description of physical movement and quality 
lifestyle in patients with leukemia during the COVID-19 
pandemic [14, 18], and an investigation of the outcomes 

Table 3  Docking results of the 
hub proteins of leukemia and 
the key proteins of SARS-
CoV-2

Target protein involved in patients 
with leukemia

Virus protein ΔG (kcal −1  mol−1) Kd (M) at 25 °C

CDC42 Main protease (Mpro) − 5.6 8.50E−05
CDC42 Spike protein − 43.6 1.00E−32
BCL6 Main protease (Mpro) − 6.8 1.00E−05
BCL6 Spike protein − 56.7 2.80E−42
PTPRC Main protease (Mpro) − 16.1 1.60E−12
PTPRC Spike protein − 49.9 2.40E−37
KIT Main protease (Mpro) − 12.3 8.80E−10
KIT Spike protein − 52.5 3.10E−39

Fig. 8  Molecular docking interactions and orientations of three hub 
proteins in leukemia with SARS-CoV-2 spike protein and Mpro. 
Docking interactions of A CDC42. Visualization of interactions of 
these protein drug molecules with spike protein and Mpro, through 
PyMOL
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of patients with leukemia affected by COVID-19 [18]. 
Recent research has shown that spike glycoprotein and 
Mpro [45] are the main structural proteins of COVID-19. 
Spike glycoprotein is the main target for COVID-19 vac-
cines, therapeutic antibodies, and diagnostics of COVID-
19 [46]. Likewise, another possible target protein is Mpro 
(also called 3C-like protease), a key coronavirus enzyme 
with an essential role in facilitating viral replication and 
transcription, thus providing a promising drug target for 
COVID-19 [46].

A higher risk of infection and likelihood of severe 
COVID-19 was established among cancer patients as 
a sub-group early in the pandemic. Thus, this research 
provides valuable knowledge that should help physi-
cians make informed choices in protecting and caring for 
patients with leukemia and COVID-19. Furthermore, this 
study lays a groundwork for future relevant laboratory 
studies, which may enable identification of novel poten-
tial molecular targets that may be exploited to inhibit viral 
interactions with host cellular factors and block the spread 
and viral replication in the body. A better structural under-
standing of molecular targets, virus–host interactions, and 
the cause of pathogenesis is required for the development 
of effective therapeutic/prophylactic agents for COVID-19 
prevention and treatment.

5  Conclusion

The findings of this bioinformatics-based research dem-
onstrated that patients with chronic leukemia are at higher 
risk of SARS-CoV-2 infection as compared to normal 
individuals. Accordingly, patients with chronic leukemia 
require better medical attention during the COVID-19 
pandemic.
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