
Some genetic characteristics are more commonly seen 
in men while others are seen more commonly in women. 
Many such characteristics are determined by genes located on 
the X or Y chromosome, that is, sex-linked traits. However, 
sex-limited traits may be present in men or women alone 
despite the same genotype in male and female individuals, 
such as breast cancer and prostate cancer [1,2]. Sex-limited 
traits outside sex-specific organs are rare [3-7], such as 
male-limited precocious puberty associated with mutations 
in the LHCGR gene (OMIM 152790) [4] and female-limited 
epilepsy and cognitive impairment associated with mutations 
in PCDH19 (OMIM 300460) [5-7].

Degenerative changes in the retina associated with high 
myopia have become one of the most common causes of 

irreversible blindness [8-11]. Mendelian and complex modes 
of inheritance have been suggested for high myopia [12-21]. 
Early onset high myopia (eoHM) [22], with minimum influ-
ence of the environment and different clinical characteristics, 
is a unique resource for the identification of genes respon-
sible for high myopia [23-26]. During a genetic study on 
high myopia, we examined three large families with eoHM 
limited to female family members but without any affected 
male family members. Transmission of eoHM in the families 
demonstrates an unusual pattern of inheritance, which could 
hardly be explained by traditional X-linked traits or by sex-
limited traits in sex-specific organs. Based on a genome-wide 
linkage scan and whole exome sequencing, novel mutations 
in ARR3 (Gene ID: 407; OMIM 301770) are responsible for 
X-linked female-limited eoHM in the three families, the first 
human disease associated with ARR3 and the second X-linked 
female-limited disease identified thus far.
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Purpose: To identify genetic mutations in three families with early onset high myopia (eoHM) limited to female 
members.
Methods: Genomic DNA was collected from participating members of families XF1, XF2, and XF3. Genome-wide 
linkage scans were performed on the largest family (XF1). Whole exome sequencing was performed on seven samples, 
including five samples (four affected and one unaffected) from family XF1, as well as the two probands from family 
XF2 and XF3. Variants were analyzed with multistep bioinformatics analyses. Sanger-dideoxy sequencing was used to 
verify candidate variations in families and controls.
Results: The genome-wide linkage scans performed on family XF1 detected a candidate locus on chromosome Xp11.1-
Xq13.3 with a maximum logarithm of the odds (LOD) score of 2.48 and 3.01 for markers DXS991 and DXS986, re-
spectively. Parallel whole exome sequencing identified a novel c.893C>A (p.Ala298Asp) mutation in ARR3 located on 
Xq13.1 in family XF1, which was shared by all four affected individuals but not the unaffected individual. Two other 
novel mutations in ARR3, c.298C>T (p.Arg100*) and c.239T>C (p.Leu80Pro), were detected in families XF2 and XF3, 
respectively. These mutations were predicted to be damaging and were not present in the normal controls and existing 
databases. All three mutations cosegregated with eoHM in each of the three families, in which all heterozygous female 
members are affected whereas all hemizygous male family members are not affected. Transmission of the mutations and 
eoHM in the three families demonstrates an unusual pattern of X-linked female-limited inheritance.
Conclusions: These data suggest that heterozygous mutations in ARR3 might be responsible for X-linked female-limited 
eoHM in the three families, a pattern contrary to the standard X-linked recessive trait. To our knowledge, eoHM is 
the first human disease associated with mutations in ARR3 and the second X-linked female-limited disease identified 
thus far. Identification of ARR3 associated with X-linked female-limited trait provides not only additional evidence of 
this unusual hereditary pattern but also an additional model for investigating the molecular mechanism responsible for 
female-limited phenotypes.
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METHODS

Three large families with eoHM limited to female family 
members and with no affected male family members were 
examined during a genetic study on eoHM (Figure 1, Figure 
2, and Figure 3). Written informed consent in accordance 
with the tenets of the Declaration of Helsinki was obtained 
from the participants or their guardians. This study was 
approved by the institutional review board of the Zhong-
shan Ophthalmic Center. Venous blood for genomic DNA 
preparation was collected from 30 (15 affected; Figure 1), 
12 (10 affected; Figure 2), and eight (four affected; Figure 3) 
individuals in the three families, respectively. All affected 
female family members had significant nearsightedness in 
early childhood and demonstrated typical tigroid fundus 
changes commonly seen in early onset high myopia (Figure 
4). Refractive errors were measured with retinoscopy after 
mydriasis. eoHM was defined as axial length greater than 
26.00 mm or spherical refraction in each meridian equal to 

or greater than −6.00 diopter in both eyes developed before 
the age of 7 years, with the exclusion of other known ocular 
or related systemic diseases.

A genome-wide linkage scan on family XF1 was 
performed using panels 1–28 of the ABI PRISM linkage 
Mapping Set Version 2, which includes 400 markers spaced 
at intervals of about 10 cM. Genotyping for all participating 
family members was performed using 5′-fluorescently labeled 
microsatellite markers, as previously described [27]. Two-
point linkage analysis was performed using the MLINK 
program of the FASTLINK implementation of the LINKAGE 
program package [28,29]. The eoHM in the family was 
analyzed as an autosomal dominant trait with incomplete 
penetrance for panels 1–27 markers or as X-linked inheri-
tance limited to female family members for panel 28 markers.

Whole exome sequencing was performed on genomic 
DNA from five (four affected and one unaffected) individuals 

Figure 1. Family XF1 demonstrating haplotypes around ARR3 and mutation segregation with eoHM. Filled circles represent female family 
members affected with early onset high myopia (eoHM). V:12 is the proband. The novel c.893C>A (p.Ala298Asp) mutation in ARR3 was 
present in 15 female patients examined in this family but not in unaffected female family members. Two male family members with mutations 
(III:1 and III:3) and one obligate male carrier (II:3) did not have eoHM. M: mutation; +: Normal allele.
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of family XF1, one affected individual of family XF2, and 
one affected individual of family XF3, using a commercial 
service from Macrogen, as described in our previous study 
[25,30]. Variants detected were initially filtered with multi-
step bioinformatics analyses, as described in our previous 
study [25,30]. Then, variants shared by four affected indi-
viduals but not the unaffected individual in family XF1 

were selected. Potential variants in the other two families 
were also analyzed. Candidate variants were also filtered by 
comparing with existing databases, including HGMD, EVS, 
and ExAC. The possible impact of missense changes was 
predicted by using the SIFT [31] and PolyPhen-2 [32] online 
tools. Sanger-dideoxy sequencing was used to confirm poten-
tial causative variants and to validate their cosegregation in 

Figure 2. Family XF2 demonstrating haplotypes around ARR3 and mutation segregation with eoHM. Filled circles represent female family 
members affected with early onset high myopia (eoHM). III:10 was the proband. The novel c.298C>T (p.Arg100*) mutation in ARR3 was 
present in all ten female patients examined. M: mutation; +: Normal allele.
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Figure 3. Family XF3 demonstrating haplotypes around ARR3 and mutation segregation with eoHM. Filled circles represent female family 
members affected with early onset high myopia (eoHM). IV:1 is the proband. The novel c.239T>C (p.Leu80Pro) mutation in ARR3 was 
present in all four female patients examined. One male family member with the mutation (V:1) did not have eoHM. Except the mutation, 
genotyping information for microsatellite markers around ARR3 was not available for V:2 because she was recently added. M: mutation; 
+: Normal allele.
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Figure 4. Fundus photographs of female patients with eoHM and different heterozygous mutations in ARR3 and an unaffected male family 
member with a hemizygous mutation in ARR3. The top two photographs are from family members IV:15 and V:11 of family XF1, respectively. 
Both have the heterozygous c.893C>A mutation in ARR3. The middle two photographs are from family members III:1 and III:9 of family 
XF2, respectively. Both have the heterozygous c.298C>T mutation in ARR3. The lower two photographs are from family members IV:1 and 
V:1 of family XF3, respectively, in which the female patient (IV:1) has the heterozygous c.239T>C mutation in ARR3 and has early onset 
high myopia (eoHM), but the male family member (V:1) has the hemizygous mutation in ARR3 without eoHM. All five female patients 
(XF1-IV:15, XF1-V:11, XF2-III:1, XF2-III:9, and XF3-IV:1) with heterozygous mutations in ARR3 demonstrated a temporal crescent of the 
optic nerve head and tigroid appearance of the posterior retina. However, XF3-V:1 is a 6-year-old boy with a hemizygous mutation in ARR3 
who did not have eoHM. OD: right eye. OS: left eye.
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family members, as well as the novelty of the variants by 
analyzing controls.

RESULTS

Genome-wide linkage scan on family XF1 resulted in loga-
rithm of the odds (LOD) scores higher than 1.5 in only four 
markers: 1.54 for marker D2S206, 1.67 for D9S285, 2.48 for 
DXS991, and 3.01 for DXS986, suggesting a candidate locus 
on Xp11.1-Xq13.3 for eoHM in family XF1 (Figure 1).

Parallel whole exome sequencing identified only one 
novel candidate variant shared by four affected individuals 
(IV:4, IV:13, IV:15, and VI:1) but absent in the unaffected 
female member (VI:3) in family XF1 (Figure 1), that is, the 

c.893C>A (p.Ala298Asp) mutation in the AAR3 gene located 
at Xq13.1, a region within the linkage interval. Analyzing 
whole exome sequencing data of the two probands (III:10 
in family XF2 and IV:1 in family XF3) from the other two 
families identified other novel mutations in ARR3: c.298C>T 
(p.Arg100*) and c.239T>C (p.Leu80Pro; Figure 2 and Figure 
3), respectively. These three mutations were confirmed with 
Sanger sequencing (Figure 5). Analysis of these mutations 
in available family members showed complete segregation 
of heterozygous mutations with affected female family 
members, in which unaffected female family members did 
not harbor the mutation (Figure 1, Figure 2, and Figure 3). 
The most striking phenomenon is that hemizygous male 
family members were not affected. The p.Ala298Asp 

Figure 5. Sequence chromatography from Sanger sequencing. Mutations in ARR3 identified with whole exome sequencing were further 
confirmed with Sanger sequencing and then validated in family members. The sequence with heterozygous mutations detected in female 
patients with early onset high myopia (eoHM) are shown on the left, whereas the corresponding normal sequences from controls are shown 
on the right. Arrows indicate the sites with and without mutations in the patients and controls, respectively.
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mutation was predicted to be damaging with a SIFT score of 
zero and probably damaging with a PolyPhen2 score of 1.0. 
The p.Arg100* mutation would result in truncation of most 
of the 388 residues but is more likely to be a null allele due 
to nonsense-mediated decay. The p.Leu80Pro mutation was 
predicted to be possibly damaging with a PolyPhen2 score 
of 0.523 but tolerated with a SIFT score of 0.07. All three 
mutations were not present in 192 normal controls (263 X 
chromosomes) or in existing databases (HGMD, EVS, ExAC, 
and 1000G). An analysis of the whole exome data of patients 
from these three families did not identify mutations in genes 
responsible for other forms of syndromic or nonsyndromic 
high myopia or in genes associated with other known retinal 
diseases [23,24].

DISCUSSION

In this study, female-limited eoHM was mapped to a novel 
locus on Xp11.1-Xq13.3 and was associated with novel muta-
tions in ARR3. This association is supported by linkage 
mapping, identification of novel mutations in ARR3 in three 
families, segregation of heterozygous mutations with eoHM 
in the families, absence of the mutations in controls and 
existing databases, absence of known disease with ARR3, 
retinal-specific and highly enriched expression of ARR3, and 
exclusion of other potential mutations in the whole genome. 
To our knowledge, female-limited eoHM is the first human 
disease associated with mutations in ARR3 and is the second 
X-linked female-limited disease identified thus far.

The patterns of disease transmission in the three families 
with eoHM with mutations in ARR3 is highly likely to be 
X-linked female-limited [33]. Such an unusual pattern of 
inheritance has been rarely reported, except epilepsy and 
mental retardation limited to women (EFMR) that is caused 
by mutations in the PCDH19 gene located at chromosome 
X [5,6,34], where female family members with heterozy-
gous mutations are affected while hemizygous male family 
members are spared, a pattern contrary to the standard 
X-linked recessive trait. In addition, a similar but slight 
different pattern was also observed in ephrin-B1 (EFNB1, 
OMIM 300035)-related craniofrontonasal syndrome, where 
female family members are affected while male family 
members had no or only mild abnormalities [35,36]. In this 
unusual pattern of inheritance, it is unclear why heterozygous 
female family members are affected while hemizygous male 
family members are not affected. It has been postulated that 
an alternative pathway may compensate the complete loss of 
the functional products encoded by the mutant gene. In the 
heterozygous female family members, however, random inac-
tivation of one X chromosome may create mosaic cells that 

express either a normal or mutant gene so that these two types 
of cells may behave differently in cell interaction, migra-
tion, connection, metabolism, or even signal transmission 
[7,35,37-40]. Uncompromised behavior of these two types of 
cells may be harmful in development or in performing their 
natural function [6]. This proposed mechanism might also 
explain the unusual pattern of inheritance seen in families 
with eoHM with mutations in ARR3. Although diseases with 
X-linked female-limited inheritance are rare thus far, this 
mechanism may represent a special molecular pathological 
mechanism for a new class of diseases. This mechanism 
may be increasing recognized in other diseases of unknown 
causes if it can be investigated further, especially in those 
with developmental anomalies or functional abnormalities of 
the neurosystems.

ARR3, located at Xq13.1 with 17 coding exons, encodes 
cone arrestin with retina-specific and retina-enriched expres-
sion [41-43]. ARR3 has been speculated to play a role in 
as-yet undefined retina-specific signal transduction [44,45]. 
To date, mutations in ARR3 have not been associated with 
any human disease. Based on a study of Arr4 (the ortholog 
of human ARR3) knockout mice [46], 2-month-old Arr4-null 
mice had diminished visual acuity and contrast sensitivity 
but higher b-wave amplitudes, while 7-month-old Arr4-null 
mice had significantly reduced a-wave amplitudes compared 
with normal controls. The older Arr4-null mice had reduced 
cone numbers and cone opsin expression with normal thick-
ness of the outer nuclear layer, suggesting a model of age-
related cone dystrophy [46]. These data from Arr4-null mice 
suggest the involvement of cone arrestin in the structural and 
functional circuit of cones but do not explain why eoHM was 
present in heterozygous female family members but not in 
hemizygous male family members. Phenotypic differences in 
mice and humans have been observed in other genes, such as 
a null mutation in LOXL3 (OMIM 607163) that causes embry-
onic lethality in mice [15] but eoHM in human beings [26]. 
In addition, mutations in genes with encoded products that 
participate in the cone signal pathway have previously been 
reported in patients with eoHM, such as those in OPN1LW 
(OMIM 300822) [21,24] and NYX (OMIM 300278) [47,48]. 
Nevertheless, our results suggest that ARR3 plays impor-
tant role in cone-related function. Further study of ARR3 
in suitable knockout animal models, such as the rat or even 
the monkey, may help to elucidate the underlying molecular 
mechanism related to female-limited expression of mutations 
in X-linked genes.
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