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Genome-wide association studies (GWASs) have revealed 59 geno-
mic loci associated with type 1 diabetes (T1D). Functional inter-
pretation of the SNPs located in the noncoding region of these loci
remains challenging. We perform epigenomic profiling of two
enhancer marks, H3K4me1 and H3K27ac, using primary TH1 and
TREG cells isolated from healthy and T1D subjects. We uncover a
large number of deregulated enhancers and altered transcriptional
circuitries in both cell types of T1D patients. We identify four SNPs
(rs10772119, rs10772120, rs3176792, rs883868) in linkage disequi-
librium (LD) with T1D-associated GWAS lead SNPs that alter en-
hancer activity and expression of immune genes. Among them,
rs10772119 and rs883868 disrupt the binding of retinoic acid re-
ceptor α (RARA) and Yin and Yang 1 (YY1), respectively. Loss of
binding by YY1 also results in the loss of long-range enhancer–
promoter interaction. These findings provide insights into how
noncoding variants affect the transcriptomes of two T-cell sub-
types that play critical roles in T1D pathogenesis.
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Type 1 diabetes (T1D) is an autoimmune disease caused by
immune-mediated destruction of the insulin-producing pan-

creatic beta cells. There is overwhelming evidence that imbal-
ance between effector and regulatory T cells is a major cause of
autoimmunity. Of all effector T cells, T-helper 1 (TH1) cells play
a critical role in the pathogenesis of T1D by producing IFN-γ.
The pathogenic role of TH1 cells is demonstrated by the transfer
of disease through transplantation of pathogenic TH1 cells (1).
TH1-initiated destruction of beta cells can be modulated by
Foxp3+ regulatory T cells (TREG), which play an important role
in the maintenance and regulation of immune tolerance and
prevention of autoimmunity. They can modulate T-cell activa-
tion and promote immune tolerance by direct cell–cell interac-
tions and production of immune modulatory cytokines such as
transforming growth factor β (TGF-β) and interleukin 10 (IL-
10). The protective role of TREG cells is impaired in suscepti-
ble population, and studies have demonstrated a deficiency in
number and function of TREG cells in T1D (2).
Despite years of study, the molecular mechanisms responsible for

the loss of immune tolerance remain to be fully elucidated.
Genome-wide association studies (GWASs) have revealed 119 lead
SNPs (59 genomic loci) that are associated with T1D (Immu-
noBase; https://www.immunobase.org), but very few etiologic
SNPs have been demonstrated. One challenge is that many as-
sociated SNPs are located in noncoding regions, which represent
98.5% of the human genome. Although several risk noncoding
SNPs have been reported for the autoimmunity-associated genes
DEX1 (3), GLUT1 (4), and IL6 (5), our knowledge of risk
noncoding SNPs for autoimmune diseases remains limited.
Although multiple studies have demonstrated enrichment of

T1D GWAS variants at T-cell–specific transcription enhancers
in healthy donors (6, 7), to date, no study has examined the
enhancer repertoire in primary TH1 and TREG cells from T1D

patients, despite of the pivotal roles of TH1 and TREG cells in the
pathogenesis of T1D. In this study, we conducted epigenomic
and transcriptomic profiling of TH1 and TREG cells isolated from
a cohort of five healthy donors and six newly diagnosed T1D
patients. Our data (8) reveal significant alteration in the en-
hancer repertoire and transcriptional regulatory circuitry in
TH1 and TREG cells of T1D patients. Intersecting our epi-
genomic data with a catalog of SNPs located in previously
reported T1D-associated genomic loci, we identified several
novel risk SNPs located in TH1 and TREG enhancers. We vali-
dated the functional roles of four candidate TREG SNPs using a
combination of luciferase reporter assay, genome-editing, tran-
scription factor chromatin immunoprecipitation (ChIP), and
chromosome conformation capture (3C) assays.

Results
Transcriptome Changes in TH1 and TREG Cells of T1D Patients. Using a
panel of established cell surface markers, we purified effector
memory TREG cells (CD3+ CD4+ CD25+ CD127dim/− CD45RO+)
(9, 10) and effector memory TH1 cells (CD3+ CD4+ CXCR3+

CCR6− CCR7− CD45RO+) (9) from the peripheral blood of
11 subjects, including 6 T1D patients and 5 age-matched healthy
controls (SI Appendix, Fig. S1 and Tables S1 and S2).
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Functional interpretation of noncoding genetic variants identified
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ants for this disease. In addition, our ranked list of candidate risk
SNPs represents the most comprehensive annotation based on
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understand causal noncoding mutations in related autoimmune
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We profiled the transcriptome of patients and healthy donor
subjects using RNA-seq (SI Appendix, Table S3) and found 370 and
250 differentially expressed transcripts between case and control
groups for TH1 and TREG cells, respectively [false-discovery rate
(FDR) < 0.1, Fig. 1A and SI Appendix, Table S4]. Consistent with
the pathogenic role of TH1 in T1D, up-regulated genes are
enriched for functions such as lymphocyte activation, cell growth,
cell proliferation, and immune response, whereas down-regulated
genes are enriched for functions such as cell death and apoptosis.
For TREG cells, the up-regulated genes are involved in transcrip-
tion, cell cycle, and chromosome organization, whereas down-
regulated genes are involved in apoptosis, protein modification,
targeting, and transport (Fig. 1C).
Several T1D-associated genes (obtained from ImmunoBase)

are differentially expressed between case and control groups,
including Rac family small GTPase 2 (RAC2) in both cell types,
Ikaros 1 (IKZF1) and diacylglycerol kinase α (DGKA) in
TH1 cells, and tyrosine kinase 2 (TYK2), IL10, and major his-
tocompatibility complex, class II, DQ β1 (HLA-DQB1) in TREG
cells (Fig. 1B). Besides those known T1D-associated genes,
several genes associated with other autoimmune diseases are
also differentially expressed, including cyclin-dependent kinase
6 (CDK6), Janus kinase 2 (JAK2), C-C motif chemokinase re-
ceptor 4 (CCR4), and signal transducer and activator of tran-
scription 5A/5B (STAT5A/B) in TH1, and interleukin-5 (IL5),
IFN regulatory factor 4 (IRF4), and signal transducer and acti-
vator of transcription 2 (STAT2) in TREG. STAT5A and STAT5B
are reported to have a role in TH1 cell differentiation (11).
SMAD3, which is down-regulated in the case group, has a critical
role in TH1 inhibition and immune tolerance (12, 13). Together
with FOXP3 and other transcription factors (TFs), IRF4 can
form a transcriptional network that governs TREG cell differen-
tiation (14). IL5 is reported to promote induction of antigen-
specific TREG cells that suppress autoimmunity and reduced
expression of IL5 will disrupt the immune balance (15) (Fig. 1B
and SI Appendix, Table S4).

Deregulated Enhancers in TH1 and TREG Cells of T1D Patients. Tradi-
tional ChIP followed by high-throughput sequencing (ChIP-seq)
protocols require millions of cells. From a typical blood draw of
50 mL, it is only possible to purify approximately half a million
TH1 cells and TREG cells, which is not sufficient for profiling
multiple histone marks and the transcriptome. We thus developed a
low-input ChIP-seq protocol using as low as 20,000 cells. We vali-
dated the protocol using the human lymphoblastoid cell line,
GM12878. Data generated using our low-input protocol have an
excellent agreement with data generated with conventional pro-
tocol using millions of cells (SI Appendix, Fig. S2).
Using our low-input ChIP-seq protocol, we profiled two his-

tone modification marks, H3K4me1 and H3K27ac, the combi-
nation of which marks active transcriptional enhancers (SI
Appendix, Table S5). By using normalized ChIP-seq signals in
1,000-bp windows genome-wide, we obtained a median genome-
wide interindividual correlation ranging between 0.84 and 0.87 con-
sidering subject groups (control, case), cells (TH1, TREG), and his-
tone marks (H3K4me1 and H3K27ac) (SI Appendix, Fig. S3A).
These correlations are higher than a similar study performed using
TREG cells from 11 healthy donors (16) (median, 0.70) (SI
Appendix, Fig. S3C).
We predicted active enhancers for each cell type and cohort

(case and control) separately using H3K4me1 and H3K27ac
ChIP-seq data and the Chromatin Signature Identification by
Artificial Neural Network (CSI-ANN) algorithm (17). For
TH1 cell, we predicted 13,017 and 12,145 enhancers in case
and control groups, respectively. For TREG cell, we predicted
11,915 and 14,860 enhancers in case and control groups, re-
spectively (Fig. 2A and SI Appendix, Table S6). As expected, 83%
of TH1 enhancers and 74% of TREG enhancers are shared be-
tween the two cell types, given their common origin from naive
CD4+ T cells (Fig. 2B). However, within each cell type, a large
fraction of the enhancers has altered activities between the case
and control groups (21% for TH1 and 25% for TREG) (Fig. 2 A
and D). The percentages of group-specific enhancers were sig-
nificantly higher than expected (null distribution computed by
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Fig. 1. Differentially expressed genes between case
and control subjects in TH1 and TREG cells. (A) Number
of differentially expressed transcripts. FDR < 0.1,
computed using EBSeq and corrected for multiple
testing using the Benjamini–Hochberg (BH) method.
Down-regulated, Expression is lower in the case
group. Up-regulated, Expression is higher in the case
group. (B) Volcano plot showing differentially expressed
transcripts. Turquoise, Down-regulated in case group;
magenta, up-regulated in case group. Genes associated
with autoimmune disease are labeled. Genes associated
with T1D are highlighted in orange. (C) Enriched GO
terms among sets of differentially expressed genes in
TH1 (Left) and TREG cells (adjusted hypergeometric
test, P < 0.05, corrected for multiple testing using the
BH method).

7582 | www.pnas.org/cgi/doi/10.1073/pnas.1815336116 Gao et al.

https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1815336116/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1815336116/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1815336116/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1815336116/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1815336116/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1815336116/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1815336116/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1815336116/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1815336116/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1815336116/-/DCSupplemental
https://www.pnas.org/cgi/doi/10.1073/pnas.1815336116


permuting the sample labels in the dataset; Fig. 2C). TH1 cells in
T1D patients appear to have an overall gain of active enhancers,
whereas TREG cells in T1D patients appear to have an overall
loss of active enhancers. Taken together, these data suggest a
considerable change in the transcriptional regulatory networks
(TRNs) of both cell types in T1D patients.
To understand the impact of case-specific enhancers on the

transcriptomes, we need to know their target genes. We recently
developed the Integrated Method for Predicting Enhancer Targets
(IM-PET) algorithm (18). It predicts enhancer–promoter interac-
tions by integrating four statistical features derived by integrating
transcriptome, epigenome, and genome sequence data. Using IM-
PET, on average, each gene is predicted to be targeted by 1.5 and
1.6 enhancers in TH1 and TREG cells, respectively. We compared
our EP predictions with a recently published Capture-Hi-C data on
CD4+ T cells (SI Appendix, Fig. S4A). Approximately 55% of our
predictions are supported by Capture-Hi-C data, suggesting high
quality of our predictions. Finally, for both cell types, there is a
positive correlation between enhancer activity and gene expression
level across the case and control groups (Fig. 2E), providing further
support to the accuracy of our target gene prediction.
We next focused on target genes of case/control-specific en-

hancers (SI Appendix, Table S7). Many of the condition-specific
enhancers are linked to genes already implicated in T1D, such as
IKZF1, CCR5, CLEC16A, IL2RA, and UBASH3A for TH1 and
IKZF1, IKZF4, RAC2, and RASGRP1 for TREG (7, 19). Gene
ontology analysis of the enhancer targets suggests deregulation
of specific pathways in TH1 and TREG cells of T1D patients, such
as T-cell activation, lymphocyte activation, leukocyte activation,
innate immune response, and cellular response to organic sub-
stances (SI Appendix, Table S8).

Key Transcription Factors Mediating Transcriptome Changes in
TH1 and TREG Cells of T1D Patients. Our knowledge about the
TRNs in TH1 and TREG cells of T1D patients is rather limited

(20). Motivated by our knowledge of transcriptional regulation,
we developed a method, target inference via physical connection
(TIPC), to infer condition-specific TRNs. TIPC computes proba-
bility scores for three key components of transcriptional regu-
lation, including probability of a DNA sequence being an
enhancer, probability of a TF binding to an enhancer given the
TF motif model and the enhancer sequence, and probability of
enhancer–promoter interaction. The overall score for a TF
regulating a target gene is the product of the three component
probabilities and the expression level of the TF (see Methods for
details). We evaluated the performance of TIPC using two ap-
proaches. First, using a set of gold-standard TF-target pairs in
embryonic stem cells, we found that TIPC outperforms four
state-of-the-art methods based on Pearson correlation (BC),
mutual information [context likelihood ratio (CLR) (21)], de-
cision trees [gene network inference with ensemble of trees
(GENIE3) (22)], and regression [trustful inference of gene reg-
ulation with stability selection (TIGRESS) (23)] for predicting
TF–target interactions (Fig. 3A).
We further evaluated the predicted TF–target interactions

using publicly available TF ChIP-seq data (24) for T cells. We
found that our predicted TF–target interactions have significant
overlap with ChIP-seq data (SI Appendix, Fig. S4B). We pre-
dicted 263,836 and 298,638 TF–target pairs in TH1 and TREG
cells, respectively. Thirty-six percent and 41% of the TF–target
pairs are either control- or case-specific in TH1 and TREG cells,
respectively (Fig. 3B), suggesting a significant degree of rewiring
of the TRN in both cell types of T1D patients.
Next, we developed a method to systematically identify key

TFs that play critical roles in the state transition of a TRN be-
tween two conditions. Our method is based on the assumption
that a key TF can influence a larger set of differentially expressed
targets compared with a nonkey TFs. To capture such signal, for
two adjacent genes in the TRN, we convert their P values of
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differential expression into a distance measure such that the
distance between two highly differentially expressed targets is
very short. As a result, TFs that have shorter median distance to
the set of differentially expressed targets are ranked higher (see
Methods for details).
We identified 24 and 16 key TFs in TH1 and TREG cells, re-

spectively (Fig. 3 C and E). Thirty-seven percent of TH1 TFs and
56% TREG TFs are shared between the two cell types. Consistent
with their role as key regulators, these TFs target more other TFs
than nonkey TFs (P < 0.001, t test; SI Appendix, Fig. S5). Most of
the identified TFs have a reported role in either the biology of

TH1 and TREG cells, or the pathogenesis of either T1D or other
autoimmune diseases (SI Appendix, Table S9).
When ranked according to their regulatory potential (the in-

verse of median distance of TF to differentially expressed tar-
gets), the top key TFs are IKZF1 and SREBF1 for TH1 and IRF4
and RARA for TREG. IKZF1 plays a role in the TH1 versus
TH2 polarization (25, 26). A SNP (rs10272724) in the 3′-UTR of
IZKF1 has been shown to be protective from T1D (27). SREBF1
plays an important role in inducing genes that encode numerous
genes in the lipid biosynthesis pathway, which controls full acti-
vation, proliferation, and differentiation of CD4+ T cells, in-
cluding TREG cells (28, 29).
IRF4, the top key regulator in TREG, is reported to interact

with FOXP3 and promote TREG function (14). RARA is critical
for the normal differentiation and functions of both TREG and
TH1 cells. All-trans retinoid acid (ATRA), an endogenous ligand
of RARA, can prevent human natural TREG cells from con-
verting to TH1/TH17 cells and sustains their suppressive function
in inflammatory environments (30). Likewise, RARA can sustain
TH1 cell lineage stability and prevents transition to a TH17 cell
program in vivo (31). Consistent with the role of RARA in
TH1 and TREG cells, RARA level decreases in both cell types
(fold changes are 0.55 and 0.08 for TH1 and TREG, respectively;
SI Appendix, Table S4) in T1D patients.
Fig. 3 D and F show the case/control-specific regulatory in-

teractions among the key TFs. It highlights the complex and
dynamic interactions among the key TFs during T1D develop-
ment. For most of the key TFs, there are several case and control
interactions. Moreover, although ∼47% of the TFs are shared
between TH1 and TREG cells, the interaction partners of many of
them are different in the two cell types, such as IKZF1, TCF3,
and RARA.

Candidate Noncoding Risk Variants Affecting Enhancers in TH1 and
TREG Cells. A recent study reported that T1D-associated SNPs
are enriched in enhancers active in thymus, T and B cells, and
CD34+ hematopoietic cells (7). However, that study is based on
lymphocyte data from healthy individuals and thus may not fully
capture the set of deregulated enhancers in T1D patients. We
computed the overlap between sets of tissue- or cell-specific
enhancers (including our TH1- and TREG-specific enhancers)
and the set of T1D-associated SNPs, which consists of 119 lead
GWAS SNPs (32–35) and 3,844 additional SNPs that are in the
same linkage disequilibrium blocks with the lead SNPs. Consis-
tent with the previous study, we found enrichment of T1D-
associated SNPs in subsets of CD4+ and CD8+ T cells, espe-
cially memory T cells, using hypergeometric test. However, we
found TREG and TH1 enhancers from this study have much
higher enrichment for T1D-associated SNPs compared with
enhancers identified in all subsets of CD4+ and CD8+ T cells
used here from healthy individuals (Fig. 4A, Left). Since hyper-
geometric test does not take into account linkage disequilibrium,
we used an alternative approach, linkage disequilibrium score
regression (36, 37), to evaluate the statistical significance. We
again observed that TREG and TH1 enhancers from this study
tend to have higher statistical significance of overlapping GWAS
SNPs than enhancers identified in all subsets of CD4+ and CD8+

T cells from healthy individuals (Fig. 4A, Right). We found no
significant difference in overlapping GWAS SNPs between case
and control-specific enhancers. This is not unexpected since
enhancer SNPs may exert their effect on the phenotype via both
loss or gain of function. This result provides additional support
for the direct involvement of TREG and TH1 cells in T1D path-
ogenesis. It also highlights the importance of using primary cells
from patients and control subjects for finding disease-associated
genetic variants. The set of enhancers that overlap with T1D-
associated SNPs is provided in SI Appendix, Table S10.
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As the first step to identify noncoding risk SNPs that alter
enhancer activity, we compared the normalized H3K4me1 and
H3K27ac signals of each enhancer between case and control
groups. We identified enhancers with significantly altered his-
tone mark signals between case and control in TH1 and TREG
cells, respectively (P < 0.1, Wilcoxon rank-sum test, two-sided, SI
Appendix, Table S11). From this set of enhancers, using a com-
bination of multiple orthogonal supporting evidence, including
overlapping with super enhancers, expression quantitative trait
loci (eQTL) and perturbation of TF binding sites (SI Appendix,
Figs. S7 and S8 and Table S12), we selected five enhancers for
each cell type to test their activity using luciferase reporter assay.
We differentiated a Jurkat cell line as the model for TH1 cells
(39) and a Foxp3-expressing Jurkat cell line as the model for
TREG cells (40–42), hereby termed Foxp3+-Jurkat cells (Meth-
ods). Both cell models were further validated by checking the
expression pattern of known signature genes for each cell type
(SI Appendix, Fig. S9).
Of the five candidate TH1 enhancers, three of them showed

significant activity compared with the negative controls (Fig. 4B,
P < 0.01, Wilcoxon rank-sum test, one-sided). The first enhancer
(chr16: 28543200–28545200) has a significant reduction in
H3K4me1 signal (P < 0.01, Wilcoxon rank-sum test, two-sided;
Fig. 4C) in T1D patients compared with healthy individuals. The
predicted target genes of the enhancer are ceroid-lipofuscinosis,
neuronal 3 (CLN3), and linker for activation of T cells (LAT).
Both predictions are supported by published Capture-Hi-C data
in CD4+ T cells (38). CLN3 is important for the normal function
of lysosomes. Impaired lysosome function caused by mitochon-
drial respiration deficiency subverts T-cell differentiation toward
proinflammatory subsets and exacerbates the in vivo inflamma-
tory response (43). LAT is required for T-cell receptor-mediated
signaling both in mature T cells and during T-cell development.

Mice in which tyrosine 136 of LAT is constitutively mutated
accumulate CD4+ T cells that trigger autoimmunity and inflam-
mation (44). This enhancer harbors two T1D-associated SNPs,
rs4788083 and rs231976. Using randomly selected SNPs from 1000
Genomes Project as the background null distribution, we found that
rs231976 perturbs the binding site of STAT1 [empirical P < 10−5,
corrected for multiple testing with Benjamini–Hochberg (BH)
method], a key TF involved in the IL-27–mediated early com-
mitment to the TH1 lineage (45).
The second validated enhancer (chr1:198158800–198160800)

is predicted to target the gene DENN domain containing 1B
(DENND1B) (Fig. 4D). The enhancer–promoter interaction is
also supported by Capture-Hi-C data in CD4+ T cells (38). The
H3K4me1 signal at the enhancer is significantly reduced in T1D
patients compared with healthy individuals (P < 0.01, Wilcoxon
rank-sum test, two-sided). Polymorphisms in DENND1B are
associated with asthma and other immune disorders (46, 47).
The third validated enhancer (chr6: 149531600–149533600)

targets the gene zinc finger CCCH-type containing 12D (ZC3H12D),
and there is significant reduction in H3K4me1 level in T1D patients
compared with healthy individuals (P < 0.01; Fig. 4E). ZC3H12D is
an RNase that destabilizes a set of mRNAs. ZC3H12D−/− mice
exhibit multiorgan inflammation (48) and autoimmune disease
(49). A set of genes, including IL6, IL12, REL, TNFRSF4, and
IL2, which are important for the activation of TH1 cells, are
targets of ZC3H12D (49).
For TREG cells, all five enhancers show significant activity com-

pared with the negative controls (Fig. 5A; P < 0.01, Wilcoxon rank-
sum test). The first enhancer (chr12: 9908600–9911600) targets
CD69, CLEC2B, KLRB1, and EIF2S3L, and harbors three SNPs
(rs10772119, rs10772120, and rs3176792), which are in strong
linkage disequilibrium with the T1D-associated GWAS lead SNP
rs4763879 from ImmunoBase (D′ = 0.99, 0.99, and 0.96,
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respectively). The lead SNP is located in the CD69 gene body
(50) (Fig. 5B). The second enhancer (chr21: 43843200–43845200)
targets UBASH3A and harbors the SNP rs883868, which is in strong
linkage disequilibrium with the T1D-associated GWAS lead
SNP rs11203203. The lead SNP is located in the UBASHA gene
body (50) (Fig. 5C).

Of the five target genes by the first two enhancers, CD69 and
UBASH3A are known T1D-associated genes (19), and CD69 is
well studied for its role in T1D and TREG cells. CD69 is required
for the repressive function of TREG cells (51). Diminished CD69
expression is associated with compromised function of TREG
cells in systemic sclerosis (52). UBASH3A is primarily expressed
in T cells and can negatively regulate T-cell signaling (53).
Knockout of UBASH3A up-regulates inflammatory cytokine
production and increase susceptibility to autoimmunity in a
mouse model of multiple sclerosis (54). Roles of the other three
genes in T1D and/or TREG have not yet been investigated.
Nevertheless, KLRB1 could be of potential interest because it
defines a subset of TREG cells capable of producing proin-
flammatory cytokines (55).
The third enhancer (chr10: 6094400–6096600) harbors the

SNP rs10795763 and targets the gene IL2RA, which is associated
with T1D, rheumatoid arthritis, and multiple sclerosis (19).
Polymorphisms in IL2RA has been reported to negatively regu-
late the function of TREG cells (56). The SNP affects the binding
of MBD2-interacting zinc finger protein (MIZF) (SI Appendix,
Fig. S10). Methyl CpG binding protein 2 (MBD2) promotes
demethylation of FOXP3 promoter and TREG function (57). The
fourth enhancer (chr14: 68757800–68760200) harbors the SNP
rs35763290 and targets the gene Actinin Alpha 1 (ACTN1).
ACTN1 is an actin-binding protein and involved in the formation
of immunological synapse, which is critical for T-cell activation,
migration, and effector function at the interface between a T cell
and its cognate antigen-presenting cell or target cell (58). The
SNP affects the binding of nuclear respiratory factor 1 (NRF1).
The fifth enhancer (chr1: 200830000–200832000) targets the
PHLDA3 gene but does not harbor any SNP that disrupts any
known TF binding motif. PHLDA3 is a p53-regulated repressor
of Akt signaling, inhibition of which can suppress the activation
and proliferation of TREG and results in a significant reduction of
TREG cells in mouse (59).

Two Enhancer SNPs Affecting RARA and YY1 Binding at TREG Enhancers
Regulating Immune Response Genes. There are 25 SNPs in the five
validated TREG enhancers described in the previous section. They
are either a GWAS lead SNPs documented in the ImmunoBase or
SNPs that are in linkage disequilibrium with a GWAS lead SNPs.
We genotyped all 25 SNPs in the 11 study subjects using Sanger
sequencing (SI Appendix, Table S13). Of these 25 SNPs, 9 have
case-specific genotypes (the genotypes that are exclusively observed
in T1D patients but not in healthy control), suggesting they are
potential candidate risk SNPs. Among them, four SNPs
(rs10772119, rs10772120, rs3176792, and rs883868), which are lo-
cated in two enhancers, are associated with significant changes in
histone modification and expression of the target genes of the host
enhancer (Wilcoxon rank-sum test, P < 0.1; SI Appendix, Fig. S11).
We therefore focused on these two enhancers and the four SNPs
to further investigate their role in transcriptional regulation in
TREG cells.
To test whether the SNPs can alter enhancer activity, we first

mutated all four SNPs by site-directed mutagenesis and per-
formed luciferase reporter assay in Foxp3+-Jurkat cells. We
found that all four mutations cause significant change in the
enhancer activity (P < 0.01, two-sided Student’s t test; Fig. 6A).
To investigate the role of the risk SNPs in target gene ex-

pression, we used CRISPR-Cas9–based genome editing to en-
gineer Foxp3+-Jurkat cell lines with homozygous alleles at the
SNPs (Fig. 6B). Using these cell lines, we found that cells with a
homozygous T allele (risk allele) at rs10772119 have significantly
reduced expression levels of CD69 and CLEC2B. Likewise, cells
with a homozygous allele C (risk allele) at rs883868 have signifi-
cantly reduced UBASH3A expression (Fig. 6C). Taken together,
these results are consistent with the association between the
genotype and gene expressions we found in our cohort.
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To further establish the enhancer–target gene relationship,
we tested the predicted enhancer–promoter interactions in
Foxp3+-Jurkat cells using 3C coupled with quantitative PCR
(3C-qPCR). As a negative control for the enhancer–promoter
interaction, we used the human embryonic kidney 293FT (HEK
293FT) cell line. Compared with TREG cells, 293FT has very low
expression of CD69 and UBASH3A genes, but the mRNA levels
of CLEC2B in both cell types are comparable. Compared with
negative control regions, the enhancer at CD69 locus signifi-
cantly interacts with the promoters of CD69 and CLEC2B (P <
0.01, one-sided t test). The enhancer at UBASH3A locus inter-
acts with the promoter of UBASH3A (Fig. 7A). Consistent with
mRNA expression, we only found significant but weaker inter-
action between the enhancer with the CLEC2B promoter in
HEK 293FT cells.
To identify TFs whose binding is affected by the two risk

SNPs, we performed TF motif analysis using a collection of
1,772 motifs from the CIS-BP database (60). We found that
rs10772119 exhibits allelic-specific binding by RARA (Fig. 5B)
and rs883868 exhibits allelic-specific binding by YY1 (Fig. 5C).
For both TFs, we performed ChIP-qPCR to confirm the bind-
ing of the TF to the predicted binding sites (Fig. 7B). Fur-
thermore, ChIP-qPCR using cells with homozygous alleles at
the SNP showed that the sites bearing the risk alleles has sig-
nificantly lower binding affinity, confirming the result of our
computational analysis.
To further test the role of the RARA binding site at

rs10772119 in target gene expression, we treated Foxp3+-Jurkat
cells with ATRA and measured the expression of the target
genes using RT-qPCR. We found that only in cells with homo-
zygous C alleles, the target genes are significantly induced by
ATRA treatment (Fig. 7C), providing additional support to the
role of rs10772119 in RARA binding and target gene expression.
YY1 has been reported to mediate enhancer–promoter in-

teractions in a number of mammalian cell types (61). We hy-
pothesized that reduced YY1 binding to the enhancer harboring
rs883868 can result in reduced enhancer–promoter interaction.
We therefore performed 3C-qPCR using Fox3+-Jurkat cells
engineered to have homozygous T and C alleles at the SNP.
Consistent with our hypothesis, we found significantly reduced
enhancer–promoter interaction in cells with homozygous C allele
at the SNP rs883868 (Fig. 7A).
In summary, the series of experiments above uncovered four

candidate risk SNPs (rs10772119, rs10772120, rs3176792, and

rs883868) that are in linkage disequilibrium with known T1D
GWAS SNPs and alter enhancer activity and expression of im-
mune response genes (Figs. 4–7). Among them, rs10772119 and
rs883868 disrupt the binding of RARA and YY1, respectively.
Moreover, allelic-specific binding by YY1 results in the allelic-
specific long-range enhancer–promoter interaction involving
UBASH3A (Fig. 7).

Discussion
GWASs have revealed 59 high-confidence genomic loci associ-
ated with T1D, which harbor 119 lead SNPs and 3,844 additional
SNPs that are in the same linkage disequilibrium blocks with the
lead SNPs. Among those SNPs, functional interpretation of
noncoding SNPs remains particularly challenging. Toward this
goal, we conducted an epigenomics-based fine map to identify
candidate risk noncoding SNPs. We mapped the genome-wide
distribution of two enhancer-associated histone modifications
(H3K4me1 and H3K27ac) in TH1 and TREG cells from five
healthy and six T1D patient subjects using a low-input ChIP-
seq protocol.
We identified four new risk SNPs for T1D and two of them

exhibit allele-specific binding by two TFs, RARA and YY1.
ATRA induces the normal development of pancreas and affects
the function of beta cells. RA signaling has a strong association
with the onset of T1D (62). T1D patients (63, 64) are known to
have vitamin A deficiency. Dietary RA reduces diabetes in
diabetic-prone BB/Wor rats (65, 66). ATRA treatment signifi-
cantly reduces diabetes incidence and delays the onset of di-
abetes transferred from NOD mice to NOD/SCID recipient
mice. In summary, these findings suggest a protective role of
ATRA against T1D. This protective role is due to induced TREG
cell-dependent immune tolerance by suppressing both CD4+ and
CD8+ T effector cells, while promoting TREG cell expansion
(67). Supporting this mechanism, ATRA cannot exert the pro-
tective role in mice with abrogated TREG cells (68).
Here, we found that rs10772119 can disrupt the binding of

RARA to the enhancer located at chr12: 9908600–9911600.
Subjects with this risk SNP have lower expression of several
target genes, including CD69, CELE2B, KLRB1, and EIF2S3L.
CD69 is an early marker of T-cell activation. ATRA can increase
the expression of CD69 in a dose-dependent fashion (69), and
this effect is aborted if RARA was knockout (70). Consistent
with this finding, we found that RA can induce the expression of
CD69 and CLEC2B in TREG cell lines engineered to have a C
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allele at rs10772119 (Fig. 7C). Taken together, our finding pro-
vides a mechanistic explanation for which rs10772119 promotes
the onset of T1D via ATRA signaling in TREG.
YY1 is a zinc finger protein that functions either as a tran-

scriptional activator or repressor. Research in rats shows that
YY1 may be associated with decreased incidence of T1D (71, 72).
We found that the risk SNP rs883868 can disrupt the binding of
YY1 in TREG cells, which leads to lower expression of the target
gene UBASH3A. In support of the regulation of UBASH3A by
YY1, YY1 knockout in pro-B cells can decrease the expression of
UBASH3A (73). YY1 is one of a few proteins that has a reported
role in mediating long-range chromatin interactions. Consistent
with its role in chromatin looping, here we showed that a single
SNP can disrupt YY1 binding and consequently leads to the loss of
enhancer–promoter looping mediated by YY1. Our finding adds to
increasing reports of genetic variants that can disrupt three-
dimensional genome organization and gene expression (74–76).
None of the four risk SNPs identified in this study are lead

GWAS SNPs. Instead, they are in linkage disequilibrium with
lead SNPs. This result highlights the challenge of finding risk
variants in the presence of linkage disequilibrium. Two of the
four enhancer SNPs, rs10772120 and rs3176792, do not appear
to overlap with any known TF binding motif, although mutating
the SNPs showed an effect on enhancer activity and target gene

expression. Additional studies are needed to uncover the mecha-
nism by which the two SNPs affect gene expression in TREG cells.

Methods
Study Subjects. Eleven subjects were recruited at The University of Iowa
Children’s Hospital. Recent-onset T1D subjects (within 1 y from the first day
of diagnosis; n = 6) were recruited through the Division of Pediatric Endo-
crinology and Diabetes at The University of Iowa Children’s Hospital. Di-
abetes was defined according to World Health Organization criteria and
included blood glucose levels of 200 mg/dL with symptoms confirmed by a
physician. Healthy subjects (n = 5) were recruited by posting flyers at The
University of Iowa Children’s Hospital. The control criteria comprised fasting
blood glucose of 100 mg/dL, no familial history of any autoimmune disorder,
and lack of islet autoantibodies. All study subjects were free of known in-
fection at the time of sample collection. For T1D subjects, no use of corti-
costeroids or glucocorticoids within the prior 6 mo was required. For healthy
control subjects, no medications (especially steroids) and nonrelatives of T1D
patients were required. At the time of each visit, the following clinical
measurements were taken: HbA1c, autoantibodies, weight, and body mass
index (subject information is shown in SI Appendix, Tables S1 and S2). The
research protocol was approved by the IRB of the University of Iowa, and
participants and/or their parents (guardians) provided written informed
consent.

Purification of TREG and TH1 Cells from Peripheral Blood. Fifty milliliters of
peripheral blood were collected from each subject and processed within 0.5 h
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Fig. 7. Two risk SNPs disrupt the binding of RARA and YY1 to TREG enhancers. (A) Chromatin interaction between SNP-bearing enhancers and promoters of
predicted target genes. 3C-qPCR experiment was performed for each enhancer–promoter pair in Foxp3+-Jurkat cells. 293FT cells were used as negative
control. For each pair of enhancer and promoter, six primers were designed, including two primers for the promoter and enhancer and four primers sur-
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mozygous “T” (TREG-T) or “C” (TREG-C) allele at rs883868 to examine the effect of the SNP on enhancer–promoter interaction. Data shown are means ± SEM of
two replicates. All P values are calculated with one-sided t test. (B) Change in TF binding at SNPs with homozygous alleles created by CRISPR-based genome
editing of Foxp3+-Jurkat cells. Shown are normalized ChIP-qPCR value expressed as percent of input. Negative control site, Genomic region without any
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of collection. Blood was diluted with 1× DPBS (Gibco) and subjected to Ficoll-
Hypaque centrifugation at 700 × g at 20 °C for 20 min in a swinging-bucket
rotor without brake. The PBMC layer was transferred to a new 50-mL conical
tube and cells were washed twice with 1× staining buffer 1 (1× DPBS plus
1% FBS). Cells were resuspended with 1× staining buffer 1 to 1 × 107 cells per
50 μL. After adding 5 μL of CD4+ T cell biotin–antibody mixture per 107 cells,
cells were mixed and incubated for 5 min at 4 °C. Thirty-five microliters of 1×
staining buffer per 107 cells and 10 μL of CD4+ T Cell MicroBead mixture per
107 cells were added and mixed. After incubation for 10 min at 4 °C, cells
were diluted to 4 mL and applied to autoMACS Separator for negative se-
lection of CD4+ cells using the “Deplete” program. In total, 0.2 × 106 cells
were taken out as unstained cells, and the remaining cells were pelleted by
centrifugation at 300 × g, 20 °C for 7 min. Supernatant was discarded and
cells were resuspended in 1× staining buffer 1 to 2 × 107 cells per mL. Cells
were incubated with an antibody mixture (anti-CD3, anti-CD4, anti-CD25,
anti-CD45RO, anti-CD127, anti-CCR6, anti-CCR7, anti-CXCR3) [1:400
(vol/vol)] (see list of antibodies in SI Appendix, Table S14) at 20 °C in the dark for
30 min and washed with 1× staining buffer twice. Cells were resuspended in
1× staining buffer 1 to a final concentration of 1 × 107 cells per mL and
sorted on an Aria flow cytometer (BD Biosciences) to obtain two cell pop-
ulations: effector memory TREG cells (CD3+CD4+CD25+CD127dim/−CD45RO+)
and effector memory TH1 cells (CD3+CD4+CXCR3+CCR6−CCR7−CD45RO+).
Cells were collected in 0.5 mL of 1× staining buffer 2 [1× DPBS plus 1%
human AB serum (Sigma)] within 1.5-mL siliconized low-retention micro-
centrifuge tubes (Fisher) coated with human AB serum before use. The pu-
rities of sorted cells were over 99% (SI Appendix, Fig. S1). Sorted cells were
used for ChIP-seq and RNA-seq.

Low-Input ChIP-Seq. Purified cells were crosslinked with 1% formaldehyde
(Thermo Scientific) in 1× fixing buffer for 5 min at room temperature
according to the vendor’s manual (Covaris). Cross-linked cells were then
resuspended in 1× shearing buffer and sonicated using Covaris E220 for
780 s using the following settings: duty factor, 5%; peak incident power,
105; cycles per burst, 200. Five percent of sheared chromatin was used as the
input, and the remaining chromatin was used for immunoprecipitation (IP).
IP was performed using the ChIP-IT high-sensitivity kit (Active Motif). IP and
input samples were treated with RNase A followed by proteinase K treat-
ment. Cross-linking was reversed by incubation overnight at 65 °C. Reverse
cross-linked DNA was purified using a MinElute PCR purification kit (Qiagen).
All ChIPed DNA and 1 ng of input DNA were used for sequencing library
preparation using the ThruPLEX-FD Prep Kit (Rubicon Genomics). Ten to 12
PCR cycles were used for IP DNA and 9 PCR cycles were used for input DNA at
step 5 of the library preparation protocol. Libraries were sequenced on an

Illumina HiSeq 2500 sequencer in single-end mode with a read length
of 50 nt.

CRISPR/Cas9-Mediated Genome Editing. Single-guide RNAs targeting the SNPs
(rs10772119 and rs883868) were designed using CRISPOR (crispor.tefor.net)
and cloned into the CRISPR vector pX459 (Addgene plasmid no. 448139). The
91-nt single-stranded DNA oligonucleotide (ssODN) repair templates were
designed with homology arms centered around the SNPs (SI Appendix, Table
S15). CRISPR/Cas9-mediated genome editing of Foxp3+-Jurkat cells was
performed as described (77) with some modifications. Briefly, plasmids and
ssODN templates were cotransfected to Foxp3+-Jurkat cells using TransIT-LT1
(Mirus Bio). Twenty-four hours posttransfection, cells were selected by pu-
romycin for 72 h. Dead cells were removed by centrifugation at 300 × g, at
room temperature for 5 min and discarding supernatant. Cell concentration
and viability were measured using Countess II (Life Technologies). Live cells
were resuspended at a concentration of five cells per mL. One hundred
microliters of cell suspension was transferred to a 96-well plate and cultured
for 2–3 wk for clonal cell line isolation. Genomic DNA was isolated using
Quick-DNA 96 kit (ZYMO) and used for screening for desired mutations us-
ing allele-specific PCR and fluorescence melting curves as described (78).
Genomic DNA of positive clones were further confirmed by Sanger
sequencing.

Single-Nucleotide Variants Associated with T1D. The list of T1D-associated
SNPs was obtained from the ImmunoBase. The database reports 59 geno-
mic loci containing 119 lead SNPs that are associated with T1D from GWAS
studies. We identified linkage disequilibrium blocks using the Haploview
software (79) and the genotyping data from 1000 Genomes project (80). We
used the default parameter setting except for blockout, which was set to
“ALL.” All SNPs that fall within the same linkage disequilibrium block as the
T1D-associated GWAS lead SNP were also considered as candidate risk SNPs.

Code Availability. All published software used for data processing are open
source. Additional custom Perl, Python, R, and Unix shell scripts are developed
for data processing and analysis. All custom scripts are available upon request.

Data Availability. The data reported in this article have been deposited in the
Gene Expression Omnibus database (accession no. GSE112342).
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