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Surgical cameras are prevalent in modern operating theatres and are often used as a surrogate for direct vision. Visualisation techniques
(e.g. image fusion) made possible by tracking the camera require accurate hand–eye calibration between the camera and the tracking
system. The authors introduce the concept of ‘guided hand–eye calibration’, where calibration measurements are facilitated by a target
registration error (TRE) model. They formulate hand–eye calibration as a registration problem between homologous point–line pairs. For
each measurement, the position of a monochromatic ball-tip stylus (a point) and its projection onto the image (a line) is recorded, and the
TRE of the resulting calibration is predicted using a TRE model. The TRE model is then used to guide the placement of the calibration
tool, so that the subsequent measurement minimises the predicted TRE. Assessing TRE after each measurement produces accurate
calibration using a minimal number of measurements. As a proof of principle, they evaluated guided calibration using a webcam and an
endoscopic camera. Their endoscopic camera results suggest that millimetre TRE is achievable when at least 15 measurements are
acquired with the tracker sensor ∼80 cm away on the laparoscope handle for a target ∼20 cm away from the camera.
1. Introduction: Surgical cameras such as laparoscopes, endo-
scopes, and pass-through head-mounted displays are prevalent in
modern operating theatres and are often used as a surrogate for
direct vision. The video images obtained from such cameras can
be enhanced to show structures beneath the anatomical surfaces
in the camera view by overlaying medical images such as computed
tomography, magnetic resonance imaging, or ultrasound onto the
images in an augmented reality environment. One way to imple-
ment the augmented reality environment is to track the camera
using a three-dimensional (3D) tracking system; to perform the
image overlay, the geometric relationship between the optical axis
of the camera and the tracking target must be accurately known.
Determining the geometric relationship between the optical axis
of the camera and the tracking target is known as the hand–eye
calibration problem. Once calibrated, advanced augmented reality
system for computer-assisted interventions such as liver surgery
[1, 2] and nephrectomy [3] can be implemented to assist in their sur-
gical delivery.
Hand–eye calibration for surgical cameras remains an active

research topic [4], with particular requirements for accuracy, com-
putational complexity, data selection [5], and in situ validation.
Most approaches are similar to those described in the robotics litera-
ture [6], relying on imaging salient features of a stationary object
from many different poses, then solving for rotation and translation
separately [7], jointly [8], or iteratively [9, 10]. From a registration
point of view [11], these approaches suffer from two drawbacks:
namely the lack of an in situ accuracy assessment, as well as
a well-defined data acquisition protocol to achieve accurate
calibration. To address these issues, we introduce a novel concept
of ‘guided calibration’, in which a registration error prediction
model is incorporated to interactively guide the placement of a cali-
bration tool with the registration error assessed for each successive
measurement.
For surgical interventions employing an external tracking system,

the hand–eye calibration between the optical axis of the camera and
the attached dynamic reference frame (DRF) can be formulated as a
registration problem between homologous point–line pairs, where
each point is the measured location of a tracked monochromatic
ball and each corresponding line is the line of projection of the
centre of the ball onto the image plane of the camera. Each point
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is measured in the coordinate frame of the DRF attached to the
camera and each line is defined in the canonical coordinate frame
of the camera, where the origin of the frame is the centre of pro-
jection and the z-axis of the frame is the optical axis of the
camera. The mapping between the coordinate frame of the DRF
and the canonical coordinate frame of the camera can be found
by registering the points to their corresponding lines. Efficient
[12] and globally optimal [13] algorithms exist that solve the
point–line registration problem.

Framing calibration as a registration problem makes it possible to
use established models for predicting target registration error (TRE)
to guide the collection of calibration data. TRE is defined as the dis-
tance between a target point r (not used to compute the registration
transformation) and its corresponding point after the registration
transformation has been applied [14]. TRE is dependent on the
error in measuring the registration points. This error, originally
named fiducial localisation error (FLE) for the point–point registra-
tion problem [14], is defined as the distance between the measured
point and the unknown true location of the point before the registra-
tion transformation is computed. We use a point–line TRE model
that was previously described for predicting TRE magnitude in
ultrasound calibration [12, 15]. By incorporating such a TRE pre-
diction model, the resulting TRE of the calibration can be assessed
as soon as a new measurement is available. Furthermore, by search-
ing the viewing frustum for an optimal fiducial placement and
re-assessing the calibration using the TRE model, fiducial place-
ment can be guided so as to minimise the predicted TRE. This
guided calibration paradigm was tested on a surgical endoscope
and millimetre accuracy at the centre of the camera frustum was
achieved when the tracking DRF was attached to the handle of
the laparoscope.

We previously described how hand–eye calibration could be
solved as a point–line registration problem [16] and we provided
evidence that the calibration obtained via registration was as
accurate or more accurate than several other existing calibration
methods. In our previous work, we used a laparoscopic camera
with a DRF attached to the tip of the laparoscope. The new con-
tributions of this Letter are a method for guiding the collection
of calibration data using a TRE estimation model and further
evaluation of registration-based hand–eye calibration (both guided
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Fig. 2 Apparatus setup for performing a calibration measurement. The
tracking system measures the poses trackerTDtool, i and

trackerTDcam, i of the
DRFs attached to the calibration tool and laparoscope handle, respectively.
The tracked position of the monochromatic ball-tip of the calibration tool in
the laparoscope DRF coordinate frame, DcamBi, is obtained using (1)

Fig. 3 Automatic segmentation pipeline for detecting the centre of the
ball-tip calibration tool
a Input image
b Undistorted image (note the bottom-left corner as compared with (a)
c Colour thresholding
d Circle detection using Hough transform. The centre of the ith circle having
coordinates imgpi = (xi, yi) in the image coordinate frame is used to
and unguided) via simulation with a large number of actual calibra-
tion data using a tracked laparoscopic camera with the DRF
attached to the handle of the laparoscope.

2. Methods: As a proof of principle, we tested our calibration
method using a C920 webcam (Logitech, Newark, CA, USA) and
the single channel of a stereo laparoscope employed by the
da Vinci® S surgical system (Intuitive Surgical, Inc., Sunnyvale,
CA, USA). We used a webcam as an example of a camera with
very different optics compared with the endoscopic camera; such
cameras might be used in a stereo-vision application. Similar to
many other surgical cameras, the da Vinci® surgical laparoscope
is a fixed focus camera. The webcam was set to fixed focus mode
using its supplied control software. A passive Spectra optical tracking
system (Northern Digital (NDI), Waterloo, ON, Canada) was used as
the spatial measuring system. An optical DRF was rigidly attached to
the top of the webcam (Fig. 1a) and to the handle of the laparoscope
(Fig. 1b), where the distance between the DRF and the surgical
camera is ∼80 cm. The intrinsic parameters of the cameras, namely
the camera matrix (A) and the lens distortion model (K), were deter-
mined using Zhang’s method [17] as implemented in the MATLAB
Computer Vision System Toolbox (The MathWorks, MA, USA).
All images were undistorted by K prior to any further image process-
ing (Fig. 3b).

The hand–eye calibration was formulated as a registration
between homologous point–line pairs [12]. An example of per-
forming a calibration measurement under laboratory conditions is
shown in Fig. 2. A calibrated ball-tip stylus (Fig. 1b) was used
as the calibration tool. The centre of the ball-tip can be calibrated
accurately with respect to its DRF using a pivot calibration [18],
facilitated by pivoting the ball-tip against an inverted, stationary,
cone divot. For the ith measurement, the 3D location of the
ball-tip (DcamBi) in the local coordinate system of the camera
DRF and the corresponding image, were acquired as

DcamBi

1

[ ]
= (trackerTDcam, i)

−1trackerTDtool, i
Dtoolt
1

[ ]
(1)

where trackerTDcam, i is the measured pose of the camera DRF
in tracking system coordinates, trackerTDtool, i is the measured pose
of the calibration tool DRF in tracking system coordinates, and
Dtoolt is the calibrated location of the ball-tip centre in tool
DRF coordinates. In (1), we assume that the poses returned by
the tracking system are expressed as 4× 4 homogeneous matrices.
Fig. 1 Experimental setup
a Webcam with an optical DRF rigidly attached
b Laparoscope camera (da Vinci S surgical system) with an optical DRF
rigidly attached
c Ball-tip stylus as the calibration tool

compute the direction CNi of line of projection in the canonical camera
coordinate frame
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The ball-tip is projected as a circular pattern on the image, the
centre of which can be segmented automatically by first applying
a colour thresholding technique followed by Hough transform
circle detection (Fig. 3) [16].

A ray emanating from the centre of the camera toward
the segmented centre of projection, after hand–eye calibration,
should intersect with Bi. For each segmented centre of the circle
imgpi = (xi, yi) a line orientation CNi can be constructed using the
camera matrix A

CNi = A−1
xi
yi
1

⎡
⎣

⎤
⎦ where A =

fx 0 cx
0 fy cy
0 0 1

⎡
⎣

⎤
⎦ (2)

and (fx, fy) and (cx, cy) are the focal and principal points of the
pinhole camera, respectively. The line orientation CNi is defined
in the canonical camera coordinate frame, where the origin of the
frame is the centre of projection and the z-axis of the frame is the
optical axis of the camera. For each calibration, data acquisitions
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Fig. 4 Measurements transformed using T0 into the canonical camera
coordinate frame
a–b Calibration fiducial measurements in canonical camera coordinates
c–d Canonical frustums partitioned into 27 zones in 3 ranges (near, middle,
and far)
of a homologous pair (DcamBi,
CNi) are recorded. The hand–eye

calibration solution is given by the point–line registration that
aligns the camera DRF coordinate frame to the canonical camera
coordinate frame. Since all rays share a common origin, this
registration problem is identical to the perspective-n-point
problem commonly encountered in computer vision, for which
accurate solutions exist [12].
A TRE estimation model for point–line registration with hetero-

scedastic FLE was previously introduced [12, 15]. It can be encap-
sulated as

TRE = line TRE(DcamB3×n,
CN3×n,

DcamS3×3×n,
Cr3×1) (3)

where the scalar TRE for a target located at Cr in canonical camera
coordinates can be estimated based on n calibration measurements
consisting of the 3D location of the point fiducials DcamB, their
FLE covariances DcamS, and line orientations CN . Using (3), the
predicted TRE of the calibration can be assessed as soon as a
new measurement is acquired. By optimising fiducial location
DcamBn+1 (and consequently CNi+1) for the subsequent measure-
ment, one can guide the acquisition of calibration measurements,
so that the predicted TRE for a specified target location is mini-
mised. For guided calibration, we are interested in changes in
the predicted TRE values rather than the actual TRE values them-
selves; therefore, the FLE covariances DcamS can be specified
with an arbitrary (positive) constant scale factor. Lacking a good
model of FLE noise, we assume identical isotropic FLE noise
and set the FLE covariances to be equal to the 3× 3 identity matrix.

2.1. Experimental validation: To simulate different heuristics for
data acquisition, we acquired a total of N0 images in batch, where
we measured the ball-tip fiducial at locations throughout the
viewing frustum of the camera. For the webcam, we collected
N0 = 324 images and for the endoscopic camera we collected
N0 = 331 images. As a gold standard calibration is difficult to estab-
lish, we constructed a bronze standard registration T0 computed using
an iterative closest point–point-to-line registration algorithm [12]
and all N0 calibration measurements. The root-mean-squared
(RMS) distance between registered 3D points and lines was
2.15 mm for the webcam and 0.82 mm for the endoscopic camera.
The measurements transformed using T0 into the canonical camera
coordinate frame are shown in Figs. 4a–b.
We performed three simulation experiments with the collected

measurements. The first experiment simulated unguided calibration
using measurements sampled approximately uniformly within the
frustum. The canonical camera frustum was divided into 27 zones
(Figs. 4c–d ), and the zones were transformed into the camera
DRF frame using T−1

0 . For each simulation trial, six measurements
were randomly chosen from the near range of zones to initialise the
calibration. An additional 19 measurements were added one at a
time, each time computing a new registration. Measurements
were added by selecting one random point from each of the
18 zones in the middle and far ranges (for a total of 24 measure-
ments). A 25th independent measurement was chosen without
duplication from a random zone in the middle and far ranges.
The second experiment used guided calibration to select the

measurements. Target points were placed every 50 mm throughout
the canonical frustum of the webcam and every 10 mm for the
endoscopic camera. For each simulation trial, six measurements
were randomly chosen from the near range of zones to initialise
the calibration. An additional 19 measurements were added one at
a time, each time computing a new registration. Before adding
measurement (n+ 1), we used the registration Tn computed using
nmeasurements to transform the nmeasurements into the canonical
camera coordinate frame; TRE magnitude was predicted at all target
locations in the canonical frustum using (3) with the transformed
measurements and their corresponding lines of projection to find
Healthcare Technology Letters, 2017, Vol. 4, Iss. 5, pp. 157–162
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the target location r(n, max) having the greatest predicted TRE. We
then transformed the remaining (N0 − n) calibration measurements
into the canonical camera frame using Tn. From the (N0 − n) mea-
surements, we chose that which minimised the predicted TRE
[computed using (3)] at r(n, max).

The third experiment simulated unguided calibration poorly per-
formed. It was performed similarly to the first experiment, except
that measurements n = 7, . . . , 16 were randomly chosen without
duplication from the central-most zone of the middle range, and
measurements n = 17, . . . , 25 were randomly chosen without
duplication from the central-most zone of the far range.

A total of 1000 trials were performed for each simulation in the
three experiments. TRE magnitude was computed at the centre of
frustum, and the 5th, 25th, 50th, 75th, and 95th percentiles com-
puted. TRE was computed every 5 mm in the xz-plane of the canon-
ical frustum for each value of n measurements in each trial. RMS
TRE over all of the trials was computed at each target location.
3. Results: The sampling schemes for each experiment yielded
different spatial distributions of calibration measurements (Fig. 5).
Using guided calibration tended to produce spatial distributions
of measurements clustered near the left and right edges of the
near and far planes of the frustum (Figs. 5c–d ).

Fig. 6 shows statistics of the TREmagnitude computed at the cen-
tre of the canonical frustum. For the endoscopic camera, unguided
sampling from the central zones produced the greatest TRE values
and the widest variation in the 5th–95th percentiles of TRE magni-
tude. Uniform sampling produced a smaller median TRE at the
frustum centre (0.45 mm at n= 25) compared with guided calibra-
tion (0.75 mm at n= 25). Guided calibration produced the smallest
range of the 5th–95th percentiles of TRE magnitude.

For the webcam, unguided sampling from the central zones
produced the greatest TRE values and the widest variation in the
5th–95th percentiles of TRE magnitude. Guided calibration pro-
duced a smaller median TRE at the frustum centre (0.45 mm at
n= 25) compared with uniform sampling (0.77 mm at n= 25).
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Fig. 5 Examples of calibration measurements produced in the three valid-
ation experiments
a–b Unguided uniform sampling
c–d Guided calibration
e–f Unguided uniform sampling from the central zones of the middle and far
ranges

Fig. 6 TRE magnitude at the canonical frustum centre as a function of the
number of calibration measurements
a–b Unguided uniform sampling
c–d Guided calibration
e–f Unguided uniform sampling from the central zones of the middle and far
ranges. Note the change in scale of the vertical axis in (f)
Guided calibration produced the smallest range of the 5th–95th
percentiles of TRE magnitude.

Figs. 7 and 8 show contour plots of RMS TRE computed in the
plane y= 0 of the canonical frustum, where the difference in RMS
TRE is 0.05 mm between each pair of adjacent contour lines.

For the endoscopic camera, guided calibration produced
greater RMS TRE values compared with uniform sampling, but
the variation in RMS TRE over the frustum plane was smaller
(i.e. the gradient of RMS TRE was smaller for guided calibration).
Unguided calibration using only the central region of the frustum
produced the highest RMS TRE values.

For the webcam, guided calibration produced the smallest RMS
TRE values and the smallest gradient of RMS TRE values.
4. Discussion/conclusion:We present a novel paradigm of ‘guided
hand–eye calibration’, where a TRE prediction model is used
to guide fiducial placement between successive measurements
and the predicted TRE of the calibration is assessed for each
new measurement. In this manner, accurate calibration can be
achieved using between 15 and 20 measurements, compared
with the many tens or hundreds of images cited in the robotics
literature [6]. The use of a monochromatic ball as a calibration
fiducial allows for reliable automatic segmentation. The image
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processing pipeline is automatic, and the TRE-based guidance
has the potential to eliminate user variability in calibration
data acquisition. The potential of reduced computation, user
dependence, as well as real-time accuracy assessment may be
advantages for clinical deployment.

Our image processing pipeline is automatic, but we assume
that certain conditions hold during image acquisition. These
assumptions include that the entire calibration ball is present
in the image that there is high contrast between the ball and the
background, and there is no motion blur. Under these conditions,
we expect that the accuracy of circle centre localisation using the
circle Hough transform to be ∼1 pixel [19]. Our method assumes
that the intrinsic parameters of the camera (the camera matrix
and lens distortion model) can be reliably determined via camera
calibration. It also assumes that the distortion model adequately
describes the distortion of the camera optics.

Our heuristic for guided calibration was to add the next cali-
bration measurement that would minimise the predicted TRE at
the target location in the frustum with the current greatest predicted
TRE, but any other heuristic could be used. For example, one might
choose to minimise TRE at a specific target location or minimise the
average TRE over a specific region of the frustum. The simulation
results suggested that the isocontours of TRE for point–line regis-
tration are approximately elliptic with the minimum value occurring
near the centroid of the measurements, which is consistent
with the results for paired-point registration [14, 20]. Under
TRE-guided acquisition (Fig. 5b), the fiducial configuration
approximates the maximal extent of the viewing frustum, which
can be explained by the elliptic distribution of TRE. To minimise
the TRE for a moving target between measurements, the guided
fiducial location will tend to coincide with the periphery of the
viewing frustum because we must shift the centroid of the measure-
ments closer to the moving target. If a different heuristic is used, the
Healthcare Technology Letters, 2017, Vol. 4, Iss. 5, pp. 157–162
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Fig. 7 RMS TRE in the plane y= 0 of the canonical frustum of the endo-
scopic camera for n= 17 (left column) and n= 25 (right column) calibration
measurements
a–b Unguided uniform sampling
c–d Guided calibration
e–f Unguided uniform sampling from the central zones of the middle and far
ranges. The difference in RMS TRE is 0.05 mm between each pair of
adjacent contour lines. White text indicates the minimum value of TRE in
the plane

Fig. 8 RMS TRE in the plane y= 0 of the canonical frustum of the webcam
for n= 17 (left column) and n= 25 (right column) calibration measurements
a–b Unguided uniform sampling
c–d Guided calibration
e–f Unguided uniform sampling from the central zones of the middle and far
ranges. The difference in RMS TRE is 0.05 mm between each pair of
adjacent contour lines. White text indicates the minimum value of TRE in
the plane
guided fiducial configuration will be different. Possible future
research would be to explore the relationship between TRE mini-
mising heuristics and fiducial configuration, which may further
improve calibration performance.
Guided calibration produced calibrations that converged to

a slightly different transformation than the bronze standard
when using the endoscopic camera. This may have been caused
by the large amount of barrel distortion in the endoscopic camera.
Any errors in the intrinsic calibration of the lens distortion model
would produce errors in the segmented image location of the ball
fiducial; these errors would increase in magnitude near the edges
of the images. Guided calibration tends to choose calibration mea-
surements from the periphery of the frustum which correspond to
image locations near the image edge. When using the webcam,
which had very little barrel distortion, guided calibration produced
calibrations that converged near to the bronze standard.
Unguided uniform sampling can produce usable calibrations

(Figs. 6–8a–b), whereas sampling only from the central regions
of the frustum produces poor calibrations (Figs. 6–8e–f ).
Uniform sampling produced more consistent calibrations than
guided calibration when fewer than 12 measurements were used
(as shown by the high 95th percentile TRE values for guided
calibration in Figs. 6c–d ). This can be explained by the fact that
guided calibration tends to add new measurements at the extreme
limits of the frustum which can cause abrupt changes in the esti-
mated registration because of large changes in the spatial dis-
tribution of the measurements. Our implementation of uniform
sampling methodically added new measurements working from
the middle to far ranges resulting in a gradual change in the
spatial distribution of the measurements.
Healthcare Technology Letters, 2017, Vol. 4, Iss. 5, pp. 157–162
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Guided calibration in practise would be performed slightly
differently than we described in Section 2.1. We collected data in
batch in order to perform statistical analysis of the TRE behaviour
and to provide a standardised dataset for both the unguided and
guided calibration. Since we collected all of our calibration data
in a batch fashion, we could not actually guide the collection of
the next calibration measurement, and instead, we had to select
the next calibration measurement from those we had collected.
In practise, we would sample the canonical frustum, choose the
sample that would minimise some function of TRE, and apply
the inverse of the current registration estimate to the samples to
guide the collection of the next calibration measurement in the
DRF frame of the camera. Note that we do not need to guide the
6D pose of the calibration fiducial; the choice of a ball fiducial
means that only the position of the calibration fiducial must be
guided. Our simulations included the effect of using the (possibly
inaccurate) current registration estimate when choosing the next
calibration measurement.

Implementing an effective and accurate hand–eye calibration
system for intraoperative use is a possible future direction.
From our previous work, we observe that TRE decreases mono-
tonically, reaching a plateau after 12–15 measurements are
acquired [16]. From this work, we observed that guided
calibration tends to suggest fiducial location close to the periphery
of the viewing frustum. To achieve accurate intraoperative
hand–eye calibration using minimal measurements, one possible
measuring heuristic would be to collect 4–5 measurements at
each of the near, mid, and far plane of the viewing frustum,
while keeping the fiducial location spread-out and near the
image edge.
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Using guided calibration, our results, which are based on real
measurements, suggested that millimetre TRE can be achieved
using between 15 and 20 measurements (Figs. 7–8c–d ) for a
target located ∼120 mm from the endoscopic camera. Similarly,
sub-millimetre TRE can be achieved for the webcam using
between 15 and 20 measurements. As the true FLE model is
difficult to characterise, we employed an isotropic FLE noise for
our experiments even though the TRE estimation model [12]
is capable to incorporate heteroscedastic FLE. As our guided
calibration already achieved millimetre TRE in our experiments,
the utilisation of the more complicated heteroscedastic FLE may
not provide significant improvement for guided calibration.
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