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Abstract
Global climate change is causing increased climate extremes threatening biodiversity 
and altering ecosystems. Climate is comprised of many variables including air temper-
ature, barometric pressure, solar radiation, wind, relative humidity, and precipitation 
that interact with each other. As movement connects various aspects of an animal's 
life, understanding how climate influences movement at a fine-temporal scale will be 
critical to the long-term conservation of species impacted by climate change. The sed-
entary nature of non-migratory species could increase some species risk of extirpation 
caused by climate change. We used Northern Bobwhite (Colinus virginianus; hereafter 
bobwhite) as a model to better understand the relationship between climate and the 
movement ecology of a non-migratory species at a fine-temporal scale. We collected 
movement data on bobwhite from across western Oklahoma during 2019–2020 and 
paired these data with meteorological data. We analyzed movement in three different 
ways (probability of movement, hourly distance moved, and sinuosity) using two cal-
culated movement metrics: hourly movement (displacement between two consecutive 
fixes an hour apart) and sinuosity (a form of tortuosity that determines the amount 
of curvature of a random search path). We used generalized linear-mixed models to 
analyze probability of movement and hourly distance moved, and used linear-mixed 
models to analyze sinuosity. The interaction between air temperature and solar radia-
tion affected probability of movement and hourly distance moved. Bobwhite move-
ment increased as air temperature increased beyond 10°C during low solar radiation. 
During medium and high solar radiation, bobwhite moved farther as air temperature 
increased until 25–30°C when hourly distance moved plateaued. Bobwhite sinuosity 
increased as solar radiation increased. Our results show that specific climate variables 
alter the fine-scale movement of a non-migratory species. Understanding the link be-
tween climate and movement is important to determining how climate change may 
impact a species’ space use and fitness now and in the future.
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1  |  INTRODUC TION

Climate change continues to affect biodiversity and alter ecosystems 
across the globe by altering species distribution, increasing risk of 
extinction, and causing shifts in plant communities (McCarty, 2001; 
Murray et al., 2017). As such, understanding the effects of climate 
on animal behavior is critical to the conservation and management 
of wildlife (King, 2005; McCarty, 2001). Furthermore, the effects of 
climate change are predicted to affect species differently, increasing 
the need for more information on how different traits among spe-
cies shape their responses (Tagliari et al., 2021). Climate is comprised 
of many different variables including air temperature, barometric 
pressure, solar radiation, wind, relative humidity, and precipitation 
that interact to create climate (Ahrens & Henson, 2016). As climate 
change continues, climate extremes (e.g., extreme heat or cold, 
drought, and floods) are projected to increase in frequency and in-
tensity across the planet (Cohen et al., 2018; IPCC, 2021).

Many animals have specific behavioral strategies to cope with cli-
mate extremes (Cunningham et al., 2021; Melin et al., 2014; Pattinson 
& Smit, 2017). For example, some species adjust their immediate po-
sition on the landscape to seek cooler temperatures to mitigate ex-
treme heat (Mason et al., 2017; Melin et al., 2014; Pattinson & Smit, 
2017; Tanner et al., 2017). However, these strategies can have major 
consequences on the survival and population dynamics of species by 
reducing foraging efficiency, reproductive success, and an animal's 
ability to access resources (Pattinson & Smit, 2017; Tanner et al., 
2017; van de Ven et al., 2020). Furthermore, increased climate ex-
tremes are expected to cause catastrophic population declines by 
increasing the difficulty for species to locate adequate amounts of 
food and cover, which can create resource bottlenecks (Maron et al., 
2015). As climate change continues across the globe, understanding 
the role of climate on animal behavior is critical to conserving spe-
cies affected by climate change.

One specific animal behavior, movement, combines various parts 
of an animal's life, including foraging, predator avoidance, and repro-
duction (Nathan et al., 2008). Changes in an animal's environment 
(Alston et al., 2020; Etzenhouser et al., 1998) and life history (Fies 
et al., 2002; Lenz et al., 2015) directly influence the movement ecol-
ogy of animals. These changes alter the spatial and temporal arrange-
ment of individuals across landscapes impacting survival (Somveille 
et al., 2015; Zollner & Lima, 2005), nutrient and energy flow within 
and across ecosystems (Earl & Zollner, 2014), gene flow (Clobert 
et al., 2001), and structural and distributional shifts in populations 
(Earl et al., 2016; Knowlton & Graham, 2010; Nathan et al., 2008). 
Movement can be split into two distinct behaviors (long-distance 
dispersal and local movement; Earl et al., 2016; Rakowski et al., 
2019), which can allow species to respond to changes in environ-
mental conditions differently. For instance, some species respond to 

changes in environmental conditions by displacing long distances to 
more environmental-benign areas (Nicholson et al., 2016; Somveille 
et al., 2015), while others remain in the same area all-year round 
and withstand exposure to extreme climatic ets by utilizing specific 
habitat on the landscape (Alston et al., 2020; Carroll et al., 2015; 
Rakowski et al., 2019). Therefore, it is important to understand how 
the local movement of animals is impacted by climate as local move-
ment directly influences the daily lives of animals by allowing them to 
accomplish various activities (e.g., foraging, predator avoidance, and 
reproductive duties) important for maintaining the individual as well 
as warrantying long-term survival of a species (Geary et al., 2020; 
Hernández & Laundré, 2005; Precioso et al., 2020). Such knowledge 
has the potential to be used to conserve global biodiversity in the 
future as climate change continues to threaten ecosystems and bio-
diversity across the world (McCarty, 2001).

Non-migratory species may be at a higher risk for extirpation 
due to climate change because they rarely disperse long distances 
(Earl et al., 2016; Jiguet et al., 2007; Townsend et al., 2003). Further, 
increased migratory diversity (i.e. movement plasticity) likely helps 
species that employ partial migratory strategies to be more resilient 
to environmental change than species that are purely sedentary 
(Gilroy et al., 2016). As such, non-migratory species may be more 
exposed to climate variability and its potential impacts on fitness, 
particularly since many strategies used by species to combat climate 
extremes can negatively impact survival and reproductive success 
(Cunningham et al., 2021). In the future, climate change may inten-
sify the thermal conditions of some landscapes leaving some animals 
without the ability to locate thermal refuge to survive extreme heat 
or potentially extending their stay in a thermal refuge such that it 
compromises their ability to adequately forage meet energy and nu-
trient demands (Carroll et al., 2016; Mason et al., 2017; Pattinson 
& Smit, 2017). Finally, because non-migratory species typically de-
pend on predictable resources within their home range, increased 
resource scarcity associated with climate change has the potential to 
threaten many non-migratory species (Maron et al., 2015). However, 
it should be noted that not all species will be negatively impacted 
by climate change and that understanding the effect of climate 
change on a species is dependent on the context and the species 
(Murray et al., 2017; Tagliari et al., 2021). Given the increased likeli-
hood of increased climate extremes in the future (IPCC, 2021), it is 
necessary we understand how climate influences the movement of 
non-migratory species to better understand the effects of climate 
change on these species.

We studied the Northern Bobwhite (Colinus virginianus; here-
after, bobwhite) a non-migratory Northern American bird (i.e., 
Galliforme) on the western edge of their distribution as a model to 
better understand the relationship between climate and the move-
ment ecology of a non-migratory species. Bobwhite are a declining 
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non-migratory species that typically live within 1 km of their natal 
site, yet have a broad geographic range across the eastern United 
States that extends westward into the Great Plains (Brennan et al., 
2020; Townsend et al., 2003). Because of this, bobwhite frequently 
experience climate extremes on the western edge of their distri-
bution, where periodic drought and extreme heat are common, 
making them an ideal species to study the role of climate on the 
movement ecology of non-migratory animals (Arndt, 2003; Brennan 
et al., 2020; Carroll et al., 2017). Furthermore, recent advances in 
global positioning system (GPS) technology now allow bobwhite to 
be fitted with GPS tags (Cagnacci et al., 2010), allowing us to study 
their local movement at fine temporal and spatial scales (e.g., hourly 
timescales). Previous studies investigating the role of climate on an-
imal movement have typically only analyzed movement at a broad 
temporal scale (i.e., daily movement; Garstang et al., 2014; Gong 
et al., 2020), but analyzing movement at a finer temporal scale al-
lows us to better perceive more immediate changes in an animal's 
movement patterns across the day. In addition, many studies have 
only investigated how a specific climate variable (i.e., temperature) 
influences animal movement (Alston et al., 2020; Mason et al., 2017; 
Rakowski et al., 2019). These studies found that hotter air tem-
peratures caused these species to become more sedentary and/or 
altered their position on the landscape (Alston et al., 2020; Mason 
et al., 2017; Rakowski et al., 2019). Given that climate is comprised 
of a variety of different variables (Ahrens & Henson, 2016), it is im-
portant to analyze movement at a fine temporal scale across mul-
tiple climate variables to better understand the role of climate on 
the movement of a non-migratory species. Therefore, our objec-
tive was to understand how different climate variables affect the 
movement ecology of a non-migratory species at a fine temporal 
scale (e.g., hourly timescales) by using bobwhite GPS data and me-
teorological data obtained from various environmental monitoring 
stations. Specifically, these data allowed us to investigate how air 
temperature, barometric pressure, solar radiation, relative humidity, 
average wind speed, average vector wind direction, and fractional 
water index (i.e., drought index) alter the movement characteristics 
(i.e., probability of movement, hourly distance moved and sinuosity) 
of a non-migratory species throughout the day.

2  |  MATERIAL S AND METHODS

2.1  |  Study areas

We collected GPS data from bobwhite at the following wild-
life management areas across western Oklahoma, USA: Cross 
Timbers (33.964043, −97.366169), Packsaddle (35.895249, 
−99.717387), Sandy Sanders (35.071182, −99.837630), and Beaver 
River (36.832998, −100.608260; Figure 1) from January 2019 to 
December 2020. These sites represent the wide range in climate 
that exists throughout western Oklahoma. During 2019–2020, air 
temperature ranged between −18.0 and 44.1°C across our sites 
with mean (±SE) air temperature being 15.3°C ± 0.1 (Brock et al., 

1995; McPherson et al., 2007). Mean (±SE) annual rainfall across 
these sites during 2019–2020 was 833.6 mm ± 121.8, but ranged 
from 581.7 to 1165.9 mm (Oklahoma Climatological Survey, 2021). 
Dominant vegetation communities at these sites ranged from shrub-
land dominated grasslands to grassland savannas. Common tree spe-
cies at these sites include eastern cottonwood (Populus deltoides) and 
post oak (Quercus stellate). Across these sites common shrub species 
include shinnery oak (Quercus havardii), sand sagebrush (Artemisia 
filifolia), and Chickasaw plum (Prunus angustifolia). Common herba-
ceous plants at these sites include Indiangrass (Sorghastrun nutans) 
and Buffalograss (Bouteloua dactyloides).

2.2  |  Data collection

We captured male and female bobwhite year-around using Stoddard 
walk-in funnel traps (Smith et al., 1981; Stoddard, 1931) baited with 
a mixture of cracked corn (Zea mays) and milo (Sorghum bicolor) at all 
four wildlife management areas. Individual birds were aged, sexed, and 
weighed and then fitted with a 7.2 g, solar-powered GPS transmitter 
(Lotek, Wareham, United Kingdom; average location accuracy <15 m) 
that was attached by a backpack-style harness made from 4.76-mm 
tubular Teflon® ribbon. If we trapped a covey, we only fitted a maximum 
of four individuals from that covey with transmitters. This was done 
to maintain an adequate number of individuals within a covey while 

F I G U R E  1 Location of the four study sites in Oklahoma where 
Northern Bobwhite (Colinus virginianus) were fitted with GPS 
technology and tracked during 2019–2020
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maximizing the number of coveys with marked individuals as much 
as possible. Transmitters were only attached to bobwhite weighing 
≥150 g to ensure that the transmitter weights did not exceed 5% of the 
bird's body weight (Bridge et al., 2011). If we trapped a covey with more 
than four individuals that passed this weight requirement, we randomly 
selected individuals that were fitted with transmitters. GPS transmit-
ters were programmed to collect 18 hourly fixes per day between 0500 
and 2200 central daylight savings time (CDT), but fewer hourly fixes 
occasionally occurred due to poor satellite transmission or low battery 
voltage. We did not sample between 2200 and 500 hours to conserve 
battery life. Overall, we fitted 338 (i.e., 188 males (120 juiles, 68 adults) 
and 150 females (97 juiles, 53 adults)) bobwhite with transmitters. All 
trapping and handling protocols were approved by Oklahoma State 
University Animal Care and Use Committee (ACUP AG-18-7).

Because climate consists of many different variables (e.g., air tem-
perature, solar radiation, and relative humidity; Ahrens & Henson, 
2016) we utilized the Oklahoma Mesonet, an extensive environmental 
monitoring network that collects meteorological data at fine temporal 
across each county in Oklahoma (Brock et al., 1995; McPherson et al., 
2007). Previous studies show that animal movement can be influ-
enced by different climate variables (e.g., air temperature; Alston et al., 
2020; Gong et al., 2020; Rakowski et al., 2019). From January 2019 
to December 2020 (bobwhite monitoring period), we acquired hourly 
weather data (air temperature, average wind speed, average vector 
wind direction, relative humidity, solar radiation, barometric pressure, 
and calibrated delta-T; Table 1) from the following Mesonet stations: 
Beaver (Beaver WMA), Arnett (Packsaddle WMA), Erick and Elk City 
(Sandy Sanders WMA), and Burneyville (Cross Timbers WMA). We 
could not record instantaneous precipitation ets because Mesonet was 
unable to collect such data; however, collecting barometric pressure 
and calibrated delta-T can provide an index for rainfall events (Ahrens 
& Henson, 2016; Illston et al., 2008). We standardized barometric 
pressure across all four sites by using the following equation to reduce 
barometric pressure to sea level (Keisan, 2018): 

 where p is barometric pressure, h is altitude, and T is air temperature.
We grouped average vector wind direction into the four cardi-

nal directions based on their corresponding degrees. We used cal-
ibrated delta-T to calculate fractional water index (FWI), a drought 
index, using the following equation (Illston et al., 2008):

2.3  |  Data analysis

We used Program R version 4.1.2 to perform these analyses (R Core 
Team, 2021). We excluded the first day of data collection for each 
bird to allow for acclimation to GPS transmitters. To account for GPS 
error, we removed all GPS fixes that were based on less than four 
acquired satellites or had an indicated dilution of precision >3.9. 

Following these corrections to the GPS fixes, average GPS error was 
confirmed to be <15 m (K. Andersson, Oklahoma State University, 
unpublished data). We also removed any duplicate fixes with the 
same timestamp. Because different movement metrics have been 
developed to describe different structural aspects of a movement 
path (consecutive relocations in a time series of geographic fixes), we 
analyzed two different movement metrics: hourly movement (dis-
placement between two consecutive geographic fixes an hour apart) 
and sinuosity (form of tortuosity that determines the amount of cur-
vature of a random search path; Almeida et al., 2010; Benhamou, 
2004; Bovet & Benhamou, 1988; Seidel et al., 2018). We analyzed 
the data using a two-step approach. First, we used hourly move-
ment to investigate how different climate variables influence when 
bobwhite move and the hourly distance moved of actively moving 
bobwhite. Second, we used sinuosity to understand how different 
climate variables alter the sinuosity of actively moving bobwhite.

2.3.1  |  Hourly movement

We used the R package “amt” to calculate hourly movement (Signer 
et al., 2019). We used the function track_resample to organize our move-
ment data into hourly consecutive bursts across each individual and then 
used the functions filter_min_n_burst, and steps_by_burst to resample our 
entire dataset into a continuous series of 1-h movements across each 
individual and to calculate hourly movement (Signer et al., 2019). Using 
hourly movement allowed us to understand how changes in specific cli-
mate variables alter the movement of a non-migratory animal at a fine 
temporal scale. At the beginning timestamp for each hourly movement, 
we paired each hourly movement with the appropriate Mesonet data 
that aligned with the correct site and timestamp. Because of this, we se-
lected the closest Mesonet station to the nearest WMA to pair the most 
appropriate Mesonet data to the GPS data of a specific site together 
according to the same timestamp. Mesonet stations were paired with 
the following WMA: Beaver (Beaver WMA), Arnett (Packsaddle WMA), 
Erick and Elk City (Sandy Sanders WMA), and Burneyville (Cross Timbers 
WMA). For Sandy Sanders WMA we used data from two Mesonet sta-
tions because we were unable to acquire calibrated delta-T data from 
the nearest Mesonet station (Erick) to Sandy Sanders WMA. Because 
of this, all Mesonet data was paired with Sandy Sanders using Erick 
Mesonet station except calibrated delta-T, which was acquired from 
Elk City Mesonet station. All Mesonet stations used for this study were 
located approximately 1.9–24.9 km from the nearest WMA. We used 
hourly movement to address two different questions using two separate 
analyses: probability of movement and hourly distance moved.

2.3.2  |  Probability of movement

Our first analysis using hourly movement investigated how different 
climate variables influence when bobwhite move. To analyze the data, 
we utilized binomial distributed generalized linear mixed models using 
the R package “lme4” (Bates et al., 2015) and modeled the data using a 

PRES (Reduced to Sea Level)=

p× (1− (0.0065×h)∕(T◦C+273.15+0.0065×h))−5.257,

FWI = (3. 96◦C − Reference Temperature Difference)∕(3. 96◦C − 1. 38◦C).
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binary response variable (movement or no movement) generated from 
the hourly movement data. We classified all hourly movements below 
the average GPS error rate (<15 m) as non-movement (recorded as 
zero) and classified all hourly movements >15 m as movement (re-
corded as one). Within each model we included id nested in site as 
a random intercept to account for individual heterogeneity, poten-
tial pseudo-replication, une sampling among individuals within each 
site and environmental differences at each site (Cady et al., 2021; 
Gillies et al., 2006). We removed any individuals that had <10 hourly 
movements because of data constraints when fitting a random effect 
structure within our models. We scaled each continuous independ-
ent variable using the scale function, which first centers the data of 
an independent variable by subtracting the variable mean from each 
specific data point of that variable and then scales that variable by 
dividing the centered data by their standard deviation. We scaled the 
data because differences in scale across the continuous independent 
variables caused challenges for models to converge. Scaling standard-
izes continuous variables on varying variable scales, which provides 
comparable model coefficients allowing easier model convergence.

For development and testing of our models, we used an a pri-
ori approach to determine the most appropriate models given our 
data (Burnham et al., 2011). A Pearson correlation test found no 
significant correlation (Nettleton, 2014) between independent 
variables included together in models (all r −.26 to .49). We eval-
uated one interaction based on previous research that indicated 
bobwhite broods select refuge sites that buffer against extreme 
heat caused by the interaction between air temperature and solar 
radiation (Carroll et al., 2015). In addition to these models, we as-
sessed an additional model (time of day) to determine whether 
time of day alone better describes the relationship between prob-
ability of movement of bobwhite than any climate variable. We 
analyzed time of day using the beginning hour from each hourly 
movement. We quantified which model best supported the data 
by using Akaike Information Criterion for small sample sizes using 
the R package “bbmle” (Bolker & R Core Team, 2021). We consid-
ered models competitive if a model had a Δ AICc <2.0 (Symonds & 
Moussalli, 2011). We did not perform any model averaging because 
we simply wanted to use an AICc approach to better understand 
which climate variable or set of climate variables best describe the 

probability of movement of this species. Because of challenges 
interpreting the results from the best-fit model associated with 
scaling the data, we calculated the relative movement frequency 
for each individual from our data across each air temperature (°C) 
value (i.e., whole number) and then graphed it continuously based 
on the best-fit model. Because the best-fit model consisted of an 
interaction, we parsed solar radiation (Wm−2) into three categories 
(low, medium, and high), representing the lower 25th, 25th–75th, 
and upper 75th percentiles of the data for graphing purposes.

2.3.3  |  Hourly distance moved

The objective of our second analysis using hourly movement was to 
determine how different climate variables alter the hourly movement 
of bobwhite once individuals were moving. To analyze the data, we 
used gamma distributed generalized linear mixed models with log link 
functions using the R package “lme4” (Bates et al., 2015). The response 
variable associated with this analysis was hourly distance moved (m) 
of actively moving individuals using hourly movement data. Because 
of this, we removed all hourly movements below the average error 
rate of the GPS transmitters (<15 m). This removed any hourly move-
ments that were sedentary from this analysis. Within each model, 
we included individual nested in site as a random intercept. Because 
air temperature (°C), barometric pressure (Mb), average wind speed 
(ms−1), and time of day (h) exhibited a quadratic relationship, these 
variables were fit with a quadratic polynomial term when present in 
a model (Ostertagová, 2012). Our approach to model development 
and testing was the same to our approach for analyzing probability of 
movement. We determined that there was no significant correlation 
(Nettleton, 2014) between independent variables included together in 
models (Pearson correlation test: all r −.25 to .45).

2.3.4  |  Sinuosity

To understand how actively moving bobwhite change their sinuosity in 
response to different climate variables, we used the R package “amt” 
to calculate sinuosity (Signer et al., 2019). We used a sinuosity index 

TA B L E  1 Description of climate variables collected from Beaver, Arnett, Erick, Burneyville, and Elk City mesonet stations located across 
western Oklahoma and those calculated from mesonet data during 2019–2020

Climate variable Units Collection specifics Observed range 2019–2020

Air temperature °C 1.5 m above ground −18.0–44.1

Average wind speed ms−1 2 m above ground, 5-minute average 0–17.9

Average vector wind direction degrees 10 m above ground, 5-minute average 0–360

Relative humidity % 1.5 m above ground 5.5–100.0

Solar radiation Wm−2 – 0–1203.1

Barometric pressure Mb – 892.7–1013.4

Fractional water index 5 cm below ground −0.03–1.04

Note: Calibrated Delta-T was used to calculate fractional water index (Illston et al., 2008). Barometric pressure at each site was converted to sea level 
to standardize (Keisan, 2018).
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over a straightness index for this study because we could not assume 
that the search behavior associated with these animals’ movement was 
mostly oriented (Almeida et al., 2010; Benhamou, 2004). As a path be-
comes more tortuous, sinuosity increases in value; however, as a path 
become straighter the value becomes closer to 0 (Duffy et al., 2011). 
We used the functions track_resample to organize our movement data 
into hourly consecutive bursts across each individual and then used the 
filter_min_n_burst to resample our entire dataset into a continuous series 
of 1-h movements across each individual (Signer et al., 2019). At the top 
of each hour, we paired each GPS location to the appropriate Mesonet 
data the same way as hourly movement, which meant that we aligned 
the data together according to the correct site and timestamp. Because 
calculating sinuosity requires paths with multiple fixes, we were unable 
to analyze sinuosity at a one-hour scale (Duffy et al., 2011). Therefore, 
we split each individual bird's data into continuous 3-h paths. We calcu-
lated sinuosity for each 3-h path using the function sinuosity (Signer et al., 
2019). We also averaged each climate variable across each 3-h path. We 
analyzed time of day using the beginning hour of each 3-h path.

To analyze the data, we used linear mixed models with a log-
transformed response variable using the R package “lme4” (Bates 
et al., 2015) with a response variable of sinuosity (unitless) to de-
velop models that investigate how different climate variables shape 
the sinuosity of bobwhite movements relative to a 3-h path. We 
chose a linear mixed-modeling approach with a log-transformed re-
sponse variable over a generalized mixed modeling approach with 

a log-link function because sinuosity fit a log-normal distribution, 
which led to challenges converging models when modeling sinuos-
ity using gamma distributed generalized mixed models with a log-
link function. We removed paths where individuals moved less than 
the average GPS error rate (<15 m) because we were interested in 
analyzing the sinuosity of actively moving bobwhite. In addition, 
including paths of sedentary bobwhite led to unrealistic sinuosity 
values difficult to model. Within each model, we included a random 
intercept of individual nested in site. Because barometric pressure 
had a quadratic relationship, we fit it with a quadratic polynomial 
term when included in a model (Ostertagová, 2012). Our approach 
to model development and testing sinuosity was the same to our ap-
proach to model development and testing probability of movement 
and hourly distance moved. There was no significant correlation 
(Nettleton, 2014) between independent variables included together 
in models (Pearson correlation test: all r −.26 to .49).

3  |  RESULTS

3.1  |  Probability of movement

We analyzed 46,890 hourly movements from 283 bobwhite. Across 
sites, 45% of movements were at Packsaddle (n = 21,027), 28% at 
Beaver River (n = 13,311), 18% at Cross Timbers (n = 8434), and 

Model variables df Log-likelihood AICc dAICc AICc weight

Probability of movement

TAIR*SRAD 5 −29209.6 58429.2 0.0 1

TAIR + SRAD 4 −29555.1 59118.2 689.1 <0.001

Time of day 3 −29611.5 59228.9 799.8 <0.001

SRAD 3 −29703.3 59412.2 983.1 <0.001

FWI + TAIR 4 −29727.3 59462.6 1033.4 <0.001

Hourly distance moved

TAIR*SRAD + 
TAIR2*SRAD

8 −128714.2 257444.3 0.0 0.988

TAIR + TAIR2 + SRAD 6 −128720.5 257453.1 8.8 0.012

Time of day + Time of 
day2

5 −128767.4 257544.8 100.4 <0.001

SRAD 4 −128783.5 257575.1 130.8 <0.001

PRES + PRES2 + 
AWDIR + AWSP + 
AWSP2

10 −128821.4 257662.9 218.5 <0.001

Sinuosity

SRAD 4 −12756.3 25520.6 0.0 0.942

TAIR + SRAD 5 −12758.6 25527.1 6.5 0.036

FWI 4 −12760.9 25529.7 9.2 0.010

TAIR*SRAD 6 −12759.3 25530.5 10.0 0.007

Null 3 −12762.6 25531.2 10.6 0.005

Abbreviations: AWDIR, average vector wind direction; AWSP, average wind speed; FWI, fractional 
water index; PRES, barometric pressure; SRAD, solar radiation; TAIR, air temperature.

TA B L E  2 Model comparison table 
showing the top 5 best fit models of 
the 16 models that we evaluated to 
investigate how different climate variables 
altered probability of movement, hourly 
distance moved, and sinuosity (3-h path) 
of Northern Bobwhite in western 
Oklahoma during 2019–2020
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9% at Sandy Sanders (n = 4118). In our dataset, mean (±SE) hourly 
movement was 47.5 m ± 0.40 with a range from 0 to 1882.5 m. We 
investigated 16  models to understand how different climate vari-
ables alter the probability of movement of a non-migratory bird. The 
best-fit model was the interaction between air temperature and 
solar radiation (Table 2; marginal R2 = 0.026, conditional R2 = 0.207) 
suggesting that probability of movement was affected by the in-
teraction effects of air temperature and solar radiation (Table 3). 
When calculating relative movement frequency across our data, we 
determined that the interaction between air temperature and solar 
radiation influenced the relative movement frequency of bobwhite 
differently. During low solar radiation, relative movement frequency 
increased as air temperature increased (Figure 2). However, when 
high solar radiation occurred relative movement frequency de-
creased as air temperature increased (Figure 2). The interaction be-
tween air temperature and medium solar radiation had little effect 
on the relative movement frequency of bobwhite.

3.2  |  Hourly distance moved

For this part of the study, we analyzed 23,911 hourly movements 
from 242 actively moving bobwhite, with 47% of the movements 
from Packsaddle (n = 11,233), 28.5% from Beaver River (n = 6808), 
16.5% from Cross Timbers (n = 3923), and 8% from Sandy Sanders 
(n = 1947). Mean hourly movement (±SE) of actively moving bob-
white was 87.8 m ± 0.6. We investigated 16 models to determine 
how different climate variables affect the hourly distance moved of 
actively moving bobwhite. Similar to probability of movement, the 
best fit model was the interaction between air temperature and 
solar radiation (Table 2; marginal R2 = 0.006, conditional R2 = 0.064). 

Overall, bobwhite moved shorter distances as the interaction be-
tween air temperature and solar radiation increased (Table 3, 
Figure 3). Graphing showed that different solar radiation intensities 
alter how air temperature influences hourly distance moved. For 
instance, during low solar radiation, bobwhite moved farther as air 
temperature increased e when air temperature increased beyond 
30°C (Figure 3). During medium and high solar radiation, bobwhite 
moved farther as air temperature increased until 25–30°C when 
hourly distance moved plateaued (Figure 3).

3.3  |  Sinuosity

We analyzed 8193 3-h paths from 181 actively moving bobwhite. 
Forty-seven percent of the movements occurred at Packsaddle 
(n = 3824), 27% at Beaver River (n = 2233), 18% at Cross Timbers 
(n = 1496), and 8% at Sandy Sanders (n = 640). Mean (±SE) sinuosity 
of actively moving bobwhite relative to a 3-h path was 0.3 ± 0.01 
with a range of 0.0005–12.0. Similar to previous analyses, we 
evaluated 16 models to determine how the sinuosity of an actively 
moving non-migratory animal is influenced by different climate vari-
ables. The model that best described the data only included a single 
variable, solar radiation (Table 2; marginal R2  =  0.002, conditional 
R2 = 0.017). The 3-h paths of bobwhite became more tortuous as 
solar radiation intensity increased (Table 3, Figure 4).

4  |  DISCUSSION

Our study aligns with a growing body of research that indicates 
that specific climate variables that comprise climate influence 

Fixed effects Estimate
Std. 
error t-Value p-Value

Random 
effect (SD)

Probability of movement

Intercept 0.044 0.060 0.748 .454 0.955

TAIR 0.189 0.016 11.903 <.001

SRAD −0.158 0.013 −12.495 <.001

TAIR*SRAD −0.308 0.012 −26.049 <.001

Hourly distance moved

Intercept 4.482 0.022 202.002 <.001 0.316

TAIR 0.085 0.008 10.477 <.001

TAIR2 −0.006 0.005 −1.087 .277

SRAD −0.092 0.007 −12.843 <.001

TAIR:SRAD −0.013 0.007 −1.906 .057

TAIR2:SRAD −0.015 0.005 −3.040 .002

Sinuosity

Intercept −1.729 0.018 −96.100 <.001 0.138

SRAD 0.057 0.013 4.420 <.001

Note: For the binomial movement model a z-value not a t-value was calculated.
Abbreviations: SRAD, solar radiation; TAIR, air temperature.

TA B L E  3 Model output from each top 
model modeling probability of movement, 
hourly movement, and sinuosity (3-h path) 
of Northern Bobwhite in western 
Oklahoma during 2019–2020
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animal movement (Alston et al., 2020; Bourgoin et al., 2011; Gong 
et al., 2020; Rakowski et al., 2019). Thus, increased climate vari-
ability associated with climate change has the potential to alter the 
movement of many species (IPCC, 2021; Thornton et al., 2014). 
Because movement connects various activities that influence an 

animal's survival, shifts in movement pattern may have long-term 
impacts on the survival of animals by negatively influencing re-
source acquisition, survival, and population connectivity (Earl 
et al., 2016; Nathan et al., 2008; Zollner & Lima, 2005). This study 
highlights the influence of air temperature and solar radiation on 

F I G U R E  2 Observed relative 
movement frequency from Northern 
Bobwhite (Colinus virginianus) in 
western Oklahoma during 2019–2020 
in response to the interaction between 
air temperature and solar radiation. 
Each regression line was fitted with a 
95% confidence interval. For graphing 
purposes, we grouped solar radiation 
categorically as low (0–33.32 Wm−2), 
medium (33.33–666.82 Wm−2), and 
high (666.83–1203.12 Wm−2); which 
represents the lower 25th, 25th–75th, and 
upper 75th percentiles of the data

F I G U R E  3 The relationship between 
the hourly distance moved of Northern 
Bobwhite (Colinus virginianus) in western 
Oklahoma during 2019–2020 once an 
individual was moving in response to 
the interaction between solar radiation 
and air temperature. Each regression 
line was fitted with a 95% confidence 
interval and a polynomial because air 
temperature exhibited a quadradic 
relationship. For graphing purposes, we 
grouped solar radiation categorically as 
low (0–79.74 Wm−2), medium (79.75–
602.33 Wm−2), and high (602.34–
1203.12 Wm−2); which represents the 
lower 25th, 25th–75th, and upper 75th 
percentiles of the data
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the movement of a non-migratory animal. Further, our study sug-
gests that these climate variables may better describe fine-scale 
movement patterns than simply time of day. Previous studies 
show that these climate variables alter animal movement and sur-
vival (Alston et al., 2020; Hovick et al., 2015; Lenarz et al., 2009; 
Rakowski et al., 2019). Our study went further by investigating 
how the interaction between these two climate variables influ-
ences movement. Because climate is comprised of multiple vari-
ables influencing each other (Ahrens & Henson, 2016), it should 
not be surprising that some animals alter their movement in re-
sponse to interactions between different climate variables. In ad-
dition, bobwhite were most sedentary during extreme cold and 
heat. Previous studies show that temperature extremes can limit 
movement and alter an animal's position on the landscape, leading 
to increased mortality in some animals potentially caused by limit-
ing their ability to access specific areas of the landscape reducing 
resource availability (Aublet et al., 2009; Carroll et al., 2015; Melin 
et al., 2014; Tanner et al., 2017). Because non-migratory species 
typically rely on predictable resources within a fixed home range 
(Maron et al., 2015), our findings suggest that increased climate 
extremes caused by climate change could impact the survival of 
many non-migratory species, especially if it leads to animals be-
coming more sedentary and having less access to resources (IPCC, 
2021). Some suggest that some species may have to shift their 
activity to different portions of the day in the future to survive 
increased climate extremes (Aublet et al., 2009). Further, species 

with a higher level of migratory diversity across individuals might 
be better able to cope with unpredictable environmental condi-
tions in the future (Gilroy et al., 2016). Future research is needed 
to better understand the ability for species to shift their behavior 
during climate extremes to cope with ongoing climate change.

Changes in movement in response to the interaction between 
air temperature and solar radiation may reflect behavioral tradeoffs 
associated with increased hyperthermia risk caused by extreme 
heat (≥30°C) and increased solar radiation intensity (Boyles et al., 
2011; Cunningham et al., 2021; Norris & Kunz, 2012). Some animals 
adjust their behavior to lower hyperthermia risk by reducing their 
movement (Rakowski et al., 2019), locating thermal refuge to limit 
thermal stress (Alston et al., 2020; Carroll et al., 2015), adjusting 
foraging behavior (Pattinson & Smit, 2017), and changing their pos-
ture (Maloney et al., 2005; Norris & Kunz, 2012). However, these 
behavioral adjustments can be costly (Cunningham et al., 2021), as 
increased behavioral thermoregulation caused by extreme heat can 
reduce foraging efficacy and reproduction success (Cunningham 
et al., 2013; Pattinson & Smit, 2017; van de Ven et al., 2020). Such 
implications could have lasting effects on the ability for species 
across the globe to persist (Mason et al., 2017; Pattinson & Smit, 
2017). Climate change will likely cause many species to experience 
increased extreme heat in the future and exacerbate these con-
cerns (Cunningham et al., 2021; IPCC, 2021). Our findings show that 
during the day bobwhite become more sedentary and move shorter 
distances during extreme heat, suggesting that the ability for many 
non-migratory species to tolerate extreme heat and adapt to global 
change could be severely hindered by climate change (Jiguet et al., 
2007).

Many studies have focused on understanding how extreme heat 
influences animal behavior (Carroll et al., 2017; Cunningham et al., 
2021; van de Ven et al., 2020). However, climate change can also 
cause extreme cold during winter (Cohen et al., 2018), suggesting 
that other conditions beyond extreme heat could negatively impact 
animals too. Some animals reduce their activity during extreme cold, 
likely to conserve energy as extreme cold can cause increased hy-
pothermia risk in animals (Cotton & Parker, 2000; Norris & Kunz, 
2012). These challenges coupled with limited resources caused by 
extreme cold can reduce survival causing high mortality in some an-
imals (Maron et al., 2015; Tanner et al., 2017). Our findings suggest 
that during the day bobwhite are most sedentary when air tempera-
tures are ≤0°C during certain solar radiation intensities. However, 
air temperatures ≤0°C rarely occurred during this study limiting our 
ability to infer more from this trend. Additional studies in colder cli-
mates could be useful to better understand the impacts of extreme 
cold on animal movement.

We determined that solar radiation influences the sinuosity of 
a non-migratory animal's 3-h path. Given that many animals require 
thermal refuge to tolerate extreme heat (Carroll et al., 2015; Melin 
et al., 2014; Rakowski et al., 2019), demands to locate thermal refuge 
during periods of extreme heat could have caused the movement 
paths of bobwhite to become more sinuous. Despite this, solar radia-
tion only caused bobwhite movement paths to become slightly more 

F I G U R E  4 The relationship between the sinuosity of Northern 
Bobwhite (Colinus virginianus) in western Oklahoma during 2019–
2020 relative to a 3-h path once an individual was moving in 
response to solar radiation. Fitted along the regression line was 
a 95% confidence interval. As a path becomes more tortuous, 
sinuosity increases in value; however, as a path becomes straighter 
the value becomes closer to 0 (Duffy et al., 2011)
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sinuous suggesting that the relationship between solar radiation and 
the sinuosity of bobwhite movement at a 3-h temporal scale is weak. 
Nevertheless, climate change is predicted to reduce the ability for 
some animals to locate thermal refuge on the landscape by homoge-
nizing the thermal landscape (Carroll et al., 2016). Because of this, in-
creased climate variability in the future could increase the sinuosity 
of animals if locating thermal refuge becomes more difficult (Carroll 
et al., 2016). Furthermore, changing the temporal scale of an animal's 
movement path can yield different results (Kay et al., 2017). In ad-
dition, collecting GPS data at finer resolutions (e.g., movement data 
every 5 min) could have yielded a stronger relationship; however, 
our GPS transmitters were unable to acquire data at this interval. It 
is possible that analyzing sinuosity at a broader temporal scale and 
by using higher resolution GPS data could have yielded a stronger 
relationship with solar radiation. Future research should take advan-
tage of advancements in technology to better understand the role of 
different climate variables on the sinuosity of an animal.

As global climate change continues, increasing the intensity and 
frequency of extreme heat and precipitation (IPCC, 2021), there is 
a growing need to understand how specific climate variables alter 
animal movement to better determine how to conserve species im-
pacted by climate change. Our results add to the growing body of lit-
erature on this topic (Alston et al., 2020; Aublet et al., 2009; Bourgoin 
et al., 2011; Gong et al., 2020). Our findings show that the inter-
action between air temperature and solar radiation or simply solar 
radiation influence the fine-scale movement of a non-migratory an-
imal. Because of this, increased climate variability caused by climate 
change may alter movement patterns and constrain the movement 
of animals in the future. However, these changes have the potential 
to favor some generalist species (Tagliari et al., 2021). For species im-
pacted by increased climate variability, shifts in movement patterns 
may reduce an individual's ability to breed successfully disrupting 
population dynamics of a species (Cunningham et al., 2021; Mason 
et al., 2017; van de Ven et al., 2020). Because changes in movement 
patterns influence the connectivity of individuals and populations 
(Knowlton & Graham, 2010; Nathan et al., 2008), shifts in move-
ment at fine-temporal scales caused by increased climate extremes 
may have negative consequences for the long-term viability of pop-
ulations (Inoue and Berg, 2017; Murray et al., 2017). Furthermore, 
increased extreme heat or cold may render large portions of the 
landscape unsuitable for species that require adequate thermal ref-
uge (Carroll et al., 2016; Tanner et al., 2017). Our study highlights the 
importance of understanding how different climate variables influ-
ence the movement of a non-migratory bird at a fine-temporal scale. 
Better knowledge determining what drives the fine-scale movement 
patterns of a specific species is vital to decipher how climate change 
and other forms of environmental change are already impacting spe-
cies now and in the future.
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