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Abstract 
 
Background: Pregnancy alters many physiological systems, including the maternal gut 

microbiota. Diet is a key regulator of this system and can alter host inflammation. Multiple 

perinatal disorders have been associated with inflammation, maternal metabolic 

alterations, and gut microbiota dysbiosis, including gestational diabetes mellitus, 

preeclampsia, preterm birth, and mood disorders. However, the effects of high 

inflammatory diets on the gut microbiota during pregnancy has yet to be fully explored.  

 

Objective: To use a systems-based approach to characterize associations among dietary 

inflammatory potential, a measure of diet quality, and the gut microbiome during 

pregnancy. 

 
Methods: Forty-nine pregnant persons were recruited prior to 16 weeks of gestation. 

Participants completed a food frequency questionnaire (FFQ) and provided fecal 

samples. Dietary inflammatory potential was assessed using the Dietary Inflammatory 

Index (DII) from FFQ data. Fecal samples were analyzed using 16S rRNA amplicon 

sequencing. Differential taxa abundance with respect to DII score were identified, and 

microbial metabolic potential was predicted using PICRUSt2.  

 

Results: Inflammatory diets were associated with decreased vitamin and mineral intake 

and dysbiotic gut microbiome structure and metabolism. Gut microbial compositional 

differences revealed a decrease in short chain fatty acid producers such as 

g_Faecalibacterium, upregulation of vitamin B12 synthesis, methylglyoxal detoxification, 

galactose metabolism and multi drug efflux systems in pregnant individuals with 

increased DII scores.  

 

Conclusions: Dietary inflammatory potential was associated with depletion of vitamins 

& minerals and gut microbiota metabolic dysregulation.  
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Introduction 

 
In pregnancy, an under or over supply of nutrients can have deleterious impacts on both 

maternal and fetal health. For instance, lack of adequate folic acid intake during 

pregnancy is one of the leading causes of neural tube defects during fetal development 

(1). Similarly, iron utilization increases during the course of pregnancy, and inadequate 

supply is associated with poor fetal outcomes, including intrauterine growth restriction and 

low birth weight (2). Conversely, oversupply of dietary nutrients, including carbohydrates 

and saturated fats, common in Western diets, are associated with chronic inflammation 

and can lead to obstetric complications, from gestational diabetes mellitus (GDM) (3,4) to 

preterm birth (5). This is especially important for minoritized women of color who may 

have poor nutritional intake due to structural inequalities (6,7,8) and consequently, higher 

burden of adverse pregnancy outcomes (9). Thus, understanding the pro-inflammatory 

nature of diets could serve to reduce negative obstetrics and delivery outcomes (10).  

 
Diet is a major regulator of the gut microbiota (11,12). The gut microbiota encompasses 

the microorganisms, bacteria, fungi, viruses, and protists living inside the human 

gastrointestinal track. It is estimated that the gut microbiota encodes over 5 million 

microbial genes (13), with the potential to metabolize a vast number of different 

substrates. Over or under supply of dietary nutrients (such as fats or fiber) can provide 

competitive advantages or disadvantages for different gut microbial species based on 

their individual metabolic capabilities (14,15). The dynamic nature of pregnancy alters 

almost every system in the body, including the maternal gut microbiota (16) and immune 

system (17), which adapts in a tightly regulated clock to maintain immune protection of 

the mother while simultaneously avoiding autoimmune rejection of the growing fetus 

(17,18).  The structure of the gut microbiota changes as the pregnancy progresses (19), 

(20,21). In fact, transplantation of gut microbiota from pregnant individuals into germ-free 

animal models, renders common pregnancy phenotypes of obesity, insulin resistance 

(19,22), and adaptations in immunity (23).  Poor diet quality leading to a pro-inflammatory 

state can alter the normal dynamic changes of the gut microbiota (14) and immune system 

during pregnancy (24), increasing risk of common perinatal complications, including GDM 
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(25), iron deficiency (26), and mood disorders (27). It is thus essential to understand how 

maternal diet quality during pregnancy impacts the gut microbiota.  

 

The Dietary Inflammatory Index (DII) is a literature-derived population-based index to 

quantify the inflammatory potential of diets among diverse populations (28). The index 

was developed by leveraging global dietary studies to assign inflammatory effect scores 

(S) to common dietary nutrients based on their ability to increase or decrease pro-

inflammatory biomarkers, such as cytokines IL-1β, IL-4, IL-6, and IL-10 (28-30). Previous 

studies have shown DII is positively associated with inflammatory markers during 

pregnancy (31), increased rates of cesarean delivery in obese mothers (32) and 

decreased fetal growth (33). Furthermore, DII has also been negatively linked with 

microorganisms that produce short-chain fatty acids (SCFAs), which are beneficial anti-

inflammatory metabolites (34-37). Thus, the normal gut microbial compositional changes 

occurring during the gestational period may be negatively altered by poor diet quality, 

which could be assessed by the DII score, and may mediate obstetric complications.  

 
Understanding how diet regulates the gut microbiota during pregnancy could potentially 

lead to avenues of early interventions to reduce risk of pregnancy comorbidities 

associated with systemic inflammation. Here, we aim to assess the relationship between 

dietary inflammatory potential and the maternal gut microbiota during the first trimester of 

pregnancy in a cohort mostly composed of minoritized women of color living in a large 

diverse urban community in the United States.  

 
Methods 
 
Participant Recruitment 
This work is a secondary data analysis of a longitudinal cohort study (MoMent) in which 

participants were recruited from the outpatient obstetrics clinics at a public university 

hospital, the University of Illinois Chicago (Chicago, IL, USA), from 2018 to 2020 (38). 

This study was approved by the University of Illinois Chicago Institutional Review Board 

(IRB #2014-0325). Written informed consent was obtained prior to study enrollment and 

sample collection. To be eligible for the study, participants had to be less than 16 weeks 
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pregnant and English speaking. Women were excluded for the following criteria:  less 

than 18 or over 64 years of age, current multi-gestational pregnancy, a prior history of 

gastrointestinal surgeries, last 6 months oral antibiotic, antiviral, or antifungal use, use of 

medication or supplements to treat any chronic disorder (e.g., diabetes, hypertension, 

mood disorders), history of substance abuse (excluding marijuana, alcohol and tobacco, 

self-report) within the last 6 months, use of in vitro fertilization treatments for current 

pregnancy, active diagnosis of cancer, HIV or eating disorders or chronic diarrhea within 

the last 6 months. For this secondary study, we selected participants who completed a 

diet food frequency questionnaire before 28 gestational weeks and provided a fecal 

sample at their first study visit (< 16 gestational weeks), rendering a total of 49 subjects.  

 
Stool Collection 

Study participants self-collected rectal swabs (n=44), avoiding touching the rectal tissue, 

or provided stool samples (n=5) for gut microbiota assessment. Stool samples were 

homogenized and aliquoted in cryogenic vials. Rectal swabs and aliquoted stool samples 

were stored at -80°C before being sent for 16S rRNA amplicon sequencing. Biological 

samples were collected with an average estimated gestational age of 10.9 ± 3 weeks.  

 
Dietary Assessment  
Participants completed one of two validated FFQs: Vioscreen (n=25) (39) or the Diet 

History Questionnaire II (DHQII) (n=24) (40) with an average estimated gestational age 

of 14.7 ± 5.9 weeks. Participants were asked about the previous month of intake. 

Vioscreen was completed electronically at home by participants, with some receiving calls 

from research staff to complete the survey. DHQII was completed in-person by a certified 

and registered dietitian within an average of 4.4 ± 5.5 weeks of microbiome sample 

collection. The Dietary Inflammatory Index (DII) was calculated using the DII components 

common to both FFQs, a total of twenty-seven variables (60% of total DII parameters) 

which is within the DII’s developer’s suggested limit (28). Individuals were checked to 

ensure daily caloric intake < 500 or > 5,000 kcal/day). These DII variables included were 

daily intake of alcohol (g), vitamin B12 (μg), vitamin B6 (mg), β-carotene (μg), caffeine 

(g), carbohydrates (g), cholesterol (mg), energy (kcal), total fat (g), fiber (g), folic acid (μg), 

iron (mg), magnesium (mg), monounsaturated fatty acids (myristoleic acid, MUFA 14:1) 
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(g), niacin (mg), total protein (g), polyunsaturated fatty acids (PUFA) (g), riboflavin (mg), 

saturated fat (g), selenium (μg), thiamin (mg), trans-saturated fat (g), vitamin A (retinol 

equivalents), vitamin C (mg), vitamin D (μg), vitamin E (mg), and zinc (mg). Individual DII 

scores were calculated using (eq. 1):  

 

 𝐷𝐼𝐼  =   ∑ &'&𝜙 '
!!""!#"

#"
)* × 2 − 1) × 𝑆*$

%&'                                    (eq.1) 

      
where n represents the total number of common DII parameters between VioScreen and 

DHQII; 𝜇xi is the mean daily intake of food parameter i obtained from the FFQ; 𝜇yi is the 

global mean (average daily intake across global populations) and; 𝜎%  is the global 

standard deviation of parameter i both derived from the reference table; 𝜙 is the 

cumulative distribution function; and S represents the inflammatory effect score. Scores 

can range from −8.87 to +7.98 with the latter being the most inflammatory (28). After 

calculating DII scores for each participant, individuals were grouped into tertiles. 

Differences in patient demographics by DII tertile were assessed using Chi-square 

(qualitative) or ANOVA (quantitative). Correlations among DII parameters (continuous 

scale) were identified using Spearman’s correlation using energy corrected nutritional 

values. Energy correction was performed by scaling each individual's food parameter by 

their reported daily caloric intake. Dimensionality reduction Principal Component Analysis 

(PCA) was performed on DII parameters to identify the key nutrients that drive DII scores.  

Differences in nutrient parameters by tertile were assessed using ANOVA and between 

Tertile 1 & Tertile 2/3 using students t-test. All analysis were completed in R.  

 
Microbiome Assessment 
Rectal and fecal samples underwent 16S rRNA amplicon sequencing in four different 

batches at the University of Chicago (Chicago, IL, US) and at the University of California 

San Diego (San Diego, CA, US) together with control samples to account for possible 

reactant and environmental contaminations. Forward raw FASTQ sequences were 

processed using the DADA2 pipeline independently using default parameters (41) and 

passed to the R package phyloseq (42). After primer removal, reads were truncated to 

150 base pairs, denoised using standard parameters, and chimeras were removed. 
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Taxonomical assessment of the trimmed, cleaned reads was performed using the Silva 

reference database version 132 (43). Contaminating amplicon sequence variances (ASV) 

found in blank controls were removed from each batch using the prevalence method in 

the R decontam package (44). A threshold of 0.5 was used to identify contaminants that 

were more prevalent in negative controls than in clinical samples. Samples with library 

size below 10 reads were excluded from downstream analysis. Subsequently, batch-

effects were removed using the R package ComBat-seq (45). The count table and 

taxonomic assignments for each batch were then merged, keeping all the Amplicon 

Sequencing Variants (ASVs). ASVs with a relative abundance less than 1% relative to 

sample library size were removed from downstream analysis. After prevalence filtering, 

taxa counts were normalized using cumulative sum scaling (CSS) (46). Alpha diversity 

was calculated using the Shannon (47) and Simpson indexes (48). Statically significant 

differences in mean alpha diversity between DII tertiles were assessed using Wilcoxon 

rank sum test (49). Beta diversity was determined with Bray-Curtis (50) and unweighted, 

normalized UniFrac distance (51). Significant differences in beta-diversity distances by 

DII scores were assessed using PERMANOVA (52) correcting for participant BMI, 

gestational weeks (EGA), food frequency questionnaire type (DHQII or Vioscreen), 

sample type (stool or rectal) and maternal age. Associations between DII and CSS-

normalized ASVs were identified by fitting a zero-inflated Gaussian model with the R 

package metagenomeSeq (53). Models were adjusted by the same covariates as before. 

Multiple comparisons were corrected using the Benjamini-Hochberg method (54). Finally, 

gut metabolic potential was predicted via PICRUSt 2.0 (Phylogenetic Investigation of 

Communities by Reconstruction of Unobserved States) (55). Associations between 

metabolic pathways, microbial enzymes and DII scores were assessed with zero-inflated 

Gaussian models, corrected by the same covariates as above and multiple comparisons 

were adjusted using the Benjamin-Hochberg’s method. Gene set enrichment analysis 

(GSEA) was performed using all microbial enzymes, identified as significant before FDR 

adjustment using the R package MicrobiomeProfiler (56). Finally, associations among the 

identified enzymes and each food parameter used in DII estimation were quantified with 

zero-inflated Gaussian models, corrected by the same covariates as above and multiple 

comparisons were adjusted using Benjamin-Hochberg’s method. A total of 27 models 
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were fit with Z-scored energy corrected food parameters per subject as the outcome and 

microbial enzymes as predictors.   

 
Results 
 
Our sample was composed of minoritized women of color with a large percentage 
consuming a vitamin depleted pro-inflammatory diet.  
A total of 49 participants completed a FFQ and provided a fecal sample. The study cohort 

was primarily comprised of non-Hispanic Black (44%) and Hispanic (17%) pregnant 

persons with an average estimated gestational age of 10.9 ± 3 weeks, average maternal 

age of 29 ± 6 years, and 73% reporting an annual household income below $31,000 per 

year (Table 1). Notably, most participants reported use of Federal Aid Health Insurance 

(75.5%), a proxy for low socioeconomic status (57). A similar number of participants 

completed the Vioscreen (n=25) and DHQII (n=24) FFQs. Based on the 27 food 

parameters common between both FFQs (60% of total DII parameters), DII scores were 

spread across low and higher inflammatory scores with the lowest tertile (Tertile 1) mean 

of -2.3 (± 0.9) and highest (Tertile 3) mean DII of 3.4 (± 0.5) (Table 1). All DII scores were 

within the normal limits specified by the DII score authors (29). Socio-demographic 

characteristics were similar across all three groups (Table 1, p > 0.05). A less 

inflammatory diet was associated with higher vitamin B12, B6, A, niacin, iron, and 

zinc. (Table 2, p < 0.05). These DII parameters were positively associated with each 

other (Figure 1, p < 0.05). Of the nutrients used to calculate the DII score, the biggest 

contributors were those negatively associated with DII (Figure 1, p < 0.05). 

 

Gut microbiota composition and predicted metabolic potential were associated 
with proinflammatory diets in early pregnancy.  
There were no statistically significant differences in alpha or beta diversity by DII tertile 

(Fig. S1A-D, p-value > 0.05). A total of 18 ASVs were identified as differentially abundant 

in terms of DII score (Table S1, false discovery rate (fdr)-adjusted p-value < 0.05). Among 

the top 10 ASVs, those mapped to Solobacterium moorei, Gemella asaccharolytica, 

Gardnerella vaginalis, Atopobium vaginae and unclassified members of the 

Eggerthellaceae family and the Corynebacterium genera, were positively associated with 
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DII (Fig. 2A, adjusted p < 0.05), while those mapped to Parabacteroides distasonis, 

unclassified members of the genus Faecalibacterium, Prevotella, and Clostridium sensu 

stricto (Fig. 2A, adjusted p < 0.05) were negatively associated with dietary inflammatory 

potential. 

 

Next, we examined which PICRUSt2 predicted microbial enzymes and metabolic 

pathways were associated with DII scores. We identified 2 pathways, aerobic 

adenosylcobalamin (vitamin B12) synthesis and methylglyoxal detoxification (Fig. 2B, fdr-

adjusted p < 0.05), and 38 enzymes significantly associated with DII score (Table S2, fdr-

adjusted p-value < 0.05). The significantly enriched predicted enzymes were all positively 

associated with DII (Table S2) with several being involved in bacterial two-component 

system related to multi-drug efflux pumps (K07642, BaeS) and drug efflux 

pumps/resistance (K18889, K18148) and in galactose degradation and transport 

(K10111, K12112, K0894) (Fig. 3A, fdr-adjusted p < 0.05). Gene set enrichment analysis 

of the DII associated predicted enzymes before multiple comparisons (n=194, p-

value<0.05, Table S3), also revealed an increase of two-component systems terms (58) 

primarily related to nitrogen and sugar metabolism, genes involved in nitrogen 

metabolism (specifically nitrate reduction to ammonia), biofilm formation, and galactose 

metabolism (Fig. 3B, adjusted p < 0.05, Table S4).   

 
Several individual DII components were associated with predicted microbial 
enzymes.   
Finally, we investigated the relationships between DII components and DII-associated 

enzymes (Fig. 4). Several DII-associated enzymes, such as efflux pumps and resistance 

genes, and enzymes pertaining to the galactose metabolism, were also associated with 

19 individual DII food parameters including Vitamins B12, A, D, E, and cholesterol. The 

microbial resistance genes were K18889 (multi-drug efflux pump), K18148 (beta 

lactamase resistance) and K07642 (two-component signaling system for efflux pumps). 

K07642 was associated with the largest number of DII components (63%, such as 

vitamins A, C, D, E among others). These enzymes were mostly negatively associated 

with essential vitamins and minerals (vitamin A, B12, Niacin, & Zinc) that were decreased 
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in the higher DII individuals (Table 2, Fig. 4). The second group of enzymes associated 

with individual DII nutrient parameters (Sugar transporter K10111, Beta-galactosidase 

K12112, Beta-glucoside kinase K18673, and D-galactonate transporter K01894) were 

involved in galactose metabolism and were mostly negatively associated with key 

perinatal nutrients such as magnesium and folic acid.  Cholesterol was the only nutrient 

positively associated with more than one enzyme (D-galactonate transporter K01894 & 

Two-component systems K07642) 
 

Discussion 
 
Dietary intake is an essential aspect of maternal health. Food choice is often related to 

the dietary preferences of an individual, their environment, and their socioeconomic 

status. Under or oversupply of certain nutrients can have direct impacts on maternal 

health and the growing fetus (59, 60). This study demonstrated that diet inflammatory 

potential, an indicator of poor diet quality, was associated with lower vitamin and mineral 

intake, altered maternal gut microbiota composition and dysregulated microbial metabolic 

potential in early pregnancy. As diet is one of the main regulators of the gut microbiota 

(11, 12), poor diet quality during pregnancy could disrupt the normal dynamic adaptations 

of the maternal gut microbiota through altered substrate availability.   

 

In our study, the overall gut microbiota diversity did not differ in individuals consuming 

higher inflammatory diets. While distinct patterns of beta diversity composition in pregnant 

individuals with better diet quality have been previously reported (61, 62), recent 

microbiome-pregnancy cohorts have not identified alterations in beta diversity by diet 

quality (63,64), supporting our study observations. At the taxonomic level, several ASVs 

varied with dietary inflammatory potential. Higher DII scores were associated with 

enrichment of pro-inflammatory bacterial species, including S. moorei, a producer of 

proinflammatory sulfur compounds (65), and those associated with inflammatory perinatal 

conditions such as preterm birth and gestational diabetes including G. vaginalis, A. 

vaginae (66) and members of the Corynebacterium genera (67). In contrast, microbiome 

members that were depleted in individuals reporting high DII scores included known 

producers of anti-inflammatory SCFA such as Faecalibacterium (68). This suggests pro-
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inflammatory diets are associated with deleterious alterations to gut microbiota 

composition.  

 

The influence of maternal diet quality on the gut microbiota extends to their metabolic 

potential, as our study reveals a link between the predicted metabolic capabilities of gut 

microbes in individuals with higher inflammatory diets and community-wide metabolic 

dysregulation. The Cob(II)yrinate a,c-diamide biosynthesis metabolic pathway (part of 

adenosylcobalamin/vitamin B12 pathway) (69) was increased in participants reporting 

higher DII scores. Vitamin B12 deficiency can lead to upregulation of the cytokine TNF-α 

(70) and has been linked to multiple perinatal disorders including pre-eclampsia and 

neonate growth retardation (71). The increase in this bacterial pathway may be related to 

the insufficient vitamin B12 intake of the high DII group and a subsequent shift towards 

microbial communities capable of producing this essential vitamin to compensate for the 

unbalance. The second pathway associated with high DII scores was a microbially 

regulated methylglyoxal detoxification pathway. Methylglyoxal is a toxic oxidizing 

substance derived from sugar metabolism, a DII enriched process in this study, and is 

known to be elevated in perinatal metabolic disorders such as gestational diabetes 

mellitus (72,73). Methylglyoxal detoxification can occur via glyoxalase system (74,75), a 

common microbial detoxification pathway (76,77). This finding highlights the pro-

inflammatory nature of poor diet quality as well as the compensatory shift in the gut 

microbiota to reduce toxic metabolic species.  

 

DII scores were also associated with the upregulation of microbial virulence pathways, 

such as drug resistance, biofilm formation as well as nitrogen and sugar/galactose 

metabolism.  Sugar and galactose metabolism overall was enriched in individuals 

reporting high DII scores. Galactose metabolism has been shown to be enriched in 

perinatal inflammatory conditions such as gestational diabetes (78,79) and specifically 

associated with elevated methylglyoxal (80). Notably, S. moorei and G. vaginalis were 

both positively linked with DII scores and have been reported to contribute to galactose 

fermentation (65,81). Enrichment of microbial multidrug resistant efflux pumps enzymes 

(K07642,18889, K18148) could be promoted by host pro-inflammatory diets. Recent work 
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has shown bacterial multidrug efflux pumps are involved in nutrient signal processing, 

cellular adaptations to anaerobic respiration, and colonization of eukaryotic cells (82). 

Poor maternal diet quality may promote expression of these gut microbial enzymes in 

response to nutrient alterations. The predicted gut microbial enzymes related to both 

galactose metabolism and virulent efflux pumps were also mostly negatively correlated 

with vitamins and minerals (i.e., vitamins B12 and A and iron, magnesium, niacin, zinc) 

that were decreased in high DII individuals. Taken together, our results suggest that a 

vitamin and mineral depleted perinatal diet is associated with a shift in the gut microbiota 

towards a more pathogenic/pro-inflammatory community.  

 

Our cohort was primarily comprised of low-income Black and Latinx pregnant persons. 

Intake of highly processed foods is a hallmark of a Western diet, a diet pattern that is 

more common among disadvantaged minorities in the U.S., as these foods are more 

affordable and attainable for individuals with high financial burden (83). Previous studies 

from large perinatal cohorts, such as the 30-year longitudinal AVON study, have shown 

that women with lower access to high quality foods, have decreased vitamin and mineral 

intake (6). Our results support the hypothesis that poor diet quality is linked to insufficient 

vitamin and mineral dietary intake and accompanied by pro-inflammatory adjustments in 

the gut microbiome composition and metabolic structure.  

 

Strengths and Limitations. Our work focused on an understudied population at high risk 

of multiple health disorders, such as hypertension and GDM (6, 84). Associations 

between diet inflammatory potential and gut microbiota during pregnancy are under 

explored, and our research indicates that there is a significant link between microbial 

composition and metabolic functions and dietary inflammatory potential. Our work could 

be further improved by employing a more comprehensive dietary assessment approach 

that can assess all the 45 dietary parameters to calculate DII instead of just a portion of 

them (27 used for this study); including a larger sample size of a more diverse population 

in terms of DII scores that is followed longitudinally to determine the effects of DII on the 

gut microbiome later in pregnancy and perinatal disease development; employing a single 

stool sampling method; utilizing the same diet assessment for all participants and at the 
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same collection time; employing sequencing technologies that enable to measure the 

abundance of microbial genes, such as shotgun sequencing (metagenomics), instead of 

relaying in metabolic predictions; and further characterizing the host immune and 

metabolic profiles.  

 
Conclusion 
A proinflammatory diet, measured by DII, characterized by low intake of vitamins B12, 

B6, and A and iron, magnesium, niacin, riboflavin, and zinc, during early pregnancy is 

associated with a pro-inflammatory shift in the gut microbiota and metabolism as indicated 

by increase in galactose metabolism and methylglyoxal detoxification and multi drug 

efflux pump expression. Further characterization of gut metabolic status as a function of 

dietary alterations can provide opportunities for future research and targeted intervention 

strategies for at risk perinatal populations. 

 

Acknowledgements 
LTH, SAA and BPB designed the current study; ESW, UN, BPB recruited participants 

and collected the samples; LBP and BL assessed diet using DHQII; SAA analyzed the 

data; SAA, LTH and BPB interpreted the data; SAA and BPB wrote the initial 

manuscript. All authors critically read the manuscript. BPB was funded by the Arnold O. 

Beckman Postdoctoral Award, K-12 BIRCWH Award (K12HD101373) and a NARSAD 

Young Investigator Award from the Brain and Behavior Research Foundation. This work 

has been also partially funded by the NICHD R03HD095056. REDCap application is 

supported though the Center for Clinical and Translational Science (CCTS) 

UL1TR002003. 

 
Reference Code 

All analyses were performed in R. The R notebook containing all analyses and de-

identified data can be found at https://github.com/LabBea/Perinatal_DII  

 
Data Availability 

Data will be made available through the SRI repository. 
 
 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted December 3, 2023. ; https://doi.org/10.1101/2023.12.02.23299325doi: medRxiv preprint 

https://github.com/LabBea/Perinatal_DII
https://doi.org/10.1101/2023.12.02.23299325
http://creativecommons.org/licenses/by-nc-nd/4.0/


   
 

   
 

TABLES 
 
Table 1: Study cohort demographic characteristics did not differ as a function of 
DII scores. Participants were stratified into DII tertiles. There were no differences in study 
characteristics by DII tertile (p > 0.05).  
 
  Tertile 1 Tertile 2 Tertile 3 p 
DII Mean (SD) -2.3 (0.9) 1.0 (0.9) 3.4 (0.5)  
Gestational Weeks Mean (SD) 11.2 (3.5) 11.2 (2.9) 10.2 (2.7) 0.59 
Age Mean (SD) 28.7 (7.8) 28.6 (5.3) 30.2 (5.3) 0.69 
BMI Mean (SD) 29.0 (7.2) 30.4 (6.6) 28.3 (7.5) 0.7 

Race/Ethnicity Hispanic 2 (12.5) 4 (25.0) 2 (11.8) 0.35 
 Non-Hispanic Black 10 (62.5) 6 (37.5) 6 (35.3)  
 Other/Unreported 4 (25.0) 6 (37.5) 9 (52.9)  
Health Insurance Federal Aide 14 (87.5) 10 (62.5) 13 (76.5) 0.26 
 Private 2 (12.5) 6 (37.5) 4 (23.5)  
Education Above College 1 (6.2) 4 (25.0) 5 (29.4) 0.34 
 Below College 6 (37.5) 4 (25.0) 7 (41.2)  
 College 9 (56.2) 8 (50.0) 5 (29.4)  

Employment 
Employed Part/Full 
Time 11 (68.8) 8 (50.0) 10 (58.8) 0.56 

 Unemployed 5 (31.2) 8 (50.0) 7 (41.2)  
Income $31-76k 2 (12.5) 3 (18.8) 2 (11.8) 0.78 
 $76k+ 1 (6.2) 3 (18.8) 2 (11.8)  

 <$31k 13 (81.2) 10 (62.5) 13 (76.5)  
Relationship Status Married/Relationship 7 (43.8) 11 (68.8) 11 (64.7) 0.3 
 Single 9 (56.2) 5 (31.2) 6 (35.3)  
Planned Pregnancy No 6 (37.5) 1 (6.2) 2 (11.8) 0.17 
 Unreported 8 (50.0) 10 (62.5) 11 (64.7)  
 Yes 2 (12.5) 5 (31.2) 4 (23.5)  
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Table 2: Differences in nutritional intake by DII tertile. Reported mean (SD) nutrient 
values were normalized by total Energy intake per day (kcal/day). Vitamin A was 
reported in retinol equivalents (RE). 

 Tertile 1 Tertile 2 Tertile 3 p 
Alcohol (g) 0.1 (0.3) 0.1 (0.2) 0.1 (0.5) 0.83 
Vitamin B12 (μg) 3.2 (1.1) 2.9 (1.2) 2.2 (0.9) 0.03 
Vitamin B6 (mg) 1.1 (0.4) 1.0 (0.3) 0.8 (0.2) 0.02 
β Carotene (μg) 1983.5 (1563.7) 1547.3 (1698.9) 1491.2 (1104.8) 0.58 
Caffeine (g) 0.0 (0.0) 0.0 (0.0) 0.0 (0.0) 0.43 
Carbohydrate (g) 127.5 (25.0) 129.0 (28.0) 129.1 (33.9) 0.98 
Cholesterol (mg) 136.6 (66.6) 145.8 (64.5) 163.6 (113.8) 0.65 
Energy (kcal) 2988.0 (924.1) 1801.1 (409.1) 969.8 (333.8)  
Total fat (g) 39.5 (9.6) 40.3 (9.5) 39.9 (11.4) 0.98 
Fiber (g) 10.9 (2.4) 10.1 (3.3) 8.9 (2.2) 0.11 
Folic acid (μg) 168.4 (84.9) 165.8 (86.0) 128.7 (75.9) 0.31 
Iron (mg) 9.1 (3.4) 7.9 (2.8) 6.2 (1.7) 0.01 
Magnesium (mg) 171.2 (35.5) 147.1 (35.7) 143.2 (40.8) 0.08 
MUFA (g) 0.0 (0.0) 0.1 (0.0) 0.0 (0.0) 0.49 
Niacin (mg) 11.7 (3.1) 10.1 (2.1) 9.0 (2.8) 0.02 
Protein (g) 39.4 (6.1) 35.6 (7.0) 35.6 (11.4) 0.37 
PUFA (g) 8.2 (2.3) 7.9 (2.7) 8.1 (4.7) 0.97 
Riboflavin (mg) 1.3 (0.4) 1.1 (0.4) 0.9 (0.3) 0.02 
Saturated fat (g) 13.5 (3.5) 14.2 (4.1) 13.4 (4.3) 0.82 
Selenium (μg) 52.2 (10.2) 49.5 (11.6) 51.1 (19.5) 0.87 
Thiamin (mg) 0.9 (0.3) 0.8 (0.2) 0.7 (0.2) 0.11 
Trans fat (g) 1.7 (0.5) 1.8 (0.6) 1.6 (0.7) 0.75 
Vitamin A (RE) 523.2 (192.7) 437.0 (191.1) 358.8 (150.4) 0.04 
Vitamin C (mg) 85.5 (42.4) 71.7 (47.2) 64.5 (53.1) 0.45 
Vitamin D (μg) 3.9 (1.9) 3.6 (2.0) 2.6 (1.7) 0.1 
Vitamin E (mg) 5.1 (2.1) 3.9 (1.2) 4.1 (1.8) 0.13 
Zinc (mg) 6.5 (1.8) 5.9 (1.4) 5.1 (1.4) 0.04 
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FIGURES 

 
Figure 1: Components and drivers of DII scores. Spearman correlation (p < 0.05) 
among the 27 parameters used to calculate the DII scores for each subject. Dot size is 
proportional to the absolute correlation coefficient. See supplemental methods for more 
details (units and references). PUFA: polyunsaturated fatty acids; MUFA: 
monounsaturated fatty acids.  
 
A.  B.  

  
Figure 2: Differentially abundant gut taxa and predicted gut produced enzymes 
as a function of DII scores. Top 10 CSS normalized taxa (A) and all predicted 
pathways (B) that were identified as statistically significant differentially abundant by DII 
after correction by participant age, estimated gestational weeks (EGA), BMI, and food 
frequency questionnaire type (DHQII or VioScreen), and sample type (adjusted p < 0.05 
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& adjusted p < 0.1). Taxa names are lowest identifiable rank. Full list of enriched ASVs 
can be found in Table S1. PWY-7376: Cob(II)yrinate a,c-diamide biosynthesis II; 
METHGLYUT-PWY: methylglyoxal detoxification super pathway. 

 
 
A. B. 

  
  
Figure 3: Microbial gene sets enrichment analysis in terms of DII scores. A: Top 
15 predicted enzymes that were identified as differentially abundant by DII (adjusted p 
< 0.05). B: Gene set enrichment of enzymes grouped by those positively (N=194, p < 
0.05) associated with DII score. Full list of enriched enzymes can be found in Table S2. 
Full list of enzymes by gene set term can be found in Table S3.  

 
Figure 4: Relationship between predicted enriched enzymes and dietary 
components. Differential abundance of top 15 predicted enzymes and the 27 dietary 
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components of the DII (adjusted p < 0.05). Only significant associations are 
represented. 
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Appendix A. Supplemental tables 
 
Supplemental Table 1: DII differentially abundant ASVs using zero-inflated 
generalized linear models. Corrected by subject age, gestational weeks, sample type, 
FFQ type, and BMI (adjusted p-value < 0.05). 
 
Supplemental Table 2: DII differentially abundant microbial enzymes using zero-
inflated generalized linear models, fdr corrected. Corrected by subject age, 
gestational weeks, sample type, FFQ type, and BMI. Microbial enzymes were all 
increased (N=38) by DII after correction for multiple comparisons. We employed the 
KEGG database as a reference.  
 
Supplemental Table 3: DII differentially abundant microbial enzymes using zero-
inflated generalized linear models utilized in gene set enrichment. Corrected by 
subject age, gestational weeks, sample type, FFQ type, and BMI. Microbial enzymes 
were all increased (N=195) by DII before correction for multiple comparisons. We 
employed the KEGG database as a reference.  
 
Supplemental Table 4: Microbial enzymes per term identified by Gene set 
enrichment by DII. Microbially enzymes that were positively associated with DII before 
multiple comparison adjustments (N=194).  
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Appendix B. Supplemental figures 
 
 
A. B. 

  

 

C. D. 

  
E.  
Supplemental Figure 1: Alpha and beta diversity were not associated with 
assessment by DII score. A: Shannon and Simpson indexes as a function of DII 
scores. B: DII tertile (Wilcox Rank Sum p-value > 0.05). C: Beta diversity measured by 
Bray Curtis distance as a function of DII tertiles (PERMANOVA, p-value > 0.05). D: Beta 
diversity measured by UniFrac distance. Ellipses represent Tertile 1 and Tertile 2/3.  
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