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Abstract: Vasohibins (VASHs), comprising VASH-1 and VASH-2, were initially identified
as regulators of angiogenesis. Recent studies, however, have unveiled their novel role in
fibrosis and microtubule detyrosination. The dysregulated expression of VASHs is associ-
ated with several pathological processes, such as angiogenesis dysfunction, microtubule
detyrosination, and fibrosis, contributing to various diseases. These findings suggest the
pleiotropic effects of VASHs in multiple organs and systems beyond angiogenesis. This
review explores the molecular properties of VASHs and their emerging functions in tubulin
carboxyl activity and microtubule detyrosination—key to brain and cardiac remodeling.
We also discuss the potential therapeutic applications of their interference in diseases such
as tumorigenesis, as well as renal-, reproductive-, and liver-related diseases.

Keywords: vasohibins; angiogenesis regulator; fibrosis TGF-β/SMAD pathway; microtubule
detyrosination; cardiac/brain remodeling

1. Introduction
Vasohibin (VASH) was first identified and characterized from a newly discovered

gene (KIAA1036) in 2004. This discovery marked a significant milestone in angiogenesis
research, as VASH was found to be induced by vascular endothelial growth factor (VEGF)
in endothelial cells (ECs), which inhibits EC proliferation and migration, resulting in
negative feedback against angiogenesis [1]. Since this initial characterization of VASH,
it has long been appreciated as a negative feedback regulator in angiogenesis. However,
VASH’s function as a detyrosinating enzyme was first reported in 2017 in two different
studies, which demonstrated that VASH acts as a tubulin carboxypeptidase (TCP), the
enzyme responsible for the detyrosination of α-tubulin [2,3]. This finding expanded
the functional range of VASHs beyond angiogenesis, implicating them in microtubule
dynamics. Microtubules, assembled from α/β-tubulin polymers, are important parts of
the cytoskeleton. They play critical roles in cellular processes, including polarization,
chromosomal segregation during cell division, regulating cell motility, maintaining cell
shape, and transporting materials [4–7]. Microtubule post-translational modifications
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(PTMs) are critical for sub-cellular functioning [8,9], and detyrosination has been a major
PTM biomarker for stable microtubules [10,11]. Tubulin tyrosination, catalyzed by tubulin
tyrosine ligases (TTL), and detyrosination, mediated by VASHs, represent a reversible cycle
that governs microtubule dynamics. Disruptions in this cycle have been linked to severe
pathologies, including brain disorders, cancer, and cardiomyopathies [12,13].

VASHs play critical roles in angiogenesis, fibrosis, and microtubule detyrosination. The
dysregulation of VASHs results in pathological conditions, such as tumor angiogenesis [14,15],
ocular and corneal neovascularization [16], the development of nephropathy [17], diabetic
retinopathy [18], age-allied macular disintegration [19], and fibrosis, as well as microtubule-
related brain disorganization and cardiomyopathies. Given the importance of the VASH family
in disease pathogenesis, as well as the potential to develop therapeutic agents targeting VASHs
to treat various ailments (such as cardiac and brain remodeling), we provide a review of the
molecular mechanisms and pleiotropic roles of VASHs in health and disease.

2. The Molecular Properties of VASHs
VASH proteins belong to the superfamily of trans-glutaminase-like cysteine proteases

and are composed of VASH-1 and VASH-2 [20]. In the human genome, VASH-1 is located
on chromosome 14q24.3 and consists of 365 amino acids, whereas VASH-2 is located on
chromosome 1q32.3 and consists of 355 amino acids [21,22]. Both paralogs share functional
motifs in the primary structure and are highly conserved across different species, as shown
in Figure 1A, with approximately 94% of the amino acid sequences of VASHs being identical
across species. However, there is a reduced amino acid sequence homology between mice
and humans because of variations in the N-terminal portion of VASHs [1]. The primary
form of VASH-1 has a molecular weight of 44 kDa, but western blotting analysis revealed
multiple bands at 27, 32, 37, and 42 kDa detection, which represent truncated forms. The
42 kDa form has been identified as the secretory and active form [23]. Additionally, there
are two VASH-1 splice variants, as follows: VASH-1A, which consists of eight exons, and
VASH-1B, which contains the same first five exons as VASH-1A but lacks exons 6–8, which
shows reduced potency due to C-terminal truncation [24]. The 11 exons of the VASH-2
gene (Figure 1B) have been shown to generate numerous transcripts for these paralogous
genes through alternative splicing [21,24].

The small vasohibin-binding protein (SVBP) has a chaperone-like role in controlling
and stabilizing VASH-1 secretion and solubility [25]. VASHs have three conserved domains
that physically interact with this chaperone to control the formation of cytosolic punctate
structures (PS). As for these functionally critical domains, the VASH-PS domain (residues
91–180 in VASH-1) mediates cytosolic PS formation through its positively charged surface,
while the Sla (274–282) and Slb (139–144) motifs are essential for SVBP-dependent dispersion
of these structures, and the Slc motif (133–137) stabilizes the VASH-SVBP complex to enable
unconventional secretion [26]. Recently, a higher-resolution crystal structure of VASH-SVBP
complex isotypes was obtained to define the global organization of the protein [27]. In general,
the main VASH domain is divided into three subdomains known as (1) an N-terminal domain
(residues 1–120 in VASH-1) that binds SVBP; (2) a central catalytic domain (residues 121–280)
harboring the conserved Cys-His-Ser triad, essential for detyrosination activity; and (3) a
C-terminal domain (residues 281–365) involved in substrate recognition and microtubule
binding. SVBP stabilizes this architecture by sandwiching between the N-terminal and
catalytic domains, as determined by X-ray crystallography [28–30].
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Figure 1. Multiple sequence alignment structure of the vasohibin (VASH) proteins. (A) The protein
sequences obtained from NCBI (accession numbers provided in Supplementary Materials) were
aligned using CLC viewer 8.0. The bar graphs represent the degree of conservation among species,
and the colors are in correspondence with the amino acids’ identity. (B) VASH-1A contains eight
exons and 365 amino acids (aa), whereas VASH-1B contains five exons and 204 aa. VASH-2 has eight
exons and consists of 355 aa.
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3. VASHs and Angiogenesis
Angiogenesis is a process in which new blood vessels grow from the existing vascu-

lature [31,32]. The major steps involved in angiogenesis are EC proliferation, migration,
vessel remodeling, tube formation, and sprouting. Angiogenesis is regulated by complex
mechanisms, including a dynamic balance of both pro- and anti-angiogenic factors. Growth
factors such as VEGF, fibroblast growth factor-2 (FGF-2), transforming growth factor (TGF),
and cytokines are the main stimulators of angiogenesis, whereas hormones, chemokines,
and proteins deposited in the extracellular matrix (ECM) are the main angiogenesis in-
hibitors [33,34]. Most angiogenesis inhibitors are not produced by the vasculature, rather,
they are produced in response to certain stimuli, with some constitutively expressed in-
hibitors acting as barriers to stop sprout invasion [35,36]. The VASH-1 protein is widely
expressed in the ECs of growing mouse, human, and chicken embryos. However, its
expression was downregulated in the postnatal period, suggesting a critical role in vascular
development [22,37]. VASH-1 expression is regulated by a variety of factors, such as the
angiogenic agents VEGF/VEGFR2 and FGF-2, which induce VASH-1 mRNA expression
via the activation of the protein kinase C-delta (PKC-δ) pathway [38]. Certain inflamma-
tory cytokines, such as tumor necrotic factor-alpha (TNF-α), interleukin-1β (IL-1β), and
interferon-γ (IFN-γ), can decrease the VEGF-induced VASH-1 expression in ECs [39]. Func-
tionally, VASH-1 inhibits EC proliferation, migration, and capillary tube formation [40].
This phenomenon may be mediated by repressing the expression and phosphorylation of
VEGFR2, which plays an essential role in angiogenesis [15]. For example, VEGF upregulates
VASH-1 in the retina, which in turn suppresses VEGFR2 and retinal neovascularization [41].
Paradoxically, VASHs can have opposing roles in regulating angiogenesis. For example,
VASH-1, which is expressed in the vascular termination zone, inhibits angiogenesis; how-
ever, VASH-2, which is primarily found in the vascular sprout zone, exerts an opposing
effect by stimulating angiogenesis (Figure 2) [21]. The predominant expression of VASH-2
is reported within the mononuclear cells, mobilized from the bone marrow sprouting front,
thus facilitating the angiogenesis [42]. This VASH-2 expression appears constitutively and
is not induced by cytokines or growth factors [22,43]. VASHs have a critical role in angio-
genesis, serving as critical modulators in several physiological and pathological processes
related to angiogenesis.

3.1. Angiogenic Role of VASHs in Tumorigenesis

Clinical evidence demonstrates VASH-1’s therapeutic potential across multiple tu-
mors, suggesting that VASH-1 may inhibit carcinogenesis. Indeed, VASH-1 prevents tumor
growth and metastasis by inhibiting tumor angiogenesis in animal tumor models [44,45].
For example, in breast ductal carcinoma, VASH-1 overexpression reduced tumor microves-
sel density by 58% and decreased xenograft growth by 42% [46]. In addition, ocular studies
showed recombinant VASH-1 could reduce pathological choroidal neovascularization by
73% [16]. Similarly, in non-small-cell lung cancer, high VASH-1 expression correlated with
significantly better patient survival (hazard ratio = 0.41) [47]. In addition, VASH-1 also
plays role in the esophagus [48], liver, pancreas [49], stomach [50,51], colon [52], kidney [53],
ovary [54], placenta [55], prostate [56], and male reproductive organs [57] (Figure 3).

In contrast to VASH-1, VASH-2 has been shown to promote tumor growth [58]. For in-
stance, increased VASH-2 expression in cancer fibroblasts promotes cancer cell proliferation
and migration through epithelial–mesenchymal (EMT) transition. This gastrointestinal tu-
mor progression is driven by upregulating epiregulin (EREG) and interleukin-11 (IL-11) [59]
and chemotherapy resistance [60]. Furthermore, hypoxic in vitro and in vivo experimental
models have revealed that the genetic suppression of estrogen receptor 1 (ESR1) in VASH-
2-overexpressing, ESR1-positive cells leads to significant downregulation of E-cadherin



Cells 2025, 14, 767 5 of 20

expression. In addition, VASH-2 induces EMT in cancer cells by activating TGF-β1 and
repressing the GATA3-ESR1 pathway under hypoxic conditions, thereby facilitating metas-
tasis [61]. Notably, TGF-β1 is a potent inducer of IL-11 expression in stromal, epithelial,
and cancer cells [62], and IL-11 has been implicated as a biomarker in various cancers and
fibrotic diseases [63]. Several studies have shown that VASH-2 expression may serve as a
prognostic biomarker. For example, VASH-2 is a biomarker for poor prognosis in pancreatic
cancer [49]. Similarly, high VASH-2 expression is associated with poor prognosis and tumor
growth in esophagus squamous cell carcinoma [48]. Additionally, the potential role of
VASH-2 as a novel biomarker for diagnosis and prognosis has been confirmed in early
stage lung squamous cell carcinoma [64]. These findings highlight a potential interplay
between VASH-2, TGF-β1, and IL-11, suggesting shared upstream regulators and overlap-
ping pathways in cancer progression and fibrosis. Further research is needed to elucidate
the precise mechanisms underlying these relationships and their therapeutic implications.

Figure 2. Schematic representation of basic induction of VASH isoforms in angiogenesis regulation.
VASH-1 is induced in the vascular termination zone, where it functions to stop angiogenesis, whereas
VASH-2 localizes to the sprout zone to promote vessel growth. Under hypoxic conditions, HIF-1α-
mediated upregulation of VEGF drives angiogenic activation, which is counterbalanced by VASH-1
through two key mechanisms: (1) FGF2-induced PKC-δ activation and (2) synergistic action with anti-
angiogenic cytokines (TNF-α, IL-1β, IFN-γ) to suppress VEGF signaling. This spatial and functional
segregation of VASH isoforms creates a dynamic regulatory system for controlled vascular patterning.
This figure is adopted from Du et al. [21], licensed under CC BY-NC 3.0. Created in biorender.com.
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Figure 3. The involvement of VASHs in different types of tumors and organ systems. VASH-1
acts as an anti-angiogenetic, inhibiting/downregulating factor (red arrow), and VASH-2 acts as
pro-angiogenic, activating/upregulating factor (green arrow). VASH-1 consistently suppresses tu-
mor progression through angiogenesis inhibition in most cancers, while VASH-2 promotes vascular
growth and tumor development, except for the male reproductive system, where VASH-1 para-
doxically enhances angiogenic processes to rescue erectile dysfunction. In renal cancer, VASH-2
promotes glomerular damage via aberrant angiogenesis and primary tumor growth, whereas VASH-1
downregulation enables renal cancer metastasis—a duality suggesting isoform-specific therapeutic
targeting. The epithelial–mesenchymal transition (EMT) panel highlights VASH-2’s role in promoting
cancer cell plasticity. All depicted interactions are supported by experimental evidence discussed in
the main text. Created in biorender.com.
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3.2. Angiogenic Role of VASHs in Kidney Diseases

Chronic kidney disease (CKD) is characterized by a progressive loss of renal function,
and dysregulation of angiogenesis is usually found to aggravate CKD development [65];
therefore, VASH-1 also plays a critical role in this process because it is a negative regulator
of angiogenesis. For example, VASH-1 deficiency exacerbates cisplatin-induced acute
kidney injury (AKI) due to the improper maintenance of peritubular capillary integrity
following cisplatin-induced EC stress [66,67]. This suggests a protective role for VASH-1
in AKI by preserving vascular structure and function [66]. In contrast, elevated VASH-1
exacerbates disease progression, likely via TGF-β-driven fibrosis despite its protective role
in acute injury [17,68]. This paradox may arise from hypoxia-induced pathway crosstalk in
chronic disease, where prolonged anti-angiogenic signaling alters TGF-β responsiveness.
These opposing outcomes highlight the context-dependent dual nature of VASH-1, where
its anti-angiogenic properties can be either protective (e.g., in AKI) or detrimental (e.g., in
DN), depending on the disease pathophysiology. Elevated plasma and urinary levels of
VASH-1 and the VASH-1-SVBP complex were significantly correlated with worse renal
consequences [69], further underscoring its dual role as both a protective agent and as a
biomarker of progression in CKD [69].

On the other hand, VASH-2 has also been studied in mutant mice in response to
ischemia-reperfusion (I/R) during AKI. VASH-2 knock-out mice showed more severe renal
dysfunction and tubular damage after I/R injury, with elevated oxidative stress, apoptosis,
neutrophil infiltration, and loss of peritubular capillaries, suggesting a protective reparative
role via pro-angiogenic activity [70]. In addition, VASH-2 supports tubular repair in acute
I/R injury, and its pro-angiogenic function worsens glomerular lesions in DN, highlight-
ing context-dependent outcomes [70]. However, current evidence for the protective role
of VASH-2 in I/R relies on knockout models; therefore, future studies need to explore
exogenous VASH-2 administration to exclude developmental compensations. VASH-2
expression is localized to glomerular mesangial cells and is upregulated in the diabetic
kidney in DN. These findings suggest that endogenous VASH-2 exacerbates DN, possibly
by promoting angiogenesis, mesangial matrix expansion, and glomerular endothelial dys-
function. Thus, VASH-2, as a pro-angiogenic factor, contributes to glomerular lesions in DN,
and its inhibition may be a potential therapeutic strategy for glomerular dysfunction [67].
In general, these divergent roles of VASH-1 and VASH-2 underscore the importance of
context—including the disease type, duration, and microenvironment—to determine out-
comes. Future studies are needed to clarify whether these paradoxes are kidney-specific or
extend to other systems and to explore therapeutic strategies targeting VASHs.

3.3. Angiogenic Role of VASHs in Pathophysiology of the Reproductive System

Angiogenesis plays an important role in the development and function of the reproduc-
tive system and its organs [71,72]. There are multiple regulatory factors and mechanisms
responsible for angiogenesis regulation [73]. Therefore, there is a need for a balance be-
tween pro-angiogenic factors that promote blood vessel growth and anti-angiogenic factors
that inhibit it. Disruption of this balance leads to abnormal development of placental
vasculature [74,75]. VASH-1 is specifically localized and expressed in ECs at the site of
angiogenic initiation in certain pathophysiological processes of the human placenta [76],
whereas VASH-2 plays a role in placental trophoblast differentiation and invasion [55].
VASH-2 overexpression promotes cell fusion during syncytiotrophoblast formation, and
VASH-2 knockdown inhibits cell fusion [77]. Overall, VASH proteins enable the precise
control of blood vessel growth required for optimal placental function by balancing the
roles of the angiogenesis inhibitor (VASH-1) and angiogenesis promoter (VASH-2).
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Angiogenesis also accompanies the establishment of pregnancy during corpus luteum
(CL) development; therefore, large amounts of pro-angiogenic or anti-angiogenic factors
play an important role in the CL [78,79]. For instance, prostaglandin F2 alpha-induced
VASH-1 expression inhibited hyper-angiogenesis in early bovine CL and was drastically
downregulated during mid-CL [80]. This was further confirmed when Shirasuna et al. [81]
found the predominant location and expression of VASH-1 on the luteal ECs of bovine CL.
HIF1-α is another key regulator in promoting ovarian angiogenesis in the CL in response
to a hypoxic environment due to rapid luteal growth [82]. HIF1-α and VASH interplay
perform pro-angiogenic and anti-angiogenic functions in CL formation and maturation,
as well as in the ovarian follicle and in sustaining progesterone production [83]. Inter-
estingly, VASH-1 has a pro-angiogenic role in diabetic erectile dysfunction, indicating it
has an opposite role in the male reproductive system [84–86]. VASH-1 injection enhanced
intracavernous angiogenesis, ultimately reversing erectile dysfunction [57,87]. This dis-
tinctive feature of VASH-1 lays the groundwork for future studies of erectile dysfunction
mechanisms and treatments.

4. VASHs Serve as Tubulin Detyrosination Enzymes
The VASH-SVBP complex was recently found to play a divergent role in microtubule

detyrosination [3]. The VASH-1 and SVBP complexes prioritize the detyrosination of
the microtubule network (MTN) at the global level, whereas the VASH-2-SVBP complex
plays a role in MTN detyrosination locally [27]. Although VASH-1 requires SVBP binding
and VASH-2 acts in a self-governing manner with respect to detyrosination, SVBP is
a bona fide activator of both of these enzymes [88]. The reversal of detyrosination is
termed tyrosination, and both tyrosination and detyrosination are important biomarkers
of dynamic and stable microtubules, respectively [89]. Dynamic instability is an essential
property of microtubules that allows them to adapt to several critical functions, including
cell division, the maintenance of cell shape, intracellular transport, and cell motility [90,91].
Therefore, the aberrant expression of VASHs can lead to MTN tyrosine and cytoskeletal
abnormalities that can trigger the onset of a variety of diseases, such as neurological and
cardiovascular diseases.

4.1. Detyrosinizing Role of VASHs in Neuronal Disorders

Proper tyrosination of microtubules is required for long-range transport, which has
been demonstrated in neurons where an intact tyrosination cycle is required for neuronal
organization and differentiation [10,92]. Similarly, a balance between dynamic and stable
microtubules is required for neuronal survival and plasticity, but a shift in this balancing
act can lead to brain degeneration [93,94]. Additionally, microtubule dynamics play a
major role in the pre- and post-synaptic fragments of the synapse; therefore, intra-spinal
microtubule dysregulation may lead to damaging results [95,96]. Neurodegeneration
occurs in response to perturbations in the tyro-/detyrosination cycle, as it is strongly
linked to microtubule dynamics [89,97]. SVBP deficiency in humans can lead to pathogenic
neurodevelopment [98], and rare SVBP biallelic variants were found to induce defects
in the brain associated with mental retardation [99]. Furthermore, VASH-1/2 inhibition
accelerates the recovery of damaged nerves [100]. Taken together, these studies suggest that
VASHs may play a role in brain-related diseases, particularly in Alzheimer’s disease, and
may represent a novel therapeutic approach for treating brain-related diseases (Figure 4).
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Figure 4. Microtubule structure, assembly, and post-translational modifications (PTMs) in the brain.
(A) Microtubules are hollow cylindrical structures composed of α- and β-tubulin heterodimers [4].
(B) VASHs detyrosinate the microtubule through PTMs. (C) VASHs detyrosinate and disintegrate mi-
crotubules in the brain, leading to disease pathogenesis. VASH-mediated detyrosinated microtubules
are involved in brain deformity [98], which may play a role in Alzheimer’s and Parkinson’s diseases.
Created in biorender.com.

4.2. Detyrosinizing Role of VASHs in Cardiac Diseases

Heart diseases account for 17.9 million deaths annually and are the leading cause
of death, posing significant challenges due to increased healthcare expenses [101,102].
Technological advances have helped to elucidate the role of microtubules in heart patho-
genesis [103]. However, limited treatment approaches are aimed at microtubule-related
mechanisms for cardiac diseases. Thus, we focus on the future perspective of treating
heart pathologies with therapies that target microtubule-based mechanisms. Recent de-
velopments have spotlighted the role of the MTN in the mechanisms underlying heart
malfunction [11]. The MTN of cardiac myocytes has certain architectural and biophysical
characteristics that are necessary to meet the needs of the working heart [104]. The MTN is
orientated towards the nucleus and aligns longitudinally along the myofibrillar matrix [105];
moreover, and it is assumed to serve as a dynamic transport mechanism surrounding mito-
chondria and along the plasma membrane in cardiac myocytes [106]. Pathological cardiac
remodeling is characterized by changes in MTN density, stability, and PTMs. Therefore,
altered microtubules may directly impair cardiomyocyte contractile performance in various
cardiac diseases [107]. Increased cellular MTN density explains a significant proportion of
the cardiomyocyte contractile failure associated with pressure-overload-induced cardiac
hypertrophy [108]. Moreover, mRNAs and ribosomes are transported to aid in local trans-
lation and to assemble contractile units. Rather than the translation rate, which is known
to be a critical factor of cardiac hypertrophy, proper localized translation was suggested
to be a factor of cardiac hypertrophy. Evidence suggests that microtubule-based transport
augments the amplified transcription and translation for the effective growth of cardiomy-
ocytes during cardiac stress [109]. Similarly, VASH-1 acts as a hypoxia-responsive IRES
trans-acting factor in cardiomyocytes, with its ischemic heart role still undetermined [110].

Cardiac microtubules provide viscoelastic resistance to myofilament shortening and
re-lengthening by physically coupling to myofilaments. This interaction is regulated by
detyrosination, which is one of the major microtubule PTMs [111,112]. Cardiomyocytes
obtained from heart failure patients have a denser MTN, which is also much more dety-
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rosinated than that observed in healthy hearts [113]. Due to these MTN modifications,
the contraction–relaxation cycle is slower when compared to that of healthy cardiomy-
ocytes [114,115]. VASH/SVBP plays a significant role in the detyrosination of cardiac
microtubules in a failing heart. Briefly, VASH-1 depletion causes a decrease in stiffness and
enhancement of cardiac microtubule contractile performance in cardiomyocytes from heart
failure patients with preserved or reduced ejection fraction [116]. During this process, the
phosphorylation of microtubule-associated protein 4 by microtubule-affinity-regulating
kinase 4 (MARK4) gives VASHs more access to detyrosinating α-tubulin, and the loss
of ejection fraction is markedly reduced in the absence of MARK4 in an acute myocar-
dial infarction model [117]. Therefore, VASH-1 upregulation stabilizes microtubules by
detyrosination, signifying its potential therapeutic role in cardiac hypertrophy (Figure 5).

 

Figure 5. Potential mechanisms of VASHs in the cardiac system. (A) Normal cardiomyocytes with
dynamic microtubules (green in color) and balanced tyrosination/detyrosination cycle in which the heart
performs normal functions. (B) Cardiomyocyte growth occurs particularly in the diseased hypertrophic
heart. VASH-SVBP may highly detyrosinate, stabilize, and proliferate microtubules. Denser microtubules
(red) are seen in cardiomyocytes. Microtubules are in proximity to mitochondria in cardiomyocytes;
therefore, upregulation of VASHs could lead to mitochondrial dysfunctions in response to cardiac remod-
eling. (C) VASH-SVBP suppression may improve contraction and relaxation, as well as decrease cardiac
microtubule dysfunction, hence, balance between tyrosinated/detyrosinated states, representing the nor-
mal/healthy cardiomyocytes and heart. This remodeling could also alter both mitochondrial function and
dysfunction. Thus, it is critical to study these alterations and mechanisms, including bioenergetics, fission
and fusion, and fibrosis in the future. Created in biorender.com.

5. The Pathophysiological Role of VASHs in Fibrosis
Beyond their role in angiogenesis and detyrosination, VASHs are also involved in

regulating fibrosis [118] (Figure 6). Fibrosis is a disease associated with excessive buildup
of ECM, which causes stiffness and progressive scarring that can lead to organ dysfunction
and, ultimately, death [119]. Fibrosis development is regulated critically by the TGF-
β1/SMAD3 signaling pathway, which can be modulated by VASHs. For example, VASH-1
has been shown to modulate TGF-β1 signaling in the kidney, providing a protective role
against ECM formation, renal inflammation, and fibrosis [120]. Diabetic kidney disease
(DKD) is characterized by a slow progression of persistent proteinuria that eventually
leads to renal failure, and two major pathogenic changes in DKD are fibrosis and oxidative
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stress [121,122]. While VASH-1 expression is suppressed during DKD progression, its
residual activity may partially restrain TGF-β1/Smad3-driven fibrosis, as VASH-1 depletion
exacerbates renal damage via unchecked TGF-β1 signaling and amplifies oxidative stress
through dysregulated SIRT1/HIF1-α pathways [118]. This paradoxical role, where VASH-1
is downregulated yet mechanistically implicated in mitigating DKD progression, highlights
its potential as a therapeutic target. Restoring VASH-1 activity could, thus, simultaneously
target fibrosis and oxidative stress, two hallmarks of DKD pathogenesis.

Figure 6. Potential mechanistic interplay between VASH-1, VEGF, and TGF-β signaling in fibrosis.
Anti-VEGF therapy upregulates VASH-1, which subsequently inhibits both VEGF signaling (neg-
ative feedback) and TGF-β1/SMAD3 activation. (Right) This dual inhibition by VASH-1 reduces
angiogenesis around fibrotic loci and could block fibroblast activation, collagen deposition, and ECM
remodeling. While VASH-1 inhibits TGF-β signaling, the potential regulation of VASH-1 by TGF-β
remains undefined. Created in biorender.com.
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VASHs have the potential for various therapeutic uses, from regulating angiogenesis
and fibrosis to playing a major role in detyrosination. Based on these insights, the way
forward requires intensive efforts to explore VASH biology and pathophysiology while
translating these discoveries into clinical applications. The structural mechanisms underly-
ing VASH isoform specificity—particularly how VASH-1 and VASH-2 differentially engage
angiogenesis and microtubule pathways—demand an explanation through high-resolution
cryo-EM studies. Simultaneously, we must develop targeted therapeutic strategies for
the tissue-specific effects, such as blood–brain-barrier-impermeable formulations to pro-
tect neuronal microtubules while permitting peripheral VASH modulation. Moreover,
many aspects of VASHs, especially their interplay in regulating angiogenesis, fibrosis, and
detyrosination, may be further explored in future studies.

In addition to regulating TGF-β1/SMAD3 signaling, VASHs may influence fibrosis
via angiogenesis. Most chronic liver diseases, including hepatocellular carcinoma, are
characterized by fibrosis that eventually progresses to cirrhosis [123]. Chronic liver disease
development is linked to pathological angiogenesis, and angiogenesis suppression has
been shown to attenuate liver fibrosis in bile duct ligation and carbon tetrachloride mouse
models [124,125]. It has been proposed that anti-angiogenic therapeutics may prevent
liver fibrosis [126,127]. Indeed, VASH-1 was found to inhibit fibrosis and cirrhosis in
rat liver [128]. Because VASH-1 is an anti-angiogenic and antifibrotic protein, it is a
promising therapeutic approach that can treat fibrosis and protect the liver with high
efficacy. VEGF-A and FGF are involved in pulmonary fibrosis [129], which develops
in response to vascular remodeling in the lungs [130]. VEGF overexpression increases
permeability in the pulmonary vasculature, leading to edema [131]. Anti-VEGF therapy
reduces lung injury and fibrosis [132,133]. Furthermore, VASH-1 attenuated pulmonary
fibrosis through its anti-angiogenic activity and a significant decrease in cytokine secretion,
lymphocyte infiltration, and fibroblast proliferation [134].

6. Conclusions and Future Remarks
As summarized in Figure 7, VASHs are pleiotropic molecules that are regulated by

VEGF, which in turn inhibit the VEGF pathway and, thus, the process of angiogenesis.
Therefore, the abnormal expression of VASHs could trigger various diseases related to
angiogenesis, such as cancer, kidney disease, and reproductive diseases. Beyond their
well-characterized role in angiogenesis, recent studies have revealed that VASHs have
cysteine protease activity, can regulate the detyrosination of α-tubulin, and modulate the
dynamic changes in microtubules. In addition, VASHs can inhibit fibrotic lesions in multiple
organs through mediating the TGF-β1/SMAD3 pathway and angiogenesis. However,
many of the biological functions and molecular mechanisms of VASHs remain unknown,
including the following: (1) the molecular mechanism by which VASHs regulate VEGFR2
expression and phosphorylation; (2) the molecular interactions between VASHs and the
TGF-β1/SMAD3 pathway; (3) whether VASHs regulate angiogenesis and fibrosis through
modulating microtubules; (4) the divergent role and tissue specificity of VASH-1 and
VASH-2 in microtubule dynamic regulation; (5) the level at which VASHs detyrosinate the
microtubule subset population, which can enhance its therapeutic index; and (6) whether
VASHs are involved in the regulation of cardiac cells in the heart, given their regulation of
MTNs, which are tightly connected to the mitochondrion morphology and function of the
heart, an oxygen-demanding organ where cardiac cells have mitochondria that occupy 30%
of their volume [135,136].
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Figure 7. Pleotropic role of vasohibins (VASHs) in health and disease. VASHs play key roles in neu-
rodegeneration and disorganization in neurons of the brain by inducing microtubule detyrosination.
VASHs detyrosinate cardiac microtubules and impede contraction and relaxation. Therefore, the
suppression of VASHs aids in the kinetics of contraction, which ultimately improves cardiac function
and could have therapeutic use in heart failure, ischemic heart disease, and cardiac hypertrophy.
In angiogenesis, VASH-1 plays an anti-angiogenic role, whereas VASH-2 is pro-angiogenic. The
regulation of VASHs during angiogenesis plays a critical role in tumor growth and maintaining the
functions of the gastrointestinal tract, as well as male and female reproductive organs. Moreover, the
regulatory role of VASHs has been documented in liver, kidney, and pulmonary fibrosis. Created
in biorender.com.

The abnormal expression of VASHs is closely related to the occurrence and develop-
ment of various diseases, according to many studies, but their potential as a therapeutic
target remains to be evaluated. Anti-VEGF therapy has been a highly anticipated treatment
strategy for various diseases, including cancer, but it has faced clinical challenges due to
various undeniable side effects. Because VASHs are a negative feedback molecule of VEGF
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with relatively higher specificity, they have the potential to become effective targets for
anti-angiogenic therapy. However, VASHs have a recently discovered role in microtubule
regulation; therefore, targeting VASHs may lead to unknown side effects due to microtubule
disruption, which in turn affects the cytoskeleton and cellular architecture. Therefore, a
deeper study of the functions and mechanisms of VASHs can provide a solid foundation
for therapeutically exploiting VASHs for the treatment of angiogenesis-related diseases.
The integrated perspective serves as both compass and caution, guiding therapeutic de-
velopment while reminding us of the critical balance between VASH’s pleiotropic benefits
and its potential to disrupt fundamental cellular architecture. Through interdisciplinary
collaboration, we can advance VASH modulation from mechanistic curiosity to meaningful
clinical impact.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/cells14110767/s1, Table S1. The vasohibin (VASH) protein se-
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Abbreviations

VASHs Vasohibins
VEGF Vascular endothelial growth factor
ECs Endothelial cells
TCP Tubulin carboxypeptidase
PTM Post-translational modification
TTL Tubulin tyrosine ligases
SVBP Small vasohibin-binding protein
AA Amino acids
FGF-2 Fibroblast growth factor-2
TGF Transforming growth factor
ECM Extracellular matrix
PKC-δ Protein kinase C-delta
TNF-α Tumor necrotic factor-alpha
IL-1β Interleukin-1beta
IFN-γ Interferon-gamma
HIF1-α Hypoxia inducible factor 1 alpha
CKD Chronic kidney disease
AKI Acute kidney injury
DN Diabetic nephropathy
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I/R Ischemia-reperfusion
CL Corpus luteum
MTN Microtubule network
MARK4 Microtubule-affinity-regulating kinase 4
MI Myocardial infarction
DKD Diabetic kidney disease
SMAD3 Mothers against decapentaplegic homolog 3
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