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Abstract

One goal of human genetics is to understand how the information for precise and dynamic gene expression programs is
encoded in the genome. The interactions of transcription factors (TFs) with DNA regulatory elements clearly play an
important role in determining gene expression outputs, yet the regulatory logic underlying functional transcription factor
binding is poorly understood. Many studies have focused on characterizing the genomic locations of TF binding, yet it is
unclear to what extent TF binding at any specific locus has functional consequences with respect to gene expression
output. To evaluate the context of functional TF binding we knocked down 59 TFs and chromatin modifiers in one HapMap
lymphoblastoid cell line. We then identified genes whose expression was affected by the knockdowns. We intersected the
gene expression data with transcription factor binding data (based on ChIP-seq and DNase-seq) within 10 kb of the
transcription start sites of expressed genes. This combination of data allowed us to infer functional TF binding. Using this
approach, we found that only a small subset of genes bound by a factor were differentially expressed following the
knockdown of that factor, suggesting that most interactions between TF and chromatin do not result in measurable
changes in gene expression levels of putative target genes. We found that functional TF binding is enriched in regulatory
elements that harbor a large number of TF binding sites, at sites with predicted higher binding affinity, and at sites that are
enriched in genomic regions annotated as ‘‘active enhancers.’’
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Introduction

Understanding the regulatory logic of the genome is critical to

understanding human biology. Ultimately, we aim to be able to

predict the expression pattern of a gene based on its regulatory

sequence alone. However, the regulatory code of the human

genome is much more complicated than the triplet code of protein

coding sequences, and is highly context-specific, depending on

cell-type and other factors [1]. In addition, regulatory regions are

not necessarily organized into discrete, easily identifiable regions of

the genome and may exert their influence on genes over large

genomic distances [2]. Consequently, the rules governing the

sequence specificity as well as the functional output of even the

most common regulatory interactions, such as interactions

between transcription factors and the genome, are not yet fully

understood.

To date, genomic studies addressing questions of the regulatory

logic of the human genome have largely taken one of two

approaches. On the one hand are studies aimed at collecting

transcription factor binding maps using techniques such as ChIP-

seq and DNase-seq [3–6]. These studies are mainly focused on

identifying the specific genomic locations and DNA sequences

associated with transcription factor binding and histone modifica-

tions. On the other hand are studies aimed at mapping various

quantitative trait loci (QTL), such as gene expression levels

(eQTLs) [7], DNA methylation (meQTLs) [8] and chromatin

accessibility (dsQTLs) [9]. These studies are mainly focused on

identifying specific genetic variants that functionally impact gene

regulation. Cumulatively, binding map studies and QTL map

studies have led to many insights into the principles and

mechanisms of gene regulation [7,10–12].

However, there are questions that neither mapping approach on

its own is well equipped to address. One outstanding issue is the

fraction of factor binding in the genome that is ‘‘functional’’,

which we define here to mean that disturbing the protein-DNA

interaction leads to a measurable downstream effect on gene

regulation. (Note that we do not concern ourselves with the

question of whether the regulatory outcome and/or the interaction

are evolving under natural selection). An experimental technique

that could help address this issue is transcription factor knock-

down. In knockdown experiments, the RNA interference pathway

is employed to greatly reduce the expression level of a specific

target gene by using small interfering RNAs (siRNAs). The cellular

or organismal response to the knockdown can then be measured

(e.g. [13]). Instead of measuring a cellular phenotype, one can

collect RNA after the knockdown and measure global changes in

gene expression patterns after specifically attenuating the expres-

sion level of a given factor.

Combining a TF knockdown approach with TF binding data

can help us to distinguish functional binding from non-functional
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binding. This approach has previously been applied to the study of

human TFs (e.g. [14–16]), although for the most part studies have

only focused on the regulatory relationship of a single factor with

its downstream targets. The FANTOM consortium previously

knocked down 52 different transcription factors in the THP-1 cell

line [17], an acute monocytic leukemia-derived cell line, and used

a subset of these knockdowns to validate certain regulatory

predictions based on binding motif enrichments [18]. However,

the amount of transcription factor binding information available

for the THP-1 cell line is limited (it is not a part of the ENCODE

reference lines).

Many groups, including our own, have previously studied the

regulatory architecture of gene expression in the model system of

HapMap lymphoblastoid cell lines (LCLs) using both binding map

strategies [3,19,20] and QTL mapping strategies [7,9]. As a

complement to that work, we sought to use knockdown

experiments targeting transcription factors in a HapMap LCL to

refine our understanding of the gene regulatory circuitry of the

human genome. We integrated the results of the knockdown

experiments with previous data on transcription factor binding to

better characterize the regulatory targets of 59 different factors

and to learn when a disruption in transcription factor binding is

most likely to be associated with variation in the expression level of

a nearby gene.

Results

Our goal was to better characterize gene regulation by

transcription factors (TFs). To do so, we measured the impact

that knocking down the expression level of TFs and chromatin

modifiers had on global gene expression levels in a single HapMap

LCL (GM19238). As a first step, we used a high-throughput

pipeline to screen siRNAs targeting 112 TFs for their efficiency in

knocking down the target transcript (see Table S1 for a list of

factors) to identify factors that were knocked down by at least 50%.

We evaluated the knockdown efficiency using qPCR to measure

transcript levels of the targeted gene in RNA samples extracted

48 hours after the siRNA transfection. Based on the qPCR results,

we chose to focus on 59 TFs and chromatin modifiers, which were

effectively knocked down using our approach (see Methods for

specific details).

We repeated the knockdown experiment for the 59 factors in

triplicate, and collected RNA 72 hours after transfection for gene

expression analysis using Illumina HT-12 microarrays. This time

point was chosen to provide ample time for the transcript

knockdown to impact the protein level of the targeted factor

[21,22]. All factors were knocked down in independent cultures of

the same LCL. Gene expression levels following the knockdown

were compared to expression data collected from six samples that

were transfected with negative control siRNA. The expression

data from all samples were normalized together using quantile

normalization followed by batch correction using the RUV-2

method. We then performed several quality control analyses to

confirm that the quality of the data was high, that there were no

outlier samples, and that the normalization methods reduced the

influence of confounders as much as possible (see Methods, Table

S2 and Figures S1, S2, S3, S4, S5). Following these steps, we were

able to consider expression data for 7,139–8,249 genes (depending

on the TF knockdown experiment) that showed detectable

expression on all of the knockdown arrays or all of the control

arrays (Figure S6). In order to identify genes that were expressed at

a significantly different level in the knockdown samples compared

to the negative controls, we used likelihood-ratio tests within the

framework of a fixed effect linear model (Figure 1, see Methods for

details).

Knockdown effect on global gene expression levels
Following normalization and quality control of the arrays, we

identified genes that were differentially expressed between the

three knockdown replicates of each factor and the six controls.

Depending on the factor targeted, the knockdowns resulted in

between 39 and 3,892 differentially expressed genes at an FDR of

5% (Figure 1B; see Table S3 for a summary of the results). The

knockdown efficiency for the 59 factors ranged from 50% to 90%

(based on qPCR; Table S1). The qPCR measurements of the

knockdown level were significantly correlated with estimates of the

TF expression levels based on the microarray data (P = 0.001;

Figure 1C). Reassuringly, we did not observe a significant

correlation between the knockdown efficiency of a given factor

and the number of genes classified as differentially expressed

following the knockdown experiment (this was true whether we

estimated the knockdown effect based on qPCR (P = 0.10;

Figure 1D) or microarray (P = 0.99; not shown) data. Nor did

we observe a correlation between variance in qPCR-estimated

knockdown efficiency (between replicates) and the number of

genes differentially expressed (P = 0.94; Figure 1E). We noticed

that the large variation in the number of differentially expressed

genes extended even to knockdowns of factors from the same gene

family. For example, knocking down IRF4 (with a knockdown

efficiency of 86%) resulted in 3,892 differentially expressed genes

(including IRF4), while knocking down IRF3 (with a knockdown

efficiency of 91%), a paralog of IRF4 [23], only significantly

affected the expression of 113 genes (including IRF3).

Because we knocked down 59 different factors in this

experiment we were able to assess general patterns associated

with the perturbation of transcription factors beyond merely the

number of affected target genes. Globally, despite the range in the

number of genes we identified as differentially expressed in each

knockdown, the effect sizes of the differences in expression were

relatively modest and consistent in magnitude across all knock-

downs. The median effect size for genes classified as differentially

expressed at an FDR of 5% in any knockdown was a 9.2%

difference in expression level between the controls and the

knockdown (Figure 2), while the median effect size for any

individual knockdown experiment ranged between 8.1% and

11.0%.

To further evaluate the biological implications of our observa-

tions, we used the Gene Ontology (GO) [24] annotations to

Author Summary

An important question in genomics is to understand how a
class of proteins called ‘‘transcription factors’’ controls the
expression level of other genes in the genome in a cell-
type-specific manner – a process that is essential to human
development. One major approach to this problem is to
study where these transcription factors bind in the
genome, but this does not tell us about the effect of that
binding on gene expression levels and it is generally
accepted that much of the binding does not strongly
influence gene expression. To address this issue, we
artificially reduced the concentration of 59 different
transcription factors in the cell and then examined which
genes were impacted by the reduced transcription factor
level. Our results implicate some attributes that might
influence what binding is functional, but they also suggest
that a simple model of functional vs. non-functional
binding may not suffice.

Impact of Transcription Factor Binding Variation
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identify functional categories enriched among genes that were

classified as differentially expressed following the knockdown

experiments. In general, the differentially expressed genes tend to

be annotated within pathways that fit well with what is already

known about the biology of each of the 59 factors (Table S4). For

example, differentially expressed genes following the knockdowns

of both IRF4 (3,892 genes differentially expressed) and IRF9 (243

genes differentially expressed) are enriched for many immune

response annotations. However, differentially expressed genes in

the IRF4 knockdown are enriched for both type I and II interferon

signaling pathways, among other pathways, consistent with the

known role of IRF4 in immune responses [25]. Genes differentially

expressed in the IRF9 knockdown are enriched for type I

interferon responses (among other pathways) but not type II

Figure 1. Differential expression analysis. (a) Examples of differential expression analysis results for the genes HCST and IRF4. The top two
panels are ‘MA plots’ of the mean Log2(expression level) between the knockdown arrays and the controls for each gene (x-axis) to the Log2(Fold-
Change) between the knockdowns and controls (y-axis). Differentially expressed genes at an FDR of 5% are plotted in yellow (points 50% larger). The
gene targeted by the siRNA is highlighted in red. The bottom two panels are ‘volcano plots’ of the Log2(Fold-Change) between the knockdowns and
controls (x-axis) to the P-value for differential expression (y-axis). The dashed line marks the 5% FDR threshold. Differentially expressed genes at an
FDR of 5% are plotted in yellow (points 50% larger). The red dot marks the gene targeted by the siRNA. (b) Barplot of number of differentially
expressed genes in each knockdown experiment. (c) Comparison of the knockdown level measured by qPCR (RNA sample collected 48 hours post-
transfection) and the knockdown level measured by microarray. (d) Comparison of the level of knockdown of the transcription factor at 48 hrs
(evaluated by qPCR; x-axis) and the number of genes differentially expressed in the knockdown experiment (y-axis). (e) Comparison of the variance in
knockdown efficiency between replicates for each transcription factor (evaluated by qPCR; x-axis) and the number of differentially expressed genes in
the knockdown experiment (y-axis).
doi:10.1371/journal.pgen.1004226.g001
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responses, which is again consistent with the known biology [26].

As another example, knocking down SREBF2 (1,286 genes

differentially expressed), a key regulator of cholesterol homeostasis

[27], results in changes in the expression of genes that are

significantly enriched for cholesterol and sterol biosynthesis

annotations. While not all factors exhibited striking enrichments

for relevant functional categories and pathways, the overall picture

is that perturbations of many of the factors primarily affected

pathways consistent with their known biology.

A combined analysis of factor binding and gene
expression data

In order to assess functional TF binding, we next incorporated

binding maps together with the knockdown expression data. In

particular, we combined binding data based on DNase-seq

footprints in 70 HapMap LCLs, reported by Degner et al. [9]

(Table S5) and from ChIP-seq experiments in LCL GM12878,

published by ENCODE [3]. We were thus able to obtain genome-

wide binding maps for a total of 131 factors that were either

directly targeted by an siRNA in our experiment (29 factors) or

were differentially expressed in one of the knockdown experiments

(see Methods for more details). We classified a gene as a bound

target of a particular factor when binding of that factor was

inferred within 10kb of the transcription start site (TSS) of the

target gene. Using this approach, we found that the 131 TFs were

bound in proximity to a median of 1,922 genes per factor (range

11 to 7,053 target genes; Figure S7A; only the 8,872 genes

expressed in at least one knockdown experiment were considered

for this analysis). Target genes were bound by a median of 34

different factors (range 0 to 96; Figure S7B; only 288 genes

expressed in our experiments were not classified as bound targets

of any of the 131 factors considered).

We considered binding of a factor to be functional if the target

gene was differentially expressed after perturbing the expression

level the bound transcription factor. We then asked about the

concordance between the transcription factor binding data and the

knockdown expression data. Specifically, we studied the extent to

which differences in gene expression levels following the knock-

downs might be predicted by binding of the transcription factors

within the putative regulatory regions of the responsive genes.

Likewise, we asked what proportion of putative target (bound)

genes of a given TF were also differentially expressed following the

knockdown of the factor.

We performed this analysis in two stages. First, we only

considered binding data for the specific TF that was knocked down

in each experiment (binding data was available for 29 different

factors). In general, we found that the number of differentially

expressed genes following the knockdowns was positively corre-

lated with the number of bound target genes by these 29 factors

(Spearman’s r= 0.45; permutation P = 0.015). For 12 of the 29

knockdowns, we observed significant overlaps between binding

and differential expression (Fisher’s exact test; P,0.05). We also

found that between 3.4–75.9% (median = 32.3%) of differentially

expressed genes were bound by the TF in a given knockdown

(mean relative enrichment = 1.08). Perhaps somewhat less expect-

ed, we found that between 46.4% and 99.1% (median = 88.9%) of

the binding was apparently not functional, namely it was not

associated with changes in gene expression levels. This observation

is robust with respect to the size of the window we used to classify

genes as bound by a factor (range 1–20 kb from the TSS; Table

S6). It is also consistent with our previous findings that most

DNase-I sensitive QTLs are not also classified as eQTLs [9].

We next considered the expression data in the context of the

binding data for both the knocked down TFs and any other TF

whose expression level was indirectly affected by the knockdown.

We again examined the overlap between binding and differential

expression (Figure 3). Considering only the expressed genes in

each experiment, the fraction of genes bound (by any TF whose

expression has changed) ranged between 16.2% and 95.3% with a

median of 85.4% (Figure 3B). However, the fraction of bound

genes that were also differentially expressed in a given experiment

was generally quite low (median = 7.9%; Figure 3C; mean relative

enrichment = 1.02), with significant (P,0.05) overlap between

bound and differentially expressed genes seen for only 13 of the 59

knockdown experiments. Even if we relaxed the statistical

threshold with which we classify genes as differentially expressed

four-fold (to an FDR of 20%), a majority of bound genes still failed

to show significant evidence of differential expression (medi-

an = 68.8%; Figure 3C; mean relative enrichment = 1.01). The

discrepancy in the number of genes bound by a particular factor

(or the TFs it regulates) and the number of differentially expressed

genes in a knockdown experiment begged the question of whether

any characteristics of factor binding might distinguish functionally

bound target genes. In order to address this question, we examined

a variety of features.

Functional factor binding is enriched in enhancer
chromatin states

First, focusing only on the binding sites classified using the

DNase-seq data (which were assigned to a specific instance of the

binding motif, unlike the ChIP data), we examined sequence

features that might distinguish functional binding. In particular,

we considered whether binding at conserved sites was more likely

to be functional (estimating conservation by using PhastCons 46

way placental scores [28]) and we also considered whether binding

sites that better matched the known PWM for the factor were

more likely to be functional. Interestingly, we did not observe a

significant shift in the conservation of functional binding sites

(Wilcoxon rank sum P = 0.34), but we did observe that binding

around differentially expressed genes occurred at sites that were

significantly better matches to the canonical binding motif

Figure 2. Effect sizes for differentially expressed genes.
Boxplots of absolute Log2(fold-change) between knockdown arrays
and control arrays for all genes identified as differentially expressed in
each experiment. Outliers are not plotted. The gray bar indicates the
interquartile range across all genes differentially expressed in all
knockdowns. Boxplots are ordered by the number of genes differen-
tially expressed in each experiment. Outliers were not plotted.
doi:10.1371/journal.pgen.1004226.g002
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(P,1028), although the absolute difference in PWM score was

very small.

Next, considering bound targets determined from either the

ChIP-seq or DNase-seq data, we observed that differentially

expressed genes were associated with both a higher number of

binding events for the relevant factors within 10 kb of the TSS

(P,10216; Figure 4A) as well as with a larger number of different

binding factors (considering the siRNA-targeted factor and any TFs

that were DE in the knockdown; P,10216; Figure 4B). We hoped to

distinguish between coordinated co-regulation of the factors and

generally higher levels of binding nearby differentially expressed

genes. To do so, we asked whether the genes differentially expressed

in common between any two knockdown experiments were more

likely to be co-occupied by the same transcription factors

(considering only transcription factors whose expression was

affected by the knockdown). Binning all pairwise comparisons

between knockdown experiments based on the fraction of

differentially expressed transcription factors in common, we

observed that enrichment for functional co-occupancy increased

proportionally to the fraction of TFs in common (Figure 4C). This

suggests that co-regulation is at least partially responsible for the

increased numbers of factors binding near differentially expressed

genes.

We proceeded by examining the distribution of binding about

the TSS. Most factor binding was concentrated near the TSS

whether or not the genes were classified as differentially expressed

(Figure 5A). However, surprisingly, the distance from the TSS to

the binding sites was significantly longer for differentially expressed

genes (P,10216; Fig. 5B). We then investigated the distribution of

factor binding across various chromatin states, as defined by Ernst

et al. [11]. This dataset lists regions of the genome that have been

assigned to different activity states based on ChIP-seq data for

various histone modifications and CTCF binding. For each

knockdown, we separated binding events by the genomic state in

which they occurred and then tested whether binding in that state

was enriched around differentially expressed genes. After correct-

ing for multiple testing, 19 knockdowns showed significant

enrichment for binding in ‘‘strong enhancers’’ around genes that

were differentially expressed and four knockdowns had significant

enrichments for ‘‘weak enhancers’’. Further, eight knockdowns

showed significant depletion of binding in ‘‘active promoters’’ of

genes that were differentially expressed and six knockdowns had

significant depletions for ‘‘transcription elongation’’.

The direction of expression change
Finally, we asked whether the factors tended to have a

consistent effect (either up- or down-regulation) on the expression

levels of genes they purportedly regulated. Perhaps surprisingly,

all factors we tested are associated with both up- and down-

regulation of downstream targets (Figure 6). A slight majority of

Figure 3. Intersecting binding data and expression data for each knockdown. (a) Example Venn diagrams showing the overlap of binding
and differential expression for the knockdowns of HCST and IRF4 (the same genes as in Figure 1). (b) Boxplot summarizing the distribution of the
fraction of all expressed genes that are bound by the targeted gene or downstream factors. (c) Boxplot summarizing the distribution of the fraction of
bound genes that are classified as differentially expressed, using an FDR of either 5% or 20%.
doi:10.1371/journal.pgen.1004226.g003
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Figure 4. Degree of binding correlated with function. Boxplots comparing (a) the number of sites bound, and (b) the number of differentially
expressed transcription factors binding events near functionally or non-functionally bound genes. We considered binding for siRNA-targeted factor
and any factor differentially expressed in the knockdown. (c) Focusing only on genes differentially expressed in common between each pairwise set
of knockdowns we tested for enrichments of functional binding (y-axis). Pairwise comparisons between knockdown experiments were binned by the
fraction of differentially expressed transcription factors in common between the two experiments. For these boxplots, outliers were not plotted.
doi:10.1371/journal.pgen.1004226.g004

Figure 5. Distribution of functional binding about the TSS. (a) A density plot of the distribution of bound sites within 10 kb of the TSS for
both functional and non-functional genes. Inset is a zoom-in of the region +/21 kb from the TSS (b) Boxplots comparing the distances from the TSS
to the binding sites for functionally bound genes and non-functionally bound genes. For the boxplots, 0.001 was added before log10 transforming
the distances and outliers were not plotted.
doi:10.1371/journal.pgen.1004226.g005
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downstream target genes were expressed at higher levels

following the knockdown for 15 of the 29 factors for which we

had binding information (Figure 6B). The factor that is associated

with the largest fraction (68.8%) of up-regulated target genes

following the knockdown is EZH2, the enzymatic component of

the Polycomb group complex. On the other end of the spectrum

was JUND, a member of the AP-1 complex, for which 66.7% of

differentially expressed targets were down-regulated following the

knockdown. The remaining 27 factors (with a median of 170

direct targets) all show a more even balance between up- and

down-regulated targets. These trends are consistent when we

considered all genes that were differentially expressed following a

knockdown (not just the genes that were also bound by the

knocked down factor). We observed that an average of 51.9% of

downstream differentially expressed genes had elevated expres-

sion levels following knockdown of the transcription factors.

Furthermore, for 39 of the experiments a slight majority of

differentially expressed genes following knockdown of the factor

were up-regulated, while in only 17 of the experiments were the

majority of differentially expressed genes down-regulated follow-

ing the knockdown.

Discussion

The question of the distinction between functional and non-

functional DNA in the human genome has attracted considerable

attention recently. Some have argued that any base that comes

into contact with a protein or RNA molecule at some point in its

lifespan should be considered functional [3], which is an extremely

inclusive definition. Conversely, others have argued that only the

bases of the genome that evolve under natural selection pressure

and can be clearly ascribed to a particular phenotype should be

considered functional [29]. We agree that functional interpretation

makes more sense in an evolutionary context, but we also

recognize that our ability to identify the signatures of natural

selection (especially positive selection) is limited. Instead, we

propose an experimentally tractable definition of functional

interactions between transcription factors and DNA, which

allowed us to make several novel observations regarding the

nuanced regulatory logic of the human genome.

Characterizing functional transcription factor binding
Nearly all expressed genes in the LCL we worked with are bound

within 10 kb of their TSS by at least one of the 131 TFs for which

we were able to obtain binding data. Yet, the regulation of the vast

majority of target genes is not affected by perturbations to the

expression levels of the TFs. Our observations suggest that it may

ultimately be possible to predict functional transcription factor

binding based on the biological context, yet since bound genes are

only modestly enriched among those that are differentially

expressed, an effective classifier may be difficult to develop. In that

context, several of the associations we observed might seem

counterintuitive from a purely biochemical perspective but are

consistent with our definition of functional TF binding as

participating in gene regulation. In particular, from a biochemical

perspective, binding at stronger motifs might be expected to be less

affected by a decrease in factor concentration in the cell (following

the knockdown) and regulatory regions with more binding sites and

a larger number of bound factors might be expected to be less

influenced by the perturbation of one single factor. Yet, we observed

the opposite patterns: Functional binding is associated with stronger

binding motifs and greater levels of factor binding near differentially

expressed genes. Viewed from an evolutionary rather than purely

biochemical perspective, these observations are quite in tune with

expectations. In other words, genomic regions of functional

importance evolve to ensure factor binding. This can be accom-

plished by selection for different properties, including increased

affinity of the binding site and more cooperative binding.

Our results also indicate that binding in the context of certain

chromatin states was more likely to be functional. For 19 of the 56

factors that we knocked down and for which we were able to

obtain binding data (on either direct or indirect bound targets),

there was a significant enrichment of binding in ‘‘strong

enhancers’’ near differentially expressed genes, which is consistent

with our observations that functional binding occurs further from

the TSS (namely, not in promoter regions). While further

experiments are required before we can put forward a more

concrete explanation, these observations suggest that binding at

active promoters may be buffered against acute changes in

transcription factor concentration. This may also explain why

Figure 6. Magnitude and direction of differential expression after knockdown. (a) Density plot of all Log2(fold-changes) between the
knockdown arrays and controls for genes that are differentially expressed at 5% FDR in one of the knockdown experiments as well as bound by the
targeted transcription factor. (b) Plot of the fraction of differentially expressed putative direct targets that were up-regulated in each of the
knockdown experiments.
doi:10.1371/journal.pgen.1004226.g006
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most of the effect sizes associated with differences in gene

expression levels following the knockdowns were relatively modest.

While there is compelling evidence for our inferences, the current

chromatin functional annotations do not fully explain the

regulatory effects of the knockdown experiments. For example,

the enrichments for binding in ‘‘strong enhancer’’ regions of the

genome range from 7.2% to 50.1% (median = 19.2%), much

beyond what is expected by chance alone, but far from accounting

for all functional binding.

Previous studies in model organisms suggested redundancy as a

partial explanation for the common observation of non-functional

TF binding. For example, Gitter et al. examined similar themes

using gene expression data from yeast in which transcription

factors had been knocked out [30]. They found that factors

without identifiable paralogs were more likely to have a regulatory

affect on bound targets than factors with identifiable paralogs,

which can potentially have overlapping functions. We considered

a similar explanation for our observations. To do so, we used

Ensembl’s definition of paralogs [31] to stratify the 29 factors that

we knocked down, and for which we also had direct binding data,

by the number of identifiable paralogs each had (range 1–5). We

found no correlation between the number of paralogs and the

fraction of bound targets that were differentially expressed. We

also did not observe a significant correlation when we considered

whether the percent identity of the closest paralog might be

predicative of the fraction of bound genes that were differentially

expressed following the knockdown (Figure S8).

Evaluating the impact of transcription factor binding on
direct targets

In addition to considering the distinguishing characteristics of

functional binding, we also examined the direction of effect that

perturbing a transcription factor had on the expression level of its

direct targets. We specifically addressed whether knocking down a

particular factor tended to drive expression of its putatively direct

(namely, bound) targets up or down, which can be used to infer

that the factor represses or activates the target, respectively.

Transcription factors have traditionally been thought of primarily

as activators [11,32,33], and previous work from our group is

consistent with that notion [9]. Surprisingly, the most straightfor-

ward inference from the present study is that many of the factors

function as repressors at least as often as they function as

activators. For example, we inferred that EZH2 had a negative

regulatory relationship with the largest fraction of direct targets

(68.8%), while JUND seemed to have a positive regulatory

relationship with the largest fraction of direct targets (66.7%).

These particular observations seem consistent with the known role

of EZH2 as the active member of the Polycomb group complex

PC2 [34] and the biochemical characterization of the AP-1

complex (of which JUND is a component) as a transactivator [35].

More generally, however, our results, combined with the previous

work from our group and others (e.g. [9,11]) make for a

complicated view of the role of transcription factors in gene

regulation as it seems difficult to reconcile the inference from

previous work that many transcription factors should primarily act

as activators with the results presented here.

One somewhat complicated hypothesis, which nevertheless can

resolve the apparent discrepancy, is that the ‘‘repressive’’ effects

we observe for known activators may be at sites in which the

activator is acting as a weak enhancer of transcription and that

reducing the cellular concentration of the factor releases the

regulatory region to binding by an alternative, stronger activator.

We believe that this may alleviate the apparently contradictory

interpretations of transcription factor activity, although additional

work on this topic is needed.

Possible caveats and future studies
There are important caveats that should be kept in mind when

interpreting our results. Care must be taken in interpreting the

lack of evidence for gene expression differences in our system as

previous studies have suggested that the specific effects of

knockdowns may be difficult to detect because of redundancy in

gene regulatory mechanisms [36,37]. In addition, our definition of

target genes, which is based on genomic proximity, is certain to be

somewhat noisy. For some genes, we are undoubtedly assigning

irrelevant binding while for others we are missing true regulatory

interactions that may occur further than 10 kb from the

transcription start site. Moreover, we only considered binding

and expression in one set of conditions (one cell type at one

timepoint). Some binding events may require co-factors that are

only present after specific stimuli in order to become functional or

may otherwise be functional in other contexts. Because of all of

this, we are likely underestimating the fraction of bound genes that

are functionally regulated. We have taken measures to control for

this as much as possible. First, integrating our results with binding

data allows us to focus our analysis on the most likely direct

targets. Second, the consistency of our results across a variety of

factors (including factors with very different numbers of differen-

tially expressed genes following the knockdown), suggests that

technical explanations for our observations are unlikely.

To more explicitly address the effect that our proximity-based

definition of target genes might have on our analyses, we

reanalyzed the overlap between factor binding and differential

expression following the knockdowns using an independent,

empirically determined set of target genes. Specifically, Thurman

et al. used correlations in DNase hypersensitivity between

intergenic hypersensitive sites and promoter hypersensitive sites

across diverse tissues in order to assign intergenic regulatory

regions to specific genes, independently of proximity to a

particular promoter [38]. We thus performed an alternative

analysis in which we assigned binding events to genes based on the

classification of Thurman et al. We then considered the overlap

between binding and differential expression in this new dataset.

The results were largely consistent with our proximity-based

observations. A median of 9.5% of genes that were bound by a

factor were also differentially expressed following the knockdown

of that factor (compared to 11.1% when the assignment of binding

sites to genes is based on proximity). From the opposite

perspective, a median of 28.0% of differentially expressed genes

were bound by that factor (compared to 32.3% for the proximity-

based definition). The results of this analysis are summarized in

Table S7.

Another practical limitation of our study design is the choice of

microarrays instead of a more advanced technology such as RNA-

seq. As a result of this choice, the expression of only the genes

represented by probes on the arrays could be measured. In

addition, alternative splicing events and novel transcription were

not measured in our experiments. Furthermore, microarrays are

known to have sensitivity issues at the extreme ranges of expression

levels (although this will only affect a small subset of transcripts)

[39]. Because of this, our results should not be considered a

comprehensive census of regulatory events in the human genome.

Instead, we adopted a gene-centric approach, focusing only on

binding events near the genes for which we could measure

expression to learn some of the principles of functional transcrip-

tion factor binding.
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In light of our observations a reassessment of our estimates of

binding may be warranted. In particular, because functional

binding is skewed away from promoters (our system is apparently

not well-suited to observe functional promoter binding, perhaps

because of protection by large protein complexes), a more

conservative estimate of the fraction of binding that is indeed

functional would not consider data within the promoter.

Importantly, excluding the putative promoter region from our

analysis (i.e. only considering a window .1 kb from the TSS and

,10 kb from the TSS) does not change our conclusions.

Considering this smaller window, a median of 67.0% of expressed

genes are still classified as bound by either the knocked down

transcription factor or a downstream factors that is differentially

expressed in each experiment, yet a median of only 8.1% of the

bound genes are also differentially expressed after the knockdowns.

Further work in this field is clearly justified. Much of what

distinguishes functional binding (as we define it) has yet to be

explained. Furthermore, we are unable to explain much of the

differential expression observed in our experiments by the

presence of least one relevant binding event. This may not be

altogether surprising, as we are only considering binding in a

limited window around the transcription start site. To address

these issues, more factors should be perturbed to further evaluate

the robustness of our results and to add insight. Together, such

studies will help us develop a more sophisticated understanding of

functional transcription factor binding in particular, the gene

regulatory logic more generally.

Methods

Cell culture and siRNA transfections
The cell line (GM19238) was cultured at 5% CO2 and 37uC in

RPMI 1640 medium supplemented with 2 mM L-glutamine and

15% fetal bovine serum, per Coriell’s recommendations (http://ccr.

coriell.org/Sections/Support/Global/Lymphoblastoid.aspx?PgId

= 213). The medium was also supplemented with 100 IU/ml

penicillin and 100 mg/ml streptomycin. Cells were counted and split

three times a week to 350,000 cells/ml. Transfections were

performed with the Lonza 96-well nucleofector system, using

transfection solution SF and transfection program DN-100. On-

Target SmartPool siRNAs from Dharmacon were used to

knockdown target genes. For each transfection, one million cells

were transfected with 50 pmol siRNA. After transfection, cells were

plated in 1 ml of medium in 96-well plates and incubated for 48. At

the 48 hour time point, 500 ml of cell culture were removed for

RNA extraction (for qPCR), 100 ml of fresh medium was added to

each well and plates were incubated for an additional 24 hours. At

the 72 hour time point, the remaining culture was pelleted for RNA

extraction (for array hybridization). RNA from all timepoints was

extracted using the RNeay Plus 96 kit (Qiagen). The control siRNAs

consisted of a pool of four siRNAs specifically designed not to target

any human or mouse gene. In addition to two replicates of the

negative control pool, we also transfected each of the negative

control siRNAs independently for a total of six negative control

samples. We learned from an initial pilot experiment that there were

strong batch effects between rounds of transfection and so we

included negative control transfection in parallel with all three

batches of transfection.

The transfections were conducted in two phases. For the first

phase, we screened siRNAs for their knockdown efficiency under

our experimental conditions by transfecting cells and extracting

RNA 48 hours later. qPCR was performed with SYBR Green and

custom primers (Table S1). Knockdown efficiency was assessed

relative to a sample transfected with the negative control siRNA

pool. We used a relative quantification approach, referencing the

POLR2C control gene and using the DART-PCR method [40] to

determine PCR efficiency. For the second phase, those siRNA

transfections resulting in $50% knockdown (arbitrary cutoff) were

transfected again and RNA was extracted at both 48 hours (to

confirm the knockdown level by qPCR) and 72 hours (for

hybridization to microarrays). Two genes (NFYC and ZHX2) were

not knocked down by 50% in the screen but were included in the

final transfection where they did reach 50% (in all three replicates)

and were therefore included in the microarray experiment.

Additionally, 16 factors that passed the screen were not knocked

down by 50% at 48 hours in all three replicates in the final

transfection and were not included in the microarray experiment

(Table S1). The quality and concentration of all RNA samples

were measured using the Agilent 2100 Bioanalyzer.

Transcription factors and chromatin modifiers targeted
by siRNA

ARNTL2, BATF, BCL3, CEBPG, CEBPZ, CLOCK, CREBBP,

DIP2B, E2F1, E2F4, E2F6, EP300, ESRRA, EZH2, FOXA3,

GTF2B, HCST, HOXB7, IKZF3, IRF3, IRF4, IRF5, IRF7, IRF8,

IRF9, JUND, KLF13, LCORL, NFE2L1, NFKB2, NFX1, NFYC,

NR1D2, NR2F6, NR3C1, PAX5, POU2F1, POU2F2, RAD21,

RDBP, RELA, RELB, RXRA, SKIL, SP1, SP3, SREBF2, STAT2,

STAT6, TAF1, TCF12, TFDP1, TFDP2, TFE3, USF1, WHSC1,

YY1, ZBTB38, ZHX2.

Gene expression arrays and normalization
Samples were hybridized to Illumina HT-12 v4R2 arrays in two

batches. For the first batch, 69 samples (150 ng of total RNA),

representing 21 knockdowns and one set of controls, were sent to

the UCLA Southern California Genotyping Consortium where

the RNA was converted to cRNA and then hybridized to arrays

using the standard protocol. For the second batch, 132 samples

(1 mg of total RNA), representing 40 knockdowns and two sets of

controls, were sent to the University of Chicago Functional

Genomics Core where the RNA was converted to cRNA and then

hybridized to the arrays using the standard protocol. Both cores

returned raw probe intensities to us. The batch aspect of the study

design is clearly less than optimal, but it was a result of necessary

practical considerations. As mentioned above, we included a full

set of negative controls with each batch. We also accounted for

batch effects explicitly in our analysis (see below).

Before processing the arrays, we determined the set of usable

probes. To do this, we first mapped probes to the hg19 reference

genome using the BWA alignment program [41] and only retained

probes that mapped perfectly to the genome (probes spanning

introns were discarded). We then removed probes that mapped

perfectly to a single site in the genome and also mapped to a second

site allowing for one mismatch. As GM19238 was derived from a

female donor, we excluded all probes for Y chromosome genes. We

then removed probes that contained a SNP for which GM19238

was heterozygous based on 1000 Genomes data [42] (http://ftp.

1000genomes.ebi.ac.uk/vol1/ftp/pilot_data/paper_data_sets/a_

map_of_human_variation/trio/snps/) to avoid detecting spurious

results from an interaction between allele specific expression and

probe effects influencing hybridization intensities. After this series of

exclusions, for each gene that was assayed by more than one

remaining probe, we chose the 39-most probe to represent the gene.

We then excluded probes for genes that were not expressed

(detection P,0.01) in the knockdown triplicates or the full set of

controls (18 arrays) for each experiment.

We log-transformed and quantile normalized the data from all

arrays together using the ‘lumi’ Bioconductor package [43,44] in
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the R statistical environment. Our initial analysis indicated that

this was not sufficient to correct for all of the batch effects present

between different rounds of transfection (Figure S5), so we also

used the RUV-2 method [45] to further adjust the data. To do so,

we defined a set of genes that should not be differentially expressed

under any conditions in our experiment as the basis for the RUV-2

correction. While the choice of unaffected genes might not be

straightforward in all experimental settings, the fact that we had 59

different knockdown experiments (and controls) across three

rounds of transfections provided an opportunity to define a

reasonable set of control probes. Specifically, we created a list of

the 2,000 least variable probes (considering only probes for genes

that passed our expression threshold) for each of the batches of

arrays separately. We then intersected the three lists to obtain a

high confidence list of 787 invariant genes. These are the genes

with the least evidence of difference in expression levels in any

knockdown experiment.

We also needed to specify the number of components to regress

out. Again, this choice may not always be straightforward,

however, we had two knockdown experiments (IRF5 and SP1)

that were each repeated across different batches. We thus

maximized the correlation between these experiments in deciding

on the number of components to remove. We found that removing

eight components resulted in zero genes identified as differentially

expressed (at an FDR of 5%) between replicate experiments (or the

control arrays by themselves, across batches) and had the

maximum number of differentially expressed genes replicated

between the two experiments for both IRF5 and SP1 (Figure S2;

these models were fit with the ‘limma’ package [46]). Lastly, we

averaged each of the negative control knockdowns across each of

the time points in order to have a single set of controls with which

to compare each of the knockdowns. In addition to examining

heatmaps for the arrays (Figures S1, S3), the quality of each array

was assessed by relative log expression (‘RLE’) plots (Figure S4;

[47,48]) and PCA (Figure S5, Table S2). For the remainder of the

analyses, we only used the IRF5 and SP1 experiment that had the

greater knockdown efficiency.

We note that the top principle components of the adjusted data

are still correlated with the microarray chip (Table S2), but we

decided that further correction was not helpful for several reasons.

First, the amount of variance captured by any one component is

quite low after RUV-2 adjustment (Table S2). Second, our

analysis indicated that removing additional components with

RUV-2 reduced the correlations between replicate knockdown

experiments (Figure S2). Third, we randomized samples across

chips so as to avoid the introduction of a bias in our results based

on such an effect.

Determining differentially expressed genes
In order to identify differentially expressed genes in each

knockdown, we compared the expression level of each gene on the

three knockdown arrays to its expression level on the six control

arrays. We used a likelihood-ratio test within the framework of a

fixed-effect linear model:

Yij~mizbjXizeij

Here, Yij is the expression level of gene i on array j. mi is the mean

expression level for gene i. bj is the status of array j (either

‘‘knockdown’’ or ‘‘control’’) and Xi is the knockdown effect for

gene i. eij is the error term for gene i on array j. For each gene, we

compared a model with a bjXi term to the nested model with no

bjXi term using a likelihood ratio test to determine which model fit

the data better. To adjust for multiple testing within each

knockdown experiment, we calculated the q-value for each gene

using the Storey and Tibshirani method [49] as provided in the

‘qvalues’ R package.

Gene ontology analysis
For each knockdown, we also assessed whether there were any

Gene Ontology categories (either from the ‘‘MF’’ or ‘‘BP’’

categories) that were overrepresented among the differentially

expressed genes. To do so, we used the ‘topGO’ package and the

‘org.Hs.eg’ database in R. For each knockdown, we tested both

‘‘MF’’ and ‘‘BP’’ categories, combined the results, and filtered out

any categories without a single gene differentially expressed. P-

values were adjusted for multiple testing using the ‘BH’ method in

the ‘p.adjust’ function in R.

Combining with other genomic datasets
After identifying differentially expressed genes, we intersected

the gene expression data with factor binding data from both

DNase-seq experiments and ChIP-seq experiments. We consid-

ered binding data within a fixed window around the TSS of each

gene. To determine a single TSS for each gene, we used the

ENCODE CAGE data downloaded from UCSC [3,50]. For each

gene, we chose the TSS with the highest CAGE score as the

reference TSS for that gene unless there was a tie between multiple

TSSs, in which case we used the midpoint between these TSSs as

the reference TSS. The DNase data was from a previous study

conducted in our lab [9]. Binding was determined using the

Centipede algorithm [4] on DNase-seq data from 70 Yoruba

HapMap cell lines. For each factor expressed in our experiments,

we classified all sites with a Centipede posterior probability greater

than 0.95 as bound. The binding was originally mapped to the

hg18 reference genome, so we used liftOver (http://hgdownload.

cse.ucsc.edu/admin/exe/) to convert the coordinates to h19.

For the ChIP data, we downloaded all ENCODE ChIP-seq data for

GM12878 called using the SPP peak caller, except for the POL2

datasets and an NFKB dataset that was collected following tumor

necrosis factor-a stimulation [3] (http://ftp.ebi.ac.uk/pub/databases/

ensembl/encode/integration_data_jan2011/byDataType/peaks/

jan2011/spp/optimal/hub/). For each gene that we were able to link

to a ChIP dataset or a TRANSFAC binding motif [51], we combined

all binding records and then considered the union of that set as the

binding profile for the factor. After obtaining the union set, we

calculated the midpoint for each discrete binding record and used the

midpoints as the estimated binding location in all subsequent analyses.

Using this approach, we obtained binding data for 201 factors;

138 of these factors were represented by a usable probe on the

array and were expressed in at least one of the knockdown

experiments. 131 of the factors were differentially expressed in at

least one knockdown experiment. For DNase-based binding sites,

we also evaluated the PhastCons alignment score [28]. PhastCons

46 way placental wig files were downloaded from UCSC and the

average score for each DNase-seq binding site was calculated. For

all of the comparisons between functional and non-functional

binding, we used the Wilcoxon rank sum test to assess differences.

We also downloaded the Ernst chromatin states [11] from

UCSC. This file contained 15 different chromatin states, including

two separate categories each for ‘‘strong enhancer’’, ‘‘weak

enhancer’’, and ‘‘repetitive’’. We combined each of the replicate

states into a single category so that we ended up with 12 distinct

chromatin states. To identify which state the binding occurred in,

we intersected the binding record midpoints with the chromatin

states. We calculated the enrichment or depletion of functional

binding in specific chromatin states using a Fisher’s Exact Test.
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To test whether the number of paralogs or the degree of

similarity with the closest paralog for each transcription factor

knocked down might influence the number of genes differentially

expressed in our experiments, we obtained definitions of paralogy

and the calculations of percent identity for 29 different factors

from Ensembl’s BioMart (http://useast.ensembl.org/biomart/

martview/) [31]. We used genome build GRCh37.p13. For each

gene, we counted the number of paralogs classified as a

‘‘within_species_paralog’’. After selecting only genes considered

a ‘‘within_species_paralog’’, we also assigned the maximum

percent identity as the closest paralog. To evaluate the effect that

an independent assignment of target genes to regulatory regions

might have on our analyses, we used the definition of target genes

defined by Thurman et al. (ftp://ftp.ebi.ac.uk/pub/databases/

ensembl/encode/integration_data_jan2011/byDataType/openchrom/

jan2011/dhs_gene_connectivity/genomewideCorrs_above0.7_promoter

PlusMinus500kb_withGeneNames_32celltypeCategories.bed8.gz),

which use correlations in DNase hypersensitivity between distal

and proximal regulatory regions across different cell types to link

distal elements to putative target genes [38]. We intersected the

midpoints of our called binding events (defined above) with these

regulatory elements in order to assign our binding events to

specific target genes and then re-analyzed the overlap between

binding and differential expression in our experiments.

All analyses were performed with a combination of BedTools

[52,53] and BEDOPS [54] commands, along with custom Python

and R scripts.

Data availability
The knockdown data have been deposited in NCBI’s Gene

Expression Omnibus ([55]; accessible through GEO Series

accession number GSE50588 at http://www.ncbi.nlm.nih.gov/

geo/query/acc.cgi?acc = GSE50588)

Supporting Information

Figure S1 Heatmap of microarray correlations. A heatmap

showing the pairwise Spearman correlations between all of the

arrays used in our experiment after quantile normalization and

filtering out probes not meeting certain quality thresholds (see

Methods). The clustering was based on a correlation-derived

distance matrix. The color bar represents the three dates on which

the samples were transfected. Samples clearly cluster based on the

date on which they were transfected.

(TIF)

Figure S2 Diagnostic plots for RUV-2 normalization procedure.

(a) The number of genes classified as differentially expressed (5%

FDR; y-axis) in pairwise comparisons between the samples from

the three transfection dates at different values of ‘k’ (x-axis). ‘k’

represents the number of factors regressed out of the expression

estimates. No genes are detected as differentially expressed after

regressing out two or more factors (k$2). (b) The number of genes

classified as differentially expressed in pairwise comparisons

between the control samples (y-axis) from the three different

transfection dates at a range of values for ‘k’ (x-axis). We repeated

knockdowns for two factors on different transfection dates and so

we used these replicate experiments to evaluate the effects of

RUV-2. (c) The number of genes classified as differentially

expressed in common between the two experiments where we

knocked down IRF5 (y-axis) at different values of ‘k’ (x-axis). (d)

The number of genes classified as differentially expressed in

common between the two experiments where we knocked down

SP1 (y-axis) at different values of ‘k’ (x-axis). (e) Correlation of

2Log10(P-values) for the two IRF5 experiments (y-axis) at different

values of ‘k’ (x-axis). (f) Correlation of 2Log10(P-values) for the two

SP1 experiments (y-axis) at different values of ‘k’ (x-axis). The

dashed red lines in (c–f) highlight the results for k = 8, the value we

ultimately chose for our normalization.

(TIF)

Figure S3 Heatmap of microarray correlations after RUV-2

correction. A heatmap showing the pairwise Spearman correla-

tions between all of the arrays used in our experiment after

quantile normalization, RUV-2 correction and filtering out probes

not meeting certain quality thresholds (see Methods). The

clustering was based on a correlation-derived distance matrix.

The color bar represents the three dates on which the samples

were transfected. Samples no longer cluster based on the date on

which they were transfected after RUV-2 correction.

(TIF)

Figure S4 RLE plots for microarrays in our experiment. RLE

plots can be used to identify a bias or increased variance in probe

intensities for each microarray in an experiment. For each probe

on the array, the difference between the probe intensity for a

particular microarray and the median intensity across all

microarrays is calculated. The deviations for all probes on the

array are then visualized with a boxplot. A systematic shift from 0

would indicate a bias in expression estimates the array, while an

increased interquartile range would indicate increased variance in

probe intensities compared to the global median. Arrays in (a)

have been quantile normalized. The colors of the boxes indicate

the date of transcription for that particular array. There are no

obvious biases for any arrays and overall the variance is low for all

arrays. However, there is clearly increased variance for the ‘‘batch

3’’ arrays compared to the others. Arrays in (b) have been quantile

normalized and RUV-2 corrected. All samples are now more

centered on 0 and have smaller interquartile ranges. In addition,

the variance is more consistent across all arrays than when the

arrays were only quantile normalized.

(TIF)

Figure S5 Principal components analysis of the arrays before

and after RUV-2 correction. (a) The first and second principal

components (x- and y-axis, respectively) appear correlated with

the three transfection dates even after quantile normalizing

the data (as indicated by the color scheme). (b) The first two

principal components do not appear correlated with transfection

date following RUV-2 correction. The three samples in the upper

right hand corner are the three replicates for the knockdown of

IRF4.

(TIF)

Figure S6 Number of genes expressed in each knockdown

experiment. Barplot of the number of genes detected as expressed

in each knockdown experiment. To be classified as expressed, the

probe for the gene had to have a detection p-value less than 0.01 in

either all of the knockdown triplicates or all 18 control samples.

The color scheme identifies which date the transfection took place

on.

(TIF)

Figure S7 Distributions of factor binding from the perspective of

(a) the factor and (b) the target gene. Histograms showing the

distribution of (a) the number of genes expressed in at least one

experiment that were bound (binding +/210 kb form the TSS) by

each factor that was differentially expressed in at least one

knockdown experiment (N = 131) and (b) the number of factors

binding each gene (N = 8,872).

(TIF)
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Figure S8 Effect of paralogs on likelihood of differential

expression in knockdown experiments. (a) For the 29 factors for

which we had both direct binding data and expression data,

boxplot of fraction of bound targets differentially expressed in the

knockdown experiment stratified by number of paralogs each

transcription factor has. (b) Fraction of direct targets differentially

expressed in the knockdown plotted against the percent identity of

the nearest paralog for that factor.

(TIF)

Table S1 Summary of factors targeted by siRNAs in our

knockdown experiments. This table reports summary information

for the 112 factors we targeted by siRNA. The columns are as

follows: Column 1: ‘‘Gene name’’ – Name of factor targeted by the

siRNA. Column 2: ‘‘ensGene’’ – Ensembl gene ID for the factor

targeted. Column 3–4: ‘‘qPCR Forward Primer’’ & ‘‘qPCR

Reverse Primer’’ – Sequence of primers used to evaluate the

knockdown level by qPCR. Column 5: ‘‘Screen Kd %’’ –

Knockdown level achieved at 48 hrs post-transfection for the

targeted factor in the screening phase of our experiment. The

knockdown level is relative to a control sample transfected in

parallel with a pool of non-targeting siRNAs. Column 6: ‘‘Final

Transfection Kd% (Ave. of Replicates)’’ – Knockdown level of the

samples transfected for our experiment as measured by qPCR on

RNA taken from the samples 48 hrs post-transfection. The

knockdown level is relative to a control sample transfected in

parallel with a pool of non-targeting siRNAs. Column 7:

‘‘Experimental Transfection Date’’ – The date on which the

samples were transfected with siRNA. Samples were transfected

on one of three different dates. Column 8: ‘‘Microarray

Hybridization Date’’ – The date on which the samples were

hybridized on Illumina HT-12 arrays. Samples were hybridized

on one of three different dates.

(XLSX)

Table S2 Significance of correlations between principal compo-

nents and several confounding variables. This table reports the

significance of associations between different principal components

and several potential confounding variables. The row labeled

‘PCImportance’ reports the fraction of variance captured by each

component.

(TXT)

Table S3 Summary of results. This table reports the summary of

our differential expression and binding data analysis for all of the

genes expressed in the experiments. Below is a key for the columns

included in the file: Column 1: ‘‘ProbeID’’ – Illumina probe

identifier for each gene included in our analysis. Column 2:

‘‘ENSGID’’ – Ensembl gene ID for each gene. Column 3:

‘‘Symbol’’ – Gene symbol for each gene. Columns 3–62:

‘‘[GeneSymbol]_[ENSGID]_DE_p’’ – Each of these columns

report the P-values from our likelihood-ratio test comparing the

knockdown samples to the controls for one of the knockdown

experiments. Columns 63–263: ‘‘[GeneSymbol]_[ENSGID]_bind-

ing’’ – Each of these columns reports the binding data for the 201

factors for which we had some binding data. For each row, the

counts represent the number of binding events within 10 kb of the

transcription start site observed for that factor. Only 138 of the 201

factors had a usable probe and were detected as expressed on our

arrays, and only 131 were differentially expressed in at least one

knockdown experiment.

(ZIP)

Table S4 Gene Ontology enrichments for DE genes in the

knockdown experiments. This table reports the GO categories that

are enriched among differentially expressed genes for each

knockdown (P-values were adjusted for multiple testing with the

‘‘BH’’ method of the ‘p.adjust’ function in R). Each row is a GO

category that is significant in at least one knockdown. Each

column represents a knockdown. A value of ‘NA’ indicates that the

GO category was not significant in the knockdown. This could be

either because the category was not enriched or because it did not

have enough annotated genes in a particular knockdown.

(TXT)

Table S5 BED file reporting the binding events used in our

analysis. This zipped BED file contains the midpoint for all

binding event we used in our analysis. To obtain binding

information, we combined DNase-seq binding data for all motifs

linked to a given factor by TRANSFAC and any ENCODE ChIP-

seq data for the factor, took the union of all binding events and

then calculated the midpoint for each BED record using

pybedtools. The file includes 2,038,283 binding events for 201

different factors. The columns included in this file are: Column 1 –

Chromosome. Column 2 – Midpoint of binding event. Column 3

– Midpoint of binding event repeated. Column 4 – Gene symbol

of bound factor.

(ZIP)

Table S6 Genes classified as functionally bound based on

different window sizes about the TSS. For various window sizes

about the transcription start site (from 1 kb to 20 kb) the fraction

of bound genes that were also classified as differentially expressed

was calculated.

(PDF)

Table S7 Summary of overlap of binding and differential

expression using ENCODE’s DNase-based assignments of target

genes for regulatory regions. Using DNase-based assignments of

target genes for intergenic regions genome-wide, we assessed the

overlap between factor binding and differential expression of

factor binding in the knockdowns. The results are summarized in

this table.

(TXT)
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