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Exploring the presence of nonlinearity through surrogate data testing provides insights
into the nature of physical and biological systems like those obtained from heart rate
variability (HRV). Short-term HRV time series are of great clinical interest to study
autonomic impairments manifested in chronic diseases such as the end stage renal
disease (ESRD) and the response of patients to treatment with hemodialysis (HD).
In contrast to Iterative Amplitude Adjusted Fourier Transform (IAAFT), the Pinned
Wavelet Iterative Amplitude Adjusted Fourier Transform (PWIAAFT) surrogates preserve
nonstationary behavior in time series, a common characteristic of HRV. We aimed to
test synthetic data and HRV time series for the existence of nonlinearity. Recurrence
Quantitative Analysis (RQA) indices were used as discriminative statistics in IAAFT and
PWIAAFT surrogates of linear stationary and nonstationary processes. HRV time series
of healthy subjects and 29 ESRD patients before and after HD were tested in this
setting during an active standing test. Contrary to PWIAAFT, linear nonstationary time
series may be erroneously regarded as nonlinear according to the IAAFT surrogates.
Here, a lower proportion of HRV time series was classified as nonlinear with PWIAAFT,
compared to IAAFT, confirming that the nonstationarity condition influences the testing
of nonlinear behavior in HRV. A contribution of nonlinearity was found in the HRV data of
healthy individuals. A lower proportion of nonlinear time series was also found in ESRD
patients, but statistical significance was not found. Although this proportion tends to be
lower in ESRD patients, as much as 60% of time series proved to be nonlinear in healthy
subjects. Given the important contribution of nonlinearity in HRV data, a nonlinear point
of view is required to achieve a broader understanding of cardiovascular physiology.

Keywords: recurrence analysis, surrogate data, nonlinear dynamics, nonstationarity, heart rate variability,
hemodialysis, active standing
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INTRODUCTION

Exploring the presence of nonlinearity in data provides insights
into the nature of physical and biological systems (Schreiber
and Schmitz, 2000). With this aim, surrogate data testing as
proposed by Theiler et al. (1992), is applied by the creation of
several versions of time series that no longer involve nonlinearity
despite preserving statistical properties. A nonlinear statistical
measure is then applied to the surrogates and the original
time series; any deviation of this measure in the surrogates
as compared to the one obtained from such original series
is used to discriminate this series from the null hypothesis,
which is met by the linear surrogates. Other authors have
also proposed to improve the null hypothesis to address more
specific types of behavior (Lancaster et al., 2018). Fourier
transform-based surrogates generate constrained realizations
that virtually preserve the same correlation function of the
original data. The statistical null hypothesis of the Iterative
Amplitude Adjusted Fourier Transform (IAAFT) technique is
that the data represent a stationary linear Gaussian process,
measured through an invertible, time-independent instantaneous
measurement function (Schreiber and Schmitz, 1996; Lancaster
et al., 2018). This technique has been extensively used in physical
and biological systems, such as in the analysis of heart rate
variability (HRV) (Porta et al., 2015; Faes et al., 2019).

HRV refers to the instantaneous changes in heart rate,
measured as the time interval of consecutive R waves in
electrocardiography (ECG) recordings, and it is a powerful and
simple tool for the study of cardiovascular physiology (No
authors listed, 1996). HRV is used in clinical studies and, through
decades, it has been considered in various medicine applications
(Sassi et al., 2015). Short-term HRV recordings are analyzed for
the study of the autonomic nervous system and its influence on
the cardiovascular system (No authors listed, 1996; Sassi et al.,
2015). The approach of IAAFT surrogates has been used in short-
term HRV time series (Porta et al., 2015; Faes et al., 2019), as well
as other Fourier transform-based surrogates (Yamamoto et al.,
1993; Porta et al., 2000; Lerma et al., 2003; Faes et al., 2004),
both offering different results regarding the presence of nonlinear
behavior in HRV data.

One of the main disadvantages of Fourier transform-based
surrogates is that the original time series must be limited to
stationary processes (Borgnat and Flandrin, 2009), while HRV is
often nonstationary (Porta et al., 2004). Some other approaches
for surrogate data testing consider, as well, the condition of
nonstationarity in their null hypothesis (Keylock, 2006; Faes
et al., 2009; Lucio et al., 2012). One of them is Pinned Wavelet
Iterative Amplitude Adjusted Fourier Transform (PWIAAFT)
(Keylock, 2007), which conserves the nonstationary behavior
in the surrogate data in a controlled fashion. The analysis
of nonlinearity in these settings has led to the increasing
application of nonlinear tools in which time series are not
required be neither very long nor nonstationary; this is the
case of the recurrence plots (RP) (Marwan et al., 2002, 2007).
Recurrence quantitative analysis (RQA) is used to quantify
diverse nonlinear behaviors in the RP and is widely used in
physiological time series, such as electroencephalography (EEG)

(Ouyang et al., 2008; Heunis et al., 2018; Pitsik et al., 2020) and
ECG (Marwan et al., 2002; Naschitz et al., 2003; Gonzalez et al.,
2013; Martín-González et al., 2018).

To study the influence of the autonomic nervous system on
cardiovascular dynamics by HRV analysis, the active standing test
is used for eliciting controlled parasympathetic predominance
at supine position and a sympathetic influence during active
standing (Carnethon et al., 2002). Also, it has been of great
clinical interest to study autonomic impairments manifested in
chronic diseases such as the end stage renal disease (ESRD)
(Echeverria et al., 2017; Bokhari et al., 2018). ESRD patients
treated with hemodialysis (HD) are in fact subjected to a
significant physiological stress during each HD session (Kooman
et al., 2018), which involves a sympathetic “challenge” on a
regular basis (Lerma et al., 2015) and thus becomes a robust
model for the study of autonomic impairments. According to
changes indicated by RQA indices during an active standing
test, the cardiovascular dynamics associated with both ESRD
and HD are consistent with the loss of access to some dynamic
physiological conditions (Gonzalez et al., 2013; Calderon-Juarez
et al., 2020). Furthermore, recent reports of the correlation
between the mean duration of the cardiac cycle (meanNN)
with RQA indices in HRV time series (Calderon-Juarez et al.,
2020; Robles-Cabrera et al., 2021), suggest that the meanNN
parameter, which reflects changes in the cardiac activity required
to address different hemodynamic challenges, may influence
the nonlinear dynamics of HRV as well. Yet, it has not been
fully demonstrated whether the RQA indices in short-term HRV
time series exhibit nonlinear dynamics by using surrogate data
approach, in particular, considering the nonstationary behavior
of these time series.

The purpose of this work was to assess RQA indices as
discriminative nonlinear statistics using IAAFT and PWIAAFT
surrogates applied to short-term HRV time series of healthy
subjects and ESRD patients (before and after treatment with HD)
collected during an active standing test.

MATERIALS AND METHODS

Synthetic Data
Given that, a priori, the type of dynamical behavior of HRV
time series was unknown, linear synthetic signals were first tested
to ensure that a proper confirmation of the null hypothesis
in stationary and nonstationary settings was achieved by the
combination of RQA and the algorithms used for the generation
of surrogate data; thereby preventing misinterpretations of false
detections of nonlinearity in HRV data. The following second
order autoregressive (AR2) processes were used as controls for
surrogate data testing. These are the same used by Keylock (2007):
(a) AR2s, AR2 process with broad energy spectrum, considered as
stationary Eq. (1); (b) AR2ns, AR2 process with a peaked energy
spectrum Eq. (2). Using these processes, one thousand and eight
hundred (1800) values were obtained and the first 1500 values
were discarded from both AR2 processes, avoiding transient
changes at the beginning of the time series. The remaining 300
values were thus considered to evaluate the linear null hypothesis
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in synthetic time series, as those of short segments of HRV data,
in which near 300 heartbeat intervals are typically contained.

x (t) = 0.8xt−1 − 0.25xt−2 + ε (1)

x (t) = 1.59xt−1 − 0.96xt−2 + ε (2)

Heart Rate Variability Time Series
Study Protocol
Electrocardiography (ECG) recordings were obtained following
the protocol described by Calderon-Juarez et al. (2020). These
recordings were obtained during an active orthostatic test
from healthy subjects and ESRD patients, as described below.
Continuous one-channel ECG recordings were collected during
10 min in supine position followed by subsequent recordings
during further 10 min of active standing. The final 5 min of each
recording were selected as representative data segments of supine
position and active standing, respectively. Patients maintained
spontaneous breathing during all procedures. ECG recordings
were obtained at 250 samples per second and the identification
of R waves was achieved by a second derivative algorithm. The
periods of consecutive heart cycles are commonly known as NN
or RR intervals, which in turn form the HRV time series. Finally,
a correction of artifacts was visually supervised in these series and
any outliers by the existence of ectopic beats were replaced using
linearly interpolated intervals.

Participants
Forty recordings were obtained in healthy subjects, age 32 years
(27–37, CI 95%), body mass index (BMI) 22.06 kg/m2 (20–
24, CI 95%), proportion of males 34.5%. Twenty-nine ESRD
patients were included, age 26 years (24–30, CI 95%, p = 0.084
vs. healthy), BMI 23.3 kg/m2 (22–25, CI 95%, p = 0.053 vs.
healthy), proportion of males 51.2% (p = 0.295 vs. healthy
group). End stage renal disease patients were studied before
and after treatment with hemodialysis following the same
active orthostatic test protocol. These patients were studied in
a previous work (Calderon-Juarez et al., 2020). Hemodialysis
sessions had a mean duration of 3.6 ± 0.5 h with total
volume removal of 3.1 ± 1.1 L. HD vintage was 12.5 ± 10.2
months with a residual renal function of 0.9 ± 1.5 mL/min.
Laboratory results within 1 month prior to the study (obtained
from blood samples taken on any day when hemodialysis
was not performed) showed creatinine = 8.7 ± 2.5 mg/dL,
potassium = 4.9± 0.7 mEq/L, phosphorous = 5.1 ± 1.5 mEq/dL,
calcium = 8.9 ± 1.1 mg/dL, hemoglobin = 8.3 ± 2.7 g/dL,
albumin = 3.9 ± 0.5 g/dL, cholesterol = 165 ± 41 mg/dL,
and triglycerides = 145 ± 96 mg/dL. The ESRD etiologies for
these patients were systemic lupus erythematosus (n = 1), focal
segmental glomerulosclerosis (n = 1), or unknown (n = 27). All
procedures following the ethical standards of the 1964 Helsinki’s
declaration in its later amendments. Our protocol was approved
by the Research and Ethics Committee of the Instituto Nacional
de Cardiología Ignacio Chávez (protocol number 21-1236).
Informed consent was obtained from all participants.

Hemodialysis Prescription
Hemodialysis (HD) sessions were delivered with volumetric
dialysis machines (4008 H, Fresenius Medical Care, Bad
Homburg, Germany) using ultrapure dialysate (HCO−3 = 35
mmol/L, Na+ = 138 mmol/L, K+ = 2 mmol/L, Ca2+ = 3.5
mEq/L, Mg2+ = 1.0 mEq/L) and polysulfone membranes (F-
60 and F-80, Fresenius Medical Care, Walnut Creek, CA,
United States). Hypertension was controlled by strict prescription
of dry body weight without using antihypertensive drugs
following an approach of extracellular volume control by
convection. Patients were on a non-restrictive diet and did not
use erythropoietin.

Heart Rate Variability Time and Frequency Domain
Indices
HRV traditional indices for this study protocol have been
reported previously (Gonzalez et al., 2013; Calderon-Juarez
et al., 2020). To provide a broad characterization of HRV
in the subjects and patients, time domain and frequency
domain indices were also calculated here. The meanNN
index is the mean value of all RR intervals contained in
the time series and SDNN is the standard deviation. Power
spectral indices were computed by the Fourier transform
method, resampling at 3 Hz and applying a non-overlapped
Hamming window of 300 data points with 50% overlap. The
Low Frequency band (LF) corresponds to frequencies 0.04–
0.15 Hz, and the High Frequency band (HF) corresponds
to 0.15–0.4 Hz. High Frequency band is tightly related
with parasympathetic activity, whereas LF corresponds to a
combination of sympathetic and parasympathetic influence (No
authors listed, 1996). We report the LF/HF ratio to express the
autonomic modulation as a succinct expression (No authors
listed, 1996).

Recurrence Quantitative Analysis
The RQA is based on the construction of recurrence plots,
defined by Marwan et al. (2007) :

Ri,j = 2
(
εi − ||

−→xi −−→xj ||
)
, −→xi ∈ Rm, i, j = 1, ,N, (3)

where N is the number of considered states xi, εi is a threshold
distance, || · || a norm and 2 (·) is the Heaviside function.

As described thoroughly by Trauth et al. (2019), the
representation of multidimensional systems from one-
dimensional time series by the time delay embedding
approach preserves the dynamic characteristics of the system
(Packard et al., 1980). Given that the embedding dimension
is sufficiently large, the reconstructed phase space does
preserve the topological characteristics of the real phase
space (Packard et al., 1980; Takens, 1981). The norm to
establish the vicinity for the construction of the recurrence
plot must be defined though. Probably, the most common
one is the Euclidean norm (the neighborhood is a sphere),
in which ε is the radius that contains a fixed number of
states (Marwan et al., 2007; Trauth et al., 2019). To study
the behavior of nonstationary signals, the fixed amount of
nearest neighbors (FAN), in which the radius ε changes
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FIGURE 1 | Full-size panels depict synthetic time series, original (left column), one Iterative Amplitude Adjusted Fourier Transform (IAAFT) surrogate time series
(middle column) and one Pinned Wavelet Iterative Amplitude Adjusted Fourier Transform (PWIAAFT) (ρ = 0.01) surrogate time series (right column). AR2s Eq. (1) time
series corresponds to top row, while the AR2ns one Eq. (2) is in the bottom row. (A) original AR2s, (B) IAAFT surrogate and (C) PWIAAFT (ρ = 0.01) surrogate.
(D) AR2ns Eq. (2) and one example of (E) IAAFT surrogate and (F) PWIAAFT (ρ = 0.01) surrogate. Small-size panels show 8 randomly selected segments of 50 data
points obtained from the whole time series. The dashed lines represent the means and the dotted lines indicate one standard deviation. AR2s original, IAAFT and
PWIAAFT surrogate series were identified as stationary. Whereas AR2ns original and PWIAAFT surrogate series were regarded as nonstationary, the corresponding
IAAFT surrogate was identified as stationary. Time series in all panels are shown as arbitrary units.

FIGURE 2 | Time series and recurrence plots (m = 5, τ = 3) for synthetic data AR2s Eq. (1). Original time series (panel A), one surrogate obtained by Iterative
Amplitude Adjusted Fourier Transform (IAAFT) (panel B) and one surrogate obtained by Pinned Wavelet Iterative Amplitude Adjusted Fourier Transform (PWIAAFT)
(panel C). Time series in all panels are shown as arbitrary units.

for each point, leads to an asymmetric recurrence plot in
which all columns have the same recurrence density despite
the nonstationary behavior, or trends, in the time series
(Marwan, 2011). Therefore, to address this phenomenon,

FAN norm has been recommended for analyzing HRV
(Martín-González et al., 2018).

The embedding parameters of the time series in this
work were calculated with the function of false nearest
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FIGURE 3 | Time series and recurrence plot (m = 5, τ = 3) for synthetic data AR2ns Eq. (2). Original time series (panel A), one surrogate obtained by Iterative
Amplitude Adjusted Fourier Transform (IAAFT) (panel B) and one surrogate obtained by Pinned Wavelet Iterative Amplitude Adjusted Fourier Transform (PWIAAFT)
(panel C). Time series in all panels are shown as arbitrary units.

neighbors (embedding dimension – m) and correlation function
(embedding delay – τ). The value of m and τ were selected at
the point where the false nearest neighbors and the correlation
function reached their first local minimum at zero, respectively
(Calderon-Juarez et al., 2020). These parameters were calculated
for each time series, and the same set of values were used for
RQA of surrogate data. After applying the embedding method
for reconstructing the attractor of each HRV time series into the
phase space, RPs were obtained with an ε = 0.07, the FAN norm,
a Theiler window = τ, window shift = 1 and minimal length of
diagonal and vertical lines = 2.

We used the CRP toolbox for MATLAB provided by
Marwan et al. (2007), available at (http://tocsy.agnld.uni-
potsdam.de/crp.php). The following RQA indices were obtained:
recurrence rate (RR), determinism (DET), averaged diagonal
length (ADL), length of longest diagonal line (LLDL), entropy
of diagonal length (ENT) (Marwan et al., 2007), laminarity
(LAM), trapping time (TT) (Marwan and Kurths, 2002),
length of longest vertical line (LLVL), recurrence time of
the 1st type (T1), recurrence time of the 2nd type (T2)
(Gao and Cai, 2000), recurrence period density entropy
(RPDE), clustering coefficient (CC) (Marwan et al., 2009) and
transitivity (TRANS) (Donner et al., 2010), see Appendix
A for definition of RQA indices. For meanNN correlations
with RQA indices in surrogate data, the mean values of
the RQA indices from the 99 generated surrogates for every
subject were obtained.

Stationarity Testing
The existence of restricted weak stationarity (i.e., steady mean
and variance) was tested in the synthetic data and original
HRV time series to assess the potential implications for
surrogate testing of analyzing data with a nonstationary behavior.

We followed the algorithm proposed by Porta et al. (2004).
A Kolmogorov-Smirnov test goodness-of-fit was used to evaluate
if a normal distribution was present in time series, otherwise
a logarithmic transformation was applied. N-L+1 ordered
sequences of length L were used to create a randomly selected M
number of segments or subsets. The length N was set to 300 data
points in accordance with the above-mentioned autoregressive
processes. L was set to 50 data points to observe at last 5
cycles of LF (about 0.1 Hz); eight M subsets were taken at
random to increase the possibility of selecting subsets covering
the full extent of time series. After this selection, for the time
series with a normal distribution, the stability of the mean
and variance was checked by analysis of variance (ANOVA)
and Bartlett tests, respectively. For time series with no normal
distribution, the stability of the mean and variance was tested
using Kruskal-Wallis and Levene tests, respectively. Statistical
differences for all tests were considered at the confidence level of
p < 0.05.

Surrogate Testing
The IAAFT described by Schreiber and Schmitz (1996) was
used for the generation of stationary surrogates with MATLAB
toolbox provided in Lancaster et al. (2018). PWIAAFT surrogates
were generated with a threshold (ρ) of 0, 0.01, 0.03, and
0.3, which were the same explored in Keylock (2006, 2007).
We followed the routine described in detail by Keylock et al.
(2011) and used the MATLAB toolbox provided by this
author available at (https://sites.google.com/site/chriskeylocknet/
software/surrogate-generation-algorithms/pwiaaft). Ninety-nine
surrogates were generated from each original time series, being
either synthetic data [obtained from Eqs. (1) and (2)] or HRV
data (obtained from participants), to achieve a two-sided α

error of 0.01. Statistically significant differences of surrogate data
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FIGURE 4 | Histograms for the laminarity (LAM) values of recurrence plot from of 99 surrogates (orange) obtained with Iterative Amplitude Adjusted Fourier
Transform (IAAFT) and Pinned Wavelet Iterative Amplitude Adjusted Fourier Transform (PWIAAFT) techniques. The LAM values measured from the original data are
depicted in blue. AR2s, IAAFT (A), PWIAAFT (B); AR2ns, IAAFT (C), PWIAAFT (D).

testing were considered when the statistic of the original time
series was p < 0.05.

Statistical Analysis
Categorical variables are reported as percentages and were
compared between healthy subjects and patients by exact
Fischer’s tests. For the comparison among the study groups
(healthy, ESRD before HD and ESRD after HD), positions
(supine and active standing) and surrogate technique (IAAFT
and PWIAAFT) a post hoc correction was done by the Bonferroni
method. In other words, we compared the proportion of
nonlinear time series in IAAFT vs. PWIAAFT (same group
and position), supine position vs active standing, healthy
vs. ESRD before HD (same position), healthy vs ESRD
after HD (same position) and ESRD before HD vs. ESRD
after HD (same position). For continuous variables, normal
distribution was assessed through Kolmogorov-Smirnov test,
median (95% confidence interval) are expressed and were

compared with Mann-Whitney U test. Bivariate correlations were
tested by the Spearman correlation coefficient. The statistical
analyses were performed with the Statistical Package for the
Social Sciences (SPSS) version 26, and p-values <0.05 were
considered as significant.

RESULTS

Synthetic Data
Stationarity Testing
Figure 1 shows original data from the stationary second order
autoregressive process (AR2s – panel A) and nonstationary
second order autoregressive (AR2ns – panel D), which were
appropriately identified as stationary and nonstationary by
the restricted weak stationarity test, respectively (Section
“Stationarity testing”). Illustrative examples of the stationarity
testing as applied to IAAFT surrogates (middle column) and
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TABLE 1 | Time domain and spectral heart rate variability (HRV) indices shown as median values (95% confidence interval of the median).

ESRD group

Healthy group (N = 40) Before HD (N = 29) After HD (N = 29)

Supine Standing Supine Standing Supine Standing

meanNN (s) 0.897* (0.845–0.927) 0.719 (0.678–0.752) 0.729§ (0.670–0.824) 0.686 (0.644–0.750) 0.674*¶ (0.643–0.837) 0.569¶ (0.540–0.669)

SDNN (s) 0.050 (0.046–0.063) 0.040 (0.036–0.046) 0.024§ (0.015–0.025) 0.027§ (0.020–0.033) 0.025¶ (0.016–0.032) 0.019¶ (0.015–0.027)

LF/HF 1.338* (1.033–1.685) 4.417 (3.112–6.050) 2.942§ (1.837–4.046) 4.741◦ (2.450–7.308) 2.240 (1.506–3.996) 4.390 (2.850–7.525)

*p < 0.005 supine vs. standing.
§p < 0.005 before HD vs. healthy (same position).
¶p < 0.005 after HD vs. healthy (same position).
◦p < 0.005 before HD vs. after HD (same position).

PWIAAFT (ρ = 0.01) surrogates (right column) are also
shown in Figure 1. The IAAFT surrogates of both AR2s
(panel B) and AR2ns (panel E) were regarded as stationary.
In the PWIAAFT surrogate of AR2s (panel C), a restricted
weak stationarity is detected, which was not identified in the
PWIAAFT surrogate of AR2ns (panel F). These time series
(original and surrogates) correspond to the time series shown in
Figures 2, 3.

Nonlinearity Testing of AR2—Stationary
The AR2s original time series RP is shown in Figure 2 (panel
A); the IAAFT algorithm applied to this series generated a noisy
pattern in RP (panel B). The following RQA indices obtained
from the IAAFT surrogates falsely rejected the null hypothesis:
ADL, DET, ENT, LAM, LLDL, LLVL, RR, T2, and TT. On the
other hand, the null hypothesis is accepted by considering RPDE,
T1, CC, and TRANS. PWIAAFT surrogates with ρ = 0.01 (panel
C) assessed with all RQA indices were found consistent with the
null hypothesis. We also explored more PWIAAFT surrogates
generated by ρ equal to 0, 0.03, and 0.1. In all cases, the same
results were obtained.

Nonlinearity Testing of AR2 – Nonstationary
Figure 3 shows the RPs of the AR2ns original data (panel
A), IAAFT surrogate (panel B), and PWIAAFT surrogate with
ρ = 0.01 (panel C). The results of all RQA indices as applied
to IAAFT surrogates were not in accordance with the null
hypothesis. These results obtained from the PWIAAFT algorithm
were consistent with the null hypothesis for all RQA indices.
Other PWIAAFT surrogates generated with the parameter ρ of
0, 0.03 and 0.1 reflected the same findings.

An example of the distribution of a tested RQA statistic
(LAM) for ARs and ARns is presented in Figure 4.
Regarding IAAFT technique, p = 0.01 for both stationary
and nonstationary linear processes, conversely, PWIAAFT
surrogates accept the null hypothesis for both linear time series
(p > 0.05).

Heart Rate Variability Data
Time Domain and Spectral Heart Rate Variability
Indices
The meanNN index was larger (lower heart rate) in supine
position compared with active standing in the healthy group

and ESRD patients after HD (Table 1). LF/HF was smaller in
supine position compared with active standing in the healthy
group. A larger meanNN value was observed in the healthy
group compared to ESRD before HD and after HD in supine
position. Also, meanNN was larger compared to ESRD after HD
during active standing. SDNN was larger in healthy individuals
compared to ESRD patients before and after HD in both
positions. LF/HF ratio was larger in healthy individuals when
compared to ESRD patients before HD, but this difference was
not found when compared to ESRD patients after HD. During
active standing, LF/HF was different between ESRD patients
before and after HD.

Stationarity Testing
Figure 5 shows examples of stationary testing applied to HRV
data in supine position (top row) and active standing (bottom
row) from a healthy subject (left column), an ESRD patient
before HD (middle column) and an ESRD patient after HD (right
column). All the examples shown in Figure 5 were classified
as nonstationary.

The original HRV time series were mostly classified as
nonstationary; only 3 of the 196 analyzed time series were
identified as stationary (about 1.5%). The 3 stationary HRV time
series were obtained from a healthy subject (supine position), an
ESRD patient after HD (supine position), and an ESRD patient
after HD (active standing).

Surrogate Data Testing
Examples of HRV time series of healthy and ESRD subjects
(before and after HD), RP and corresponding surrogates in
supine position and active standing are displayed in Figures 6, 7,
respectively (the same examples shown in Figure 5). While
the recurrence points are dispersed over all the RP in the
IAAFT surrogates (middle column), PWIAAFT surrogates
(right column) provide a similar distribution of recurrence
points compared to the original time series (left column).
This is observed for healthy subjects and ESRD patients
before and after HD in both supine position (Figure 6) and
active standing (Figure 7). Recurrence quantitative analysis
indices in almost all IAAFT surrogates lead to reject the null
hypothesis (Table 2). However, in comparison the number
of cases with null hypothesis rejections (the percentage of
time series in which the surrogate data testing null hypothesis
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FIGURE 5 | Examples of nonstationary heart rate variability (HRV) time series. Full-size panels show the whole HRV time series in supine position (top row) of (A)
healthy subject, (B) end stage renal disease (ESRD) patient before hemodialysis (HD), and (C) ESRD patient after HD (same individual). HRV time series collected at
active standing (bottom row) from (D) healthy subject, (E) ESRD patient before HD, and (F) ESRD patient after HD. HRV time series units in all panels are shown as
seconds (s).

was rejected) was significantly lower using the PWIAAFT
surrogates, with exception of CC and TRANS. Although the
results of PWIAAFT surrogates shown in Figures 1–7 and
Table 2 were generated with ρ = 0.01, we also explored
the following values: 0.00, 0.03, and 0.10. We did not find
statistically different proportions of rejection rates using these
values (Supplementary Table 1).

Figure 8 shows the percentage of nonlinear time series
using LAM statistic. A trend toward lower rejection rates was
found in ESRD patients before hemodialysis compared with
healthy subjects; this trend can be observed in active standing
compared to supine position. However, no statistically significant
differences were found. The following rejection rates of LAM
correspond to IAAFT surrogates: healthy group supine position
95% (90.72%–99.27%, CI 95%), active standing 100%. End stage
renal disease group before HD at supine position and active
standing 100% rejections; ESRD group after HD at supine
position 96.6% (93.04%–99.9%, CI 95%) and active standing
100%. Rejections rates of LAM with PWIAAFT surrogates were:
healthy group at supine position 47.5% (37.71%–57.28%, CI 95%)
and active standing 35% (25.65%–44.34%, CI 95%). End stage
renal disease group before HD at supine position 20.7% (12.75%–
28.64%, CI 95%) and active standing 17.2% (9.8%–24.59%, CI
95%) rejections; ESRD group after HD at supine 37.9% (28.39%–
47.4%, CI 95%) and standing 31% (21.93%–40.06%, CI 95%)
rejections. The trend toward lower rejection rates in ESRD was

also observed in other RQA indices (i.e., DET, ENT, LLVL,
TT) (Table 2).

Correlations With meanNN
The meanNN index is linearly correlated with embedding
parameters in healthy subjects, as it is shown in Table 3.
This correlation with m is lost in ESRD patients before
hemodialysis; however, it is regained after hemodialysis
treatment. The meanNN index is also correlated with
many of RQA indices in original data (Table 4). These
correlations are lost in most parameters (except for LAM,
TT, and LLVL) in ESRD patients before hemodialysis.
After treatment, meanNN is significantly correlated with all
RQA indices.

In the same manner as above, we assessed the correlation
with meanNN and mean values of RQA in both IAAFT
(Table 5) and PWIAAFT (ρ = 0.01) surrogates (Table 6).
Regarding IAAFT surrogates, the meanNN is correlated only
with RR, T1, and RPDE in the healthy group. In ESRD
patients before hemodialysis, meanNN was correlated only with
LLDL, LLVL, T2, and RPDE. But after treatment, meanNN
was correlated with almost all RQA indices, with the exception
of ADL, TT, T1 and T2. Using the PWIAAFT surrogates, we
found better preservation in comparison with IAAFT of the
correlation between meanNN and RQA indices, as observed in
Table 5.
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FIGURE 6 | (A–I) Examples of time series and recurrence plots for heart rate variability (HRV) data in supine position. Top row corresponds to a healthy subject
(m = 4, τ = 1), (A) original data, (B) Iterative Amplitude Adjusted Fourier Transform (IAAFT) surrogate, and (C) Pinned Wavelet Iterative Amplitude Adjusted Fourier
Transform (PWIAAFT) surrogate. Middle row, end stage renal disease (ESRD) patient before hemodialysis (HD) (m = 6, τ = 6), (D) original data, (E) IAAFT surrogate,
and (F) PWIAAFT surrogate. Bottom row, ESRD patient after HD (m = 6, τ = 7), (G) original data, (H) IAAFT surrogate, and (I) PWIAAFT surrogate. HRV time series
units in all panels are shown as seconds (s).

DISCUSSION

Contribution
We show the application of RQA indices as discriminative
nonlinear statics in surrogate data testing and proved the

presence of nonlinear structures in short-term HRV time
series of healthy subjects and ESRD patients during an
active standing test. Other contribution of this work is the
implementation of PWIAAFT surrogates for the analysis
of HRV data. This method facilitates nonlinear testing as
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FIGURE 7 | (A–I) Examples of time series and recurrence plots for heart rate variability (HRV) data in active standing. Top row corresponds to a healthy subject
(m = 5, τ = 10), (A) original data, (B) Iterative Amplitude Adjusted Fourier Transform (IAAFT) surrogate, and (C) Pinned Wavelet Iterative Amplitude Adjusted Fourier
Transform (PWIAAFT) surrogate. Middle row, end stage renal disease (ESRD) patient before hemodialysis (HD) (m = 6, τ = 10), (D) original data, (E) IAAFT surrogate,
and (F) PWIAAFT surrogate. Bottom row, ESRD patient after HD (m = 8, τ = 6), (G) original data, (H) IAAFT surrogate, and (I) PWIAAFT surrogate. HRV time series
units in all panels are shown as seconds (s).

the a priori demonstration of stationarity is not strictly
needed. This condition is rarely identified in HRV data
(Niccolai et al., 1995; Braun et al., 1998; Porta et al., 2004;
Gao et al., 2013), particularly if these data are obtained

from healthy subjects studied during daily or ambulatory
conditions. Our findings show that even in controlled
scenarios, most of healthy subjects and ESRD patients exhibit
nonstationary behavior.
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TABLE 2 | Percentage (95% confidence Interval) of heart rate variability (HRV) time series in every group that reject the null hypothesis according to the results of different
recurrence quantitative analysis (RQA) indices.

ESRD group

IAAFT Healthy group (N = 40) Before HD (N = 29) After HD (N = 29)

Supine Standing Supine Standing Supine Standing

RR 65 (49.6–78.3) 97.5 (88.9–99.7) 89.7 (74.9–97) 93.1 (79.7–98.5) 93.1 (79.7–98.5) 100

DET 100 100 100 100 100 100

ADL 100 100 100 100 100 100

LLDL 82.5 (68.7–91.8) 97.5 (88.9–99.7) 100 96.6 (85–99.6) 93.1 (79.7–98.5) 96.6 (85–99.6)

ENT 100 100 100 100 100 100

TT 80 (65.8–90.1) 97.5 (88.9–99.7) 93.1 (79.7–98.5) 93.1 (79.7–98.5) 89.7 (74.9–97) 100

LLVL 70 (54.8–82.4) 97.5 (88.9–99.7) 93.1 (79.7–98.5) 93.1 (79.7–98.5) 89.7 (74.9–97) 100

T1 75 (60.2–86.4) 80 (65.8–90.1) 93.1 (79.7–98.5) 82.8 (66.3–93.1) 82.8 (66.3–93.1) 93.1 (79.7–98.5)

T2 85 (71.7–93.5) 100 96.6 (85–99.6) 100 0.966 (85–99.6) 100

RPDE 80 (65.8–90.1) 55 (39.7–69.6) 75.9 (58.4–88.5) 58.6 (40.6–75) 72.4 (54.6–86) 62.1 (44–77.9)

CC 65 (49.6–78.3) 77.5 (62.9–88.2) 89.7 (74.9–97) 86.2 (70.5–95.2) 86.2 (70.5–95.2) 75.9 (58.4–88.5)

TRANS 65 (49.6–78.3) 75 (60.2–86.4) 89.7 (74.9–97) 89.7 (74.9–97) 75.9 (58.4–88.5) 72.4 (54.6–86)

ESRD group

PWIAAFT Healthy group (N = 40) Before HD (N = 29) After HD (N = 29)

Supine Standing Supine Standing Supine Standing

RR 22.5 (11.8–37.1) * 25 (13.6–39.8) * 24.1 (11.5–41.6) * 20.7 (9.1–37.8) * 17.2 (6.9–33.7) * 20.7 (9.1–37.8) *

DET 60 (44.6–74.1) * 27.5 (15.6–42.5) * 31 (16.6–49) * 34.5 (19.3–52.6) * 37.9 (22.1–56) * 34.5 (19.3–52.6) *

ADL 55 (39.7–69.6) * 32.5 (19.6–47.8) * 41.4 (25–59.4) * 31 (16.6–49) * 31 (16.6–49) * 24.1 (11.5–41.6) *

LLDL 15 (6.5–28.3) * 10 (3.5–22) * 20.7 (9.1–37.8) * 17.2 (6.9–33.7) * 13.8 (4.8–29.5) * 10.3 (3–25.1) *

ENT 50 (35–65) * 37.5 (23.8–52.9) * 41.4 (25–59.4) * 31 (16.6–49) * 24.1 (11.5–41.6) * 24.1 (11.5–41.6) *

TT 47.5 (32.7–62.7) * 25 (13.6–39.8) * 41.4 (25–59.4) * 31 (16.6–49) * 34.5 (19.3–52.6) * 20.7 (9.1–37.8) *

LLVL 20 (9.9–34.2) * 0.0* 10.3 (3–25.1) * 0.0* 6.9 (1.5–20.3) * 3.4 (0.4–15) *

T1 32.5 (19.6–47.8) * 22.5 (11.8–37.1) * 24.1 (11.5–41.6) * 17.2 (6.9–33.7) * 13.8 (4.8–29.5) * 20.7 (9.1–37.8) *

T2 45 (30.4–60.3) * 15 (6.5–28.3) * 27.6 (14–45.4) * 24.1 (11.5–41.6) * 13.8 (4.8–29.5) * 34.5 (19.3–52.6) *

RPDE 35 (21.7–50.4) * 10 (3.5–22) * 31 (16.6–49) * 10.3 (3–25.1) * 13.8 (4.8–29.5) * 17.2 (6.9–33.7) *

CC 42.5 (28.1–57.9) 20 (9.9–34.2) 27.6 (14–45.4) 6.9 (1.5–20.3) 34.5 (19.3–52.6) 34.5 (19.3–52.6)

TRANS 42.5 (28.1–57.9) 20 (9.9–34.2) 34.5 (19.3–52.6) 10.3 (3–25.1) 31 (16.6–49) 34.5 (19.3–52.6)

*p < 0.001 PWIAAFT vs. IAAFT (same group and position).

Recurrence quantitative analysis (RQA) has been widely used
for assessing HRV data, its advantages for the analysis of short,
noisy and nonstationary time series becomes a convenient feature
for the study of cardiovascular physiology (Marwan et al.,
2002). However, nonlinearity by itself, to our best knowledge
has not been tested by means of RQA in short-term HRV
recordings. Surrogate data testing is a well-known procedure to
prove nonlinearity by contradiction. However, the presence of a
nonstationary behavior may become a limitation to obtain either
reliable HRV indices, such as those provided by the frequency
domain analysis (Li et al., 2019), or even appropriate surrogates.

Synthetic Data
In this work we applied the IAAFT technique to linear synthetic
stationary and real nonstationary data. It has been suggested that
IAAFT surrogates lead to falsely accept the null hypothesis due to
their small deviations of the applied statistic measure and rigid
preservation of the linear properties in time series (Lancaster

et al., 2018). However, some recurrence indices applied here lead
to falsely reject the null hypothesis in stationary linear synthetic
data. This finding may indicate that RQA is particularly sensible
to the randomization of the data and rupture of their structure.
In nonstationary synthetic time-series, all statistic measures
falsely rejected the null hypothesis, even those that adequately
lead to accept the linear hypothesis of stationary data. It is
known that “stationarization” (the introduction of stationarity
in the timeseries) is a property of surrogates obtained by the
IAAFT technique and this may be a reason for higher false
rejections (Borgnat and Flandrin, 2009; Lancaster et al., 2018).
It is important to emphasize that this technique can lead to
null hypothesis rejections because the original time series are
either nonlinear or by contrast nonstationary. This phenomenon
was previously observed in HRV time series using other
discriminative statistics (Faes et al., 2009), finding that the actual
rate of rejections decreases once that the technique for surrogate
data generation considers nonstationarity. PWIAAFT takes into
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FIGURE 8 | Percentage of heart rate variability (HRV) time series of every
group that leads to reject the null hypothesis (nonlinearity demonstrated) using
Iterative Amplitude Adjusted Fourier Transform (IAAFT) and Pinned Wavelet
Iterative Amplitude Adjusted Fourier Transform (PWIAAFT) techniques (bars
display the 95% confidence interval). § PWIAAFT vs IAAFT in the same group
p < 0.001. There were no significant differences between groups (same
position) nor within groups (supine vs active standing, same group).

TABLE 3 | Spearman correlation coefficient between meanNN and the
embedding parameters, tau (τ) and dimension (m).

ESRD group

Healthy group
(N = 40)

p Before HD
(N = 29)

p After HD
(N = 29)

p

τ −0.478 < 0.001 –0.323 0.013 –0.522 < 0.001

m –0.237 0.034 –0.222 0.094 –0.402 0.002

consideration this characteristic and preserves accurately the
original linear structure of the data, as it is shown in this work, for
both stationary and non-stationary data. This technique allowed
the acceptance of the null hypothesis with all the RQA indices as
applied to linear synthetic data.

Heart Rate Variability Data
Traditional HRV indices (Table 1) show the increased
sympathetic predominance associated to active standing
and ESRD (Gonzalez et al., 2013; Gonzalez-Gomez et al., 2018;
Calderon-Juarez et al., 2020). Regarding nonlinear testing of
HRV, in a previous study using data generated through Fourier
transform-based surrogates (i.e., IAAFT) (Porta et al., 2007), a
very low proportion of short-term HRV time series from healthy
subjects was found to be nonlinear. But these series are not
intuitively expected to be linear due to the nonlinear mechanisms
modulating heart rate that are generally considered to be
involved. It is possible therefore that such series in that study
were too noisy or too short to clearly exhibit nonlinear dynamics.
In addition, the activation of the sympathetic branch of the
autonomic nervous system decreases the proportion of nonlinear

TABLE 4 | Spearman correlation coefficients between meanNN and recurrence
quantitative analysis (RQA) indices for the original heart rate variability
(HRV) time series.

ESRD group

RQA Healthy group p Before HD p After HD p

index (N = 40) (N = 29) (N = 29)

RR 0.396 < 0.001 0.141 0.292 0.451 < 0.001

DET −0.012 0.913 −0.254 0.054 −0.268 0.042

ADL 0.133 0.24 −0.045 0.736 −0.39 0.003

LLDL −0.276 0.013 −0.027 0.839 −0.418 0.001

ENT 0.165 0.144 −0.069 0.606 −0.388 0.003

LAM −0.523 < 0.001 −0.284 0.031 −0.422 0.001

TT −0.593 < 0.001 −0.38 0.003 −0.643 < 0.001

LLVL −0.643 < 0.001 −0.546 < 0.001 −0.68 < 0.001

T1 −0.075 0.51 −0.001 0.992 0.335 0.01

T2 −0.536 < 0.001 −0.239 0.071 −0.308 0.019

RPDE −0.244 0.029 0.108 0.421 0.499 < 0.001

CC 0.389 < 0.001 0.199 0.135 0.508 < 0.001

TRANS 0.375 0.001 0.202 0.128 0.523 < 0.001

TABLE 5 | Spearman correlation coefficients between meanNN and recurrence
quantitative analysis (RQA) indices for Iterative Amplitude Adjusted Fourier
Transform (IAAFT) surrogates of heart rate variability (HRV) time series.

ESRD group

RQA Healthy group p Before HD p After HD p

index (N = 40) (N = 29) (N = 29)

RR −0.345 0.002 −0.115 0.389 −0.45 < 0.001

DET −0.052 0.649 −0.242 0.068 −0.466 < 0.001

ADL 0.133 0.239 −0.039 0.771 −0.243 0.066

LLDL 0.204 0.07 −0.353 0.007 −0.619 < 0.001

ENT 0.102 0.367 −0.081 0.545 −0.385 0.003

LAM −0.054 0.635 −0.201 0.131 −0.414 0.001

TT 0.133 0.241 0.036 0.791 −0.096 0.474

LLVL −0.025 0.825 −0.427 0.001 −0.615 < 0.001

T1 −0.268 0.016 −0.233 0.079 −0.207 0.118

T2 −0.131 0.247 −0.295 0.025 −0.208 0.118

RPDE 0.615 < 0.001 0.349 0.007 0.728 < 0.001

CC 0.196 0.081 0.174 0.191 0.28 0.031

TRANS 0.17 0.131 0.159 0.232 0.26 0.049

time series, this has been corroborated by pharmacological
stimulation and the gradual head-up tilt test (Porta et al., 2007).
It has also been suggested that cardiorespiratory coupling
confers nonlinear behavior to HRV, because the controlled
respiration at a slow rate introduce nonlinear dynamics to HRV
(Porta et al., 2000).

In this work, when the IAAFT surrogates were obtained from
HRV data, a high rate of null hypothesis was confirmed in relation
to RQA indices. Nonetheless, the results for synthetic data
demonstrate that these findings can be misleading. Furthermore,
only approximately 1.5% of all the HRV time series analyzed
in this work were regarded as stationary. As explained above,
this is a potential source leading to false nonlinearity detections.
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TABLE 6 | Spearman correlation coefficients between meanNN and recurrence
quantitative analysis (RQA) indices for Pinned Wavelet Iterative Amplitude Adjusted
Fourier Transform (PWIAAFT) (ρ = 0.01) surrogate data of heart rate variability
(HRV) time series.

ESRD group

RQA Healthy group p Before HD p After HD p

index (N = 40) (N = 29) (N = 29)

RR 0.394 < 0.001 0.148 0.267 0.478 < 0.001

DET −0.05 0.658 −0.257 0.052 −0.311 0.017

ADL 0.091 0.422 −0.108 0.42 −0.42 0.001

LLDL −0.349 0.001 −0.148 0.269 −0.459 < 0.001

ENT 0.122 0.28 −0.114 0.396 −0.429 0.001

LAM −0.583 < 0.001 −0.273 0.038 −0.442 0.001

TT −0.656 < 0.001 −0.407 0.002 −0.665 < 0.001

LLVL −0.811 < 0.001 −0.607 < 0.001 −0.79 < 0.001

T1 −0.078 0.49 0.021 0.877 0.138 0.303

T2 −0.588 < 0.001 −0.271 0.04 −0.437 0.001

RPDE −0.047 0.679 0.176 0.187 0.539 < 0.001

CC 0.391 < 0.001 0.214 0.127 0.589 < 0.001

TRANS 0.391 < 0.001 0.187 0.161 0.498 < 0.001

It is remarkable that PWIAAFT surrogates show an important
decrease in the rate of rejection, similarly to the results shown
by time-varying autoregressive surrogate series (Faes et al., 2009),
which also involve nonstationary behavior. Added to the well-
known PWIAAFT conservation of nonstationarity (Keylock,
2007, 2019; Keylock et al., 2011, 2015) and the ubiquitous
presence of nonstationarity in the analyzed HRV time series, the
dramatic drop of nonlinearity detection shown by PWIAAFT in
comparison to IAAFT is thus likely related to the elimination of
the instability of mean and variance in the IAAFT surrogates.

Depending on the RQA index, the percentage of short-
term HRV recordings that are found to contain nonlinear
properties can be as high as 60% in healthy subjects when
DET is used as the statistic measure. For the ESRD patients,
the rejection rate decreases to 31% before HD treatment and
34.5% after HD. Furthermore, this rejection rate tends to even
lower values in active standing compared with supine position
for healthy and ESRD patients, but there were not statistically
significant differences regarding this position. These findings
suggest that RQA is a suitable tool to detect nonlinearity in short-
term series, even when these series manifest nonstationarity.
Other pathophysiological conditions, such as acute myocardial
infarction have been addressed (Faes et al., 2019) with the
surrogate data approach. Patients with this condition tend to
show lower proportions of nonlinear HRV times series, which
is similar to ESRD patients studied in this work. All these
findings suggest that some pathologies suppress nonlinearity
from HRV dynamics.

It was proposed by a previous work (Calderon-Juarez et al.,
2020) that the meanNN parameter as obtained from HRV
data is linearly correlated with some RQA indices in healthy
subjects. Notwithstanding that the underlying physiological
mechanism of these correlations is not clearly known, an intricate
multilayer of physiological interactions could be involved
(Kooman et al., 2018). As previously identified (Calderon-
Juarez et al., 2020), these correlations are known to be lost

in ESRD patients and partially retrieved after hemodialysis.
The correlations between meanNN and RQA indices are no
longer present in IAAFT surrogates probably owing to the
poor conservation of the original time series structure. Yet
most of these correlations are preserved with the PWIAAFT
surrogates, suggesting that these correlations are partially given
by linear statistical and spectral parameters. Some authors
have proposed to normalize HRV linear indices by dividing
them with the mean heart rate to correct, by this approach,
the influence of heart rate on HRV (Hayano et al., 1991).
Monfredi et al. (2014) have also shown a robust correlation
of mean heart rate and standard deviation of NN intervals;
however, they claim that such normalization is insufficient to
adequately correct the nonlinear influence of heart rate on HRV
(Monfredi et al., 2014). Our work shows that the surrogates HRV
time series, in which any nonlinearity structure is destroyed,
such correlation of the mean heart rate with RQA is preserved.
Notwithstanding that other factors such as age and sex also
modify HRV, the meanNN is a determinant characteristic of
these time series because it explains a significant dispersion of
the RQA indices, thus these indices could also be subjected to
normalization by the meanNN.

Limitations and Perspectives
The study of several types of nonlinear behaviors and other types
of nonstationarities is beyond the scope of this work. Further
research may be conducted to identify which RQA indices are
suitable for testing different nonlinear structures. As proposed
by Borgnat and Flandrin (2009), nonstationarity can be in fact
tested by the generation of stationary surrogate data, which
may be considered for future studies of HRV data. Longer
HRV time series, which contain enough information to address
slower fluctuations and therefore pose different physiological
mechanisms of regulation (Lerma et al., 2017), were not explored
in this work and these series should be assessed in future projects
as well. We collected a small number of ESRD and active standing
recordings, thus any potential lower rate of null hypothesis
rejections for these data was not possible to be addressed. The
respiratory cycle is another physiological factor that influences
the HRV time series, its effect remains to be assessed with the
combination of techniques presented here. Future studies are
required to assess the nonlinear behavior with other HRV indices
that are assumed to reflect nonlinearity and to compare them
with the present findings.

CONCLUSION

Recurrence quantitative analysis (RQA) is a suitable framework
for the analysis of short, noisy, nonstationary time series and
here we also endorse that it is sensitive to capture nonlinear
features despite the drawbacks in physiological data analysis
that can be introduced by ubiquitous conditions such as the
nonstationary behavior. We found that an important proportion
of HRV time series from healthy subjects and ESRD patients do
contain nonlinear information and hence may be studied from a
nonlinear scope point of view to achieve a broader understanding
of cardiovascular physiology.
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APPENDIX A

Recurrence quantitative analysis indices computed by Cross Recurrence Plot Toolbox for MATLAB.
Recurrence rate (RR) (Marwan et al., 2007)

RR =
1
N2

N∑
i,j=1

Ri,j

Determinism (DET) (Marwan et al., 2007)

DET =
∑N

l=lmin
lP∈

(
l
)∑N

i,j Ri,j

(where P∈
(
l
)
=
{
li; i = 1...Ni

}
is the frequency distribution of the lengths l of diagonal structures and Nl is the absolute number of

diagonal lines).
Averaged diagonal length (ADL) (Marwan et al., 2007)

ADL =

∑lN
li=1

li
N

Length of longest diagonal line (LLDL) (Marwan et al., 2007)

LLDL = max
({
li; i = 1...Ni

})
Entropy of diagonal line, Shannon’s entropy (ENT) (Marwan et al., 2007)

ENT = −
N∑

l=lmin

p
(
l
)
lnp

(
l
)

Laminarity (LAM) (Marwan et al., 2002)

LAM =
∑N

v=vmin
vPε (v)∑N

v=1 vPε (v)

(where Pε (v) = {vi; i = 1...Nv} denotes the frequency distribution of the l lengths of vertical structures).
Trapping time (TT) (Marwan et al., 2002)

TT =
∑N

v=vmin
vPε (v)∑N

v=vmin
Pε (v)

Length of longest vertical line (LLVL) (Marwan et al., 2002)

LLVL = max ({vi; i = 1...Ni})

Recurrence time of the 1st type (T1) (Gao and Cai, 2000)

T1
j =

∣∣∣{i, j : ⇀x i,
⇀
x j ∈ Ri

}∣∣∣
Recurrence time of the 2nd type (T2) (Gao and Cai, 2000)

T2
j =

∣∣∣{i, j : ⇀
x i,

⇀
x j ∈ Ri;

⇀
x j−1 /∈ Ri

}∣∣∣
(where Ri are the recurrence points which belong to the state

⇀
x i).

Recurrence period density entropy (RPDE) (Little et al., 2007)

Hnorm =
−
∑Tmax

i=1 P(i)lnP(i)
lnTmax

(where P (i) is the recurrence period density, Tmax is the maximum recurrence time found in the embedded state space).
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Clustering coefficient (CC) (Marwan et al., 2009)

CC =
N∑
i=1

∑N
i,j,k=1 Ri,jRj,kRk,i

RRi

Transitivity (TT) (Donner et al., 2010)

TRANS =
N∑
i=1

∑N
i,j,k=1 Ri,jRj,kRk,i∑N
i,j,k=1 Ri,jRk,i
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