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A B S T R A C T   

We have utilised the transcriptional response of lung epithelial cells following infection by the original Severe 
Acute Respiratory Syndrome coronavirus (SARS) to identify repurposable drugs for COVID-19. Drugs best able to 
recapitulate the infection profile are highly enriched for antiviral activity. Nine of these have been tested against 
SARS-2 and found to potently antagonise SARS-2 infection/replication, with a number now being considered for 
clinical trials. It is hoped that this approach may serve to broaden the spectrum of approved drugs that should be 
further assessed as potential anti− COVID-19 agents and may help elucidate how this seemingly disparate 
collection of drugs are able to inhibit SARS-2 infection/replication.   

1. Introduction 

TheCOVID-19 pandemic has spawned a global drug development 
effort. With a vaccine still many months away and novel drugs requiring 
years to reach the clinic, drug repurposing has become an attractive 
alternative. To date the most successful intervention in the pandemic has 
been the redeployment of dexamethasone for patients in intensive care 
(Horby et al., 2020). Still further effort is needed to identify other 
approved drugs that can be repositioned against SARS-2. One approach 
is based on the observation that the gene expression changes seen in 
disease states can serve as effective disease descriptors or quantitative 
phenotypes (Golub et al., 1999; Lee and Young, 2013) and drugs can 
then be repurposed based on an ability to drive expression in the 
opposite direction (Marton et al., 1998; Hughes et al., 2000; Wei et al., 
2006; Zhang et al., 2012; Williams, 2012; Walf-Vorderwulbecke et al., 
2018). However, in the case of SARS, transcriptional data are largely 
limited to the cellular response to infection established in in vitro assays, 
which is characterised by the up regulation of a cellular viral defence 
mechanism. The hypothesis behind the present work is that drugs 
driving these defensive gene expression changes may bolster the cellular 
response to infection and thus present candidate therapeutics to fight the 
SARS-2 coronavirus. 

2. Methods 

In total, 17 infection SARS-associated transcriptional profiles were 

generated from NCBI GEO deposited expression series, see Table S1 for 
details. CMAP (Lamb et al., 2006) profiles were defined as previously 
described (Williams et al., 2019). LINCS profiles were generated based 
on the deposited dataset series GSE92742 and GSE70138 (Subramanian 
et al., 2017). The LINCS portal of SPIED (www.spied.org.uk) hosts 
profiles in the form of categorical calls on the up/down status of genes 
generated based on combining expression data for drug/cell replicates. 
In the present work the LINCS profiles for different cell types are com
bined for each drug based on a given gene being assigned an up or down 
regulated status based on a majority vote across the cell types. See 
Supplementary file for further Methods details. 

3. Results 

A high degree of correlation between the profiles was found, Table 
S1, facilitating the definition of a composite signature for SARS infection 
comprising 192 up and 136 down regulated genes, Table S2. Pathway 
and gene ontology enrichment analyses of the up regulated gene set 
highlight the involvement of a viral defence mechanism and immune 
response genes, Tables S3, S4. The signature also returns high ranking 
virus infection related transcription studies in a search of publicly 
available data, Table S5. 

The CMAP and LINCS repositories of the transcriptomic effects of 
approved drugs were queried for positive correlates of the SARS signa
ture with the striking result that half of the high scoring drugs have 
reported anti-viral activities (23/45 in CMAP and 22/45 in LINCS) of 
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which 9 have recently shown to be potent inhibitors of SARS-2 (Jeon 
et al., 2020; Choy et al., 2020), see Fig. 1 and Table S6. 

Ouabain, the most potent of the SARS-2 antagonist, and Digoxin are 
plant derived toxins used at low concentrations to treat hypertension 
and cardiac arrhythmia and have been shown to inhibit SARS-2 and 
MERS replication in the nanomolar range (Jeon et al., 2020; Ko et al., 
2020). Both inhibit the sodium/potassium ATPase, or sodium/potas
sium pump (Ogawa et al., 2009; Laursen et al., 2015), and CTS antiviral 
activity has been linked to the ionic changes they induce in the cell being 
less favourable for viral replication (Hartley et al., 2006; Grosso et al., 
2017). Low doses of Ouabain also reduce inflammatory cytokine pro
duction in LPS treated rats by blocking the nuclear translocation of 
NF-kB (Kinoshita et al., 2014). At low picomolar concentrations 
Ouabain promotes an interaction between the pump and the Angio
tensin Type 1 Receptor (AT1R) (Ketchem et al., 2016). It has also been 
demonstrated that AT1R directly interacts with ACE2 (Deshotels et al., 
2014), the port of entry for the SARS and SARS-2 (Hoffmann et al., 2020) 
coronaviruses. It is plausible then that at very low concentrations 
Ouabain, and by extension Digoxin, cause the internalisation of the 
pump in complex with AT1R and ACE2, thereby reducing the cell sur
face expression levels of ACE2 and inhibiting the ability of SARS-2 to 
enter cells and replicate. The therapeutic range of Ouabain and Digoxin 
is limited, as at high doses they are extremely toxic. However, the effects 
outlined above appear to occur at very low concentration, well below 
toxic levels. Interestingly, in the LINCS data set there are two molecules 
with very close homology to the CTSs; witherferin-A, the active ingre
dient in Ashwagandha, and cucurbitacin, from the squirting cucumber. 
As these are not FDA approved drugs they have not been tested in in 
vitro assays but now warrant urgent testing for an ability to inhibit 
SARS-2 infecting cells. 

Interestingly, in response to the recent data on anti-SARS-2 activity 
(Jeon et al., 2020; Ko et al., 2020) C2 pharma (www.c2pharma.com) is 
opening access to its stocks of Digoxin for trial purposes. There are 4 
other CTS like drugs among our top hits, these too should now be 

assessed for their ability to inhibit SARS-2 infection as a matter of some 
urgency. 

The closely related ipecac root extracts Emetine (our top CMAP and 
second LINCS hit) and Cephaeline (3rd and 35th respectively) are pre
scribed as expectorants and at high doses emetics. Of these Emetine has 
been shown to potently inhibit SARS-2 (Choy et al., 2020) and has been 
singled out as a possible COVID-19 therapeutic (Bleasel and Peterson, 
2020). Emetine is currently being developed for COVID-19 by Acer 
Therapeutics (www.acertx.com). 

The broad spectrum antiviral Niclosamide (Jurgeit et al., 2012; Xu 
et al., 2020) has been repurposed three times over its 60 year history and 
recently been shown to have sub-micromolar potency against SARS-2 
(Jeon et al., 2020). Niclosamide is now in Phase 2 trials for COVID-19 
sponsored by Tufts Medical Center (trial reference NCT04399356). 

Of the hits unique to LINCS, Homoharringtonine, a protein trans
lation inhibitor, also inhibits SARS-2 replication at low micromolar 
concentrations (Choy et al., 2020). The four unique CMAP hits Terfe
nadine, an antihistamine, the antimalarial Mefloquine, the antipsychotic 
Thioridazine and the antianginal Perhexiline have been shown to inhibit 
SARS-2 replication at low micromolar concentration (Jeon et al., 2020). 

4. Discussion 

Our data indicate that a seemingly disparate group of nine drugs 
each able to inhibit SARS-2 infection/replication, a number of which are 
being considered for trials, are linked though an ability to drive the 
expression of the SARS infection profile genes. Thus transcriptional data 
points to a common mechanism of action and is likely to reveal the 
therapeutic potential of drugs with as yet no reported antiviral activity 
but with well-known safety profiles. 

Our data suggest that the other plant based cardiotonic steroids we 
have identified, for which there are no data concerning their ability to 
block SARS-2, should be tested as soon as possible, and if effective added 
to the list of candidate therapeutics. 

Fig. 1. Transcription-based repurposing candidates. The SARS signature gene expression across the 17 component profiles is shown in the middle. The four common 
hits that are SARS-2 antagonists are shown at the left with their respective CMAP and LINCS ranks. The hits unique to the two datasets are shown to the right. The 
structures illustrate the power of transcription profiling to group chemically diverse compounds into a biological activity class. 
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In conclusion, these findings validate transcription-based repurpos
ing as a rapid and effective means to identify potential treatments for the 
current COVID-19 pandemic and potentially for other zoonotic coro
navirus pandemics that will doubtless inflict mankind in the future. 
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Appendix A. Supplementary data 

Supplementary data associated with this article can be found, in the 
online version, at https://doi.org/10.1016/j.virusres.2020.198176. 
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