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Light-sound interconversion in 
optomechanical Dirac materials
Christian Wurl & Holger Fehske

Analyzing the scattering and conversion process between photons and phonons coupled via radiation 
pressure in a circular quantum dot on a honeycomb array of optomechanical cells, we demonstrate 
the emergence of optomechanical Dirac physics. Specifically we prove the formation of polaritonic 
quasi-bound states inside the dot, and angle-dependent Klein tunneling of light and emission of sound, 
depending on the energy of the incident photon, the photon-phonon interaction strength, and the 
radius of the dot. We furthermore demonstrate that forward scattering of light or sound can almost 
switched off by an optically tuned Fano resonance; thereby the system may act as an optomechanical 
translator in a future photon-phonon based circuitry.

The rapidly emerging field of optomechanics, describing the mechanical effects of light, opens new prospects for 
exploring hybrid quantum-classical systems which raise fundamental questions concerning the interaction and 
entanglement between microscopic and macroscopic objects1–3, classical-optical communication in the course 
of quantum information processing and storage4–6, cooling of nanomechanical oscillators into their quantum 
ground state7–9, or the development of nonclassical correlations10, nonlinear dynamics, dynamical multistabilities 
and chaos11–15; for a recent review see ref. 16.

Going beyond the prototyp cavity-optomechanical system consisting of a Fabry-Perot cavity with a movable 
end mirror, the currently most promising platforms are optomechanical crystals or arrays17–22. These systems 
are engineered to co-localize and couple high-frequency (200-THz) photons and low-frequency (2-GHz) pho-
nons. The simultaneous confinement of optical and mechanical modes in a periodic structure greatly enhances 
the light-matter interaction. Then the next logical step would be the creation of ‘optomechanical metamaterials’ 
with an in situ tunable band structure, which–if adequately designed–should allow to mimic classical dynamical 
gauge fields23, Dirac physics24, optomechanical magnetic fields25, or topological phases of light and sound26, just 
as optical lattices filled with ultracold quantum gases27 and topological photonic crystals28. Because of the ease 
of optical excitation, photon-phonon interaction control (i.e., functionalization) and readout, artificial optom-
echanical structures should be promising building blocks of hybrid photon-phonon signal processing network 
architectures. Thereby the complimentary nature of photons and phonons regarding their interaction with the 
environment and their ability to transmit information over some distance will be of particular interest5.

Here, we study a basic transport phenomenon in planar optomechanical metamaterials, the phonon-affected 
photon transmission (reflection) through (by) a circular barrier, acting as a ‘qantum dot’, created optically on a 
honeycomb lattice. Figure 1 shows the ‘optomechanical graphene’ setup under consideration. Solving the scat-
tering problem for a plane photon wave injected by a probe laser, we discuss Dirac polariton formation, possible 
Klein tunneling and photon-phonon conversion triggered by the (barrier-laser) tunable interaction between the 
co-localized optical and mechanical modes in the quantum dot region. The scattering of a perpendicularly inci-
dent (plane) photon wave by a planar barrier has been investigated with a focus on Klein-tunneling24. Hence, to 
some degree, the present work can be understood as an extension of this study to the more complex quantum 
dot-array geometry, yielding a much richer angle-dependent scattering and photon-phonon conversion.

Theoretical modelling
To formulate the scattering problem we follow the standard approach of (i) linearizing the dynamics around 
the steady-state solution within the rotating-wave approximation in the red-detuned (Δ = ωL − ωcav<0) 
moderate-driving regime16 and (ii) adapting the single-valley Dirac-Hamiltonian within the continuum approxi-
mation, valid for sufficiently low energies and barrier potentials that are smooth on the scale of the lattice constant 
a but sharp on the scale of the de Broglie wavelength29. Furthermore, focusing on the scattering by the barrier 
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exclusively, we assume Δ = −Ω, and obtain (after the appropriate rescaling H → H/ħ − Ω) the optomechanical 
Dirac-Hamiltomian24,
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, δv = vo − vm, with vo/m as the velocities of the optical/mechanical 
modes, τ and σ are vectors of Pauli matrices, k(r) gives the wavevector (position vector) of the Dirac wave, R is 
the quantum-dot radius, and g parametrizes the photon-phonon coupling strength, cf. Fig. 1. The low-energy 
dispersion follows as
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where τ = ±1 denote the two-fold degenerate, non-linear polariton branches with sublattice pseudospin σ = ±1. 
The eigenfunctions of (1) take the form ψ σ ε= +τ σ τ σ τ σg o mk, ( ), , ,  with normalization 
 ε= +τ σ τ σ

−g( ),
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,
2 1/2, ετ,σ = voσk − Eτ,σ, and the bare (optical/mechanical) eigenstates o/m of τz. For g = 0, the 

bandstructure simplifies to two independent photonic and phononic Dirac cones, and the scattering problem can 
be solved as for a graphene quantum dot29–31.

We expand the incident photonic wave (in x direction), the transmitted wave inside the dot (ψ ψ ψ= ++ −
t t t) 

and the reflected wave ψ ψ ψ= +( )ref
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Figure 1.  Setup considered in this work. Left part: Optomechanical graphene. Honeycomb array of 
optomechanical cells driven by a laser with frequency ωL. The co-localized cavity photon (ωcav) and phonon (Ω) 
modes interact (linearly) via radiation pressure tunable by the laser power16. Upper right part: Scattering 
geometry. An incident optical wave (ψo

in, energy E, wavevector k eo x) hits the quantum dot (radius R, photon-
phonon coupling g); as a result transmitted polaritonic (ψ ψ ψ= ++ −

t t t) and reflected (ψ ψ ψ= +ref
o
ref

m
ref ) 

waves appear (with wavevectors q± and ko/m), which–due to the symmetry of the problem–carry an angular 
momentum, i.e., their wavevectors have components in any planar direction29, 30. Lower right part: Schematic 
bandstructure. Without photon-phonon coupling the photon (orange) and phonon (black) Dirac cones 
(obtained in low-energy approximation) simply intersect. In the quantum dot region with g > 0, weakly non-
linear (photon-phonon) polariton bands (green) emerge. Here, solid (dashed) lines correspond to pseudospin 
σ = 1 (−1). Connecting lines between q+ and q− (ko and km) indicate that the corresponding states are 
superimposed. The dashed (solid) blue line gives the energy E (position-dependent profile of g). Model 
parameters: The continuum approximation is justified if k a1/  and R a. Moreover, we have to avoid any 
‘phonon lasing’ instabilities, i.e., the photon transfer element 2vo/3a has to be smaller than Ω/324. If so, the 
effects discussed in this paper should be experimentally accessible for Ω g/ 1. With a lattice constant 
a ~ 50 μm19, a photon [phonon] transfer element ~Ω/6 [Ω/60], and a membrane eigenfrequency 
Ω = −Δ ~ 10 MHz24, the photons [phonons] group velocity vo [vm] is about 103 m/s [102 m/s], and the 
optomechanical coupling g should not exceed 0.1 MHz. Then, R ~ 100a.
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For E > 0, we can take σ = +1 and distinguish the branches of the incident and reflected waves by τ = ±1. For the 
transmitted wave, where ε± = voσ±q± − E, E g  is possible and we denote the two polaritonic branches by + 
and −. Here, for E > g (E < g) σ± = 1 (τ± = −1), and states with different τ± = ±1 (σ± = ±1) are superimposed, 
see Fig. 1. In eqs (3–5) the eigenfunctions of the Dirac-Weyl Hamiltonian σ · k are
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(3) (1)  are the Bessel [Hankel] function of the first kind (in the following we omit the upper 
index (1) of the Hankel functions). The continuity conditions at r = R give the reflection ro/m,l and transmission 
coefficients t±,l:
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In eq. (7), Zo,l = detA − igY, and
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Here, detA is obtained from eq. (10) when substituting Yl(+1) by Hl(+1) and multiplying by g. Note that the scatter-
ing coefficients are invariant under the transformation (E, g, R−1) → (γE, γg, γR−1) with γ ∈ . Furthermore, the 
reflection coefficients have upper bounds: |ro,l| ≤ 1 and ≤r v v/ /2m l o m, .

From the current density of the reflected waves in the far field,
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we obtain the scattering efficiency, that is, the scattering cross section divided by the geometric cross section, as

∑= .
=

∞
Q

k R
r4

(12)
o m

o m l
o m l/

/ 0
/ ,

2

We note that in eqs (11), (12), and hereafter, l ≥ 0. The density ρ = ψ†ψ and the current j = ψ†sψ in- and outside 
the quantum dot region further specify the scattering.

Numerical results and discussion
Treating the scattering by the circular quantum dot region numerically, we adopt vm = 0.1vo and employ units 
such that vo = 1. Moreover, for the experimental reliable parameters quoted in the caption of Fig. 1, fixing g, 100a 
is a natural unit for the quantum dot radius R, where the number of cells (defects) enclosed in the quantum dot 
region is about 104R2. Due to the scale invariance of the scattering coefficients, in what follows all physical quan-
tities will be discussed in dependence on E/g and Rg.

Figure 2 displays the complex pattern of both the photonic Qo and phononic Qm contributions to the scattering 
efficiency in the E/g–Rg plane. When the photon hits the quantum dot it stimulates mechanical vibrations (pho-
nons) because of the optomechanical interaction. Then both scattered waves are inherently correlated. For ener-
gies of incident photon larger than the optomechanical coupling, Qo (Qm) reveals a very broad (narrow) ripple 
structure with maxima of high (rather low) intensity. Above ~E g/ 2 the phonon is hardly scattered, while the 
photon is still heavily influenced by the dot. This is because the phonon wave numbers take large values very 
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quickly, compared to those of the photon, simply because vm is smaller than vo by an order of magnitude. If the 
dispersion of the phonon is unaffected by g, the wave numbers inside and outside are almost identical and scatter-
ing disappears. The same, in principle, happens to the photon, but at much larger energies. In this limit, photon 
scattering resembles the scattering of ultrarelativistic Dirac particles, which are massless outside the dot and carry 
an effective mass = −m g v v v2/ ( )o o m

3  inside the quantum dot region (here, vo plays the role of vacuum ligth 
speed).

The situation becomes much more involved when the energy of the incident optical wave is smaller than the 
optomechanical coupling, see the right panels in Fig. 2 for E/g < 1. Let us first consider the case where the 
size-parameter ER is very small, i.e., the wavelengths 2π/ko/m are large compared to the quantum dot radius R. In 
Fig. 2 this corresponds to the region  .E g/ 0 01. Here, sharp scattering resonances occur at a sequence of equi-
distant radii. The left panel in Fig. 3 gives a closer look at this limiting behavior and demonstrates that in each case 
two resonances occur, in fact, symmetrically around a point where the phonon scattering vanishes while the 
photon scattering is small but finite (see inset). These resonances, numbered by ∈n , belong to the lowest pho-
tonic/phononic partial waves with l = 0. Expanding the phononic reflection coefficients (8) with respect to the 
small size-parameter ER, the phonon-scattering depletion points result as =Rg j v vl n o m, , where jl,n are the n-th 
zero of the Bessel function Jl. We note that here the phonon resonance peaks are larger than the photonic ones. Of 
course, such resonances also occur for the next higher partial wave with l = 1 at =Rg j v vn o m1, , but are not visible 
in Fig. 3 left on account of their tiny linewidth/intensity.

In case that the size-parameter ER ~ 1, the wavelengths 2π/ko/m are in the order of the dot radius R. In this 
regime, only the lowest partial waves will be excited to any appreciable extent, and the photonic [phononic] reso-
nances appear as bright spots [splitted stripes] at specific ‘points’ [lines] in the E/g-Rg plane, see Fig. 2. The linew-
idths get smaller for larger l, once one of the reflection coefficients ro,l (rm,l) reaches unity (their upper bound). The 
photonic resonances with even (odd) l are approximatively located at =Rg j v vn o m1(0), , where the phononic scat-
tering is perfectly suppressed. This is illustrated by the middle panel in Fig. 3: At .Rg 1 7 [case (i)], the l = 1 
photon mode is resonant and the scattering becomes purely photonic (i.e., the contribution of all phonon modes 
goes to zero). The phonon resonances of the l = 1 mode appear symmetrically about this photon resonance (at 
these points, on the other hand, the photonic contribution is significantly weakened). A similar scenario arises for 
the resonance of the l = 0 modes at .Rg 1 24 and .Rg 2 24. Vice versa, at certain radii the scattering becomes 
purely phononic, see, e.g., case (ii) where Rg = 1.566. This allows one to switch from entirely photon to phonon 
scattering just by varying the dot radius.

Figure 2.  Photonic/phononic scattering efficiency Qo/m in the E/g-Rg plane.

Figure 3.  Left: scattering efficiency for photons (orange) and phonons (black) in dependence on Rg. Here, 
E/g = 0.001, i.e., the size-parameter ER 1. For n = 2, Qm vanishes at .Rg 1 75, whereas Qo stays finite (see 
inset). Middle: photonic (orange) and phononic (black) reflection coefficients with l = 0 (dashed) and l = 1 
(solid) in dependence on Rg, where E/g = 0.158, i.e., the size-parameter ER 1. For better comparison, the 
phononic coefficients were divided by their upper bound vo/4vm. Rigth: photonic (orange) and phononic (black) 
scattering efficiency at E/g = 0.5; now ER 1. The cases Rg = 1.671, Rg = 1.566 and Rg = 6.78 are marked by (i), 
(ii), and (iii), respectively.
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If the size-parameter increases further, the situation changes again. Now even higher partial waves will be 
excited. In this regime, the photon scattering efficiency is always a larger than the phononic one. Approximating 
the resonance points by the zeros of the Bessel function is no longer possible; as a result both Qo, Qm > 0, cf. Fig. 3 
right. In the extreme limit ER 1, however, phonon scattering is negligibly small and does not have to be 
considered.

Having discussed the global scattering efficiency of the quantum dot, let us now analyze the spatial resolution 
of the wave transmisson and reflection. We start by investigating the scattering characteristics, specified by the 
probability density ρ = ψ†ψ and current density ψ ψ= ˆ†j j , in the near field, see Fig. 4. In the quantum dot region 
polaritons (mixed photon-phonon states) are formed. For very small size-parameters ER 1 and energies 
E/g < 1, the polariton density inside the dot becomes

Figure 4.  Scattering characteristics in the near field. Shown are the probability density ρ = ψ†ψ (left) and the 
current density σψ ψ= †j  for l = 0 (right; the circle marks the quantum dot), where ψ = ψt inside and 
ψ = ψin + ψref outside the dot. Results correspond to the resonances n = 1 and n = 2 given by Fig. 3 (left) and we 
have chosen R = 0.754 for n = 1 and R = 1.732 for n = 2 (with g = 1), where Qo = Qm (crossing of black and 
orange lines in the inset of the left panel in Fig. 3).

Figure 5.  Photonic (jo) and phononic (jm) angle-resolved far-field current [top] and first two photonic (orange) 
and phononic (black) reflection coefficients with l = 0 (dashed) and l = 1 (solid) [bottom] in dependence of E/g 
for the cases (i) and (ii) in the middle panel of Fig. 3. Again the phononic reflection coefficients |rm|2 are divided 
by vo/4vm. Arrows mark the energy E/g = 0.158 used in the middle panel of Fig. 3.
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Obviously, ρ is radially symmetric (we have used that → =±q q g v v/ o m  for E → 0). For resonant scattering 
the polariton density increases dramatically inside the dot, indicating a spatial and temporal ‘trapping’ of 
photon-phonon bound state, cf. Fig. 4, left panels. The resonance of the lowest partial wave l = 0 confines the 
‘quasiparticle’ about r = 0, while resonances with higher l > 0 (not shown) give rise to ring-like structures close to 
the dot boundary related to ‘whispering gallery modes’.

The current density inside the dot is given by
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The panels right in Fig. 4 show that the incident wave is fed into vortices which trap the polariton. For l = 0, 
two vortices arise for the n = 1 mode. Further vortices occur on the symmetry axis when n increases. In general, 
the vortex pattern of the l-th mode is dominated by 2(2l + 1) vortices which give rise to 2l + 1 preferred scattering 
directions in the far field for n = 1 (see below)29. We note that a very similar vortex pattern (scattering charac-
teristics) arises for moderate size-parameters ER ~ 1, e.g., for the cases (i) and (ii) in the middle panel of Fig. 3.

The current density of the reflected waves in the far field given by eq. (11) exhibits the already mentioned 
cosinusoidal angle distribution with maxima at φ = l′π/(2l + 1) where l′ ∈ {0, …, ± l}. Consequently, if the l = 0 
mode is resonant, only forward scattering takes place, whereas resonaces belonging to higher modes scatter the 
light respectively sound into different directions. This is illustrated by Fig. 5 (upper panels), for the far-field cur-
rents jo/m of a specific quantum dot system that preferably suppresses either the phonon [case(i)] or the photon 
[case(ii)] scattering [cf. Fig. 3, middle]. Accordingly, when the photonic partial wave with l = 1 becomes resonant, 
we observe three preferred scattering directions with equal intensity (left upper panel). Though a similar distribu-
tion results for the phononic resonance, now the forward scattering is somewhat enhanced as the lower l = 0 
mode substantially contributes (right upper panel). Note that both waves will never be scattered in the angle range 
φ π±  due to absence of backscattering. Most interestingly, the constructive and destructive interference 
between a resonant l mode and the off-resonant l = 0 mode can lead to a Fano resonance32 that for its part may 
cause a depletion of Klein tunneling, i.e., a suppression of forward scattering29. In this way, the interference 
between the first two photonic and phononic partial waves depicted in the lower panels of Fig. 5 give rise to Fano 
resonances, which are reflected in the almost vanishing currents jo/m at certain ratios E/g(φ), even for φ = 0 (see 
upper panels). Varying the energy of the incident wave therefore allows to control the scattering into pure photon 
or phonon waves, having preferred directions of propagation, with or without forward scattering.

For larger size-parameters, ER > 1, where many partial waves may become resonant [e.g., case (iii) in Fig. 3 
(right)], a rather complex structure of the far-field currents evolves. The two left panels in Fig. 6 display the ratio 
jo/jm in the Rg–φ plane and gives a polar plot of the light/sound emission. The figure corroborates the use of the 
considered setup as an optomechanical switch or light-sound translator. Finally, when ER 1 and the extent of 
the quantum dot is much greater than the wavelengths, the scattering shows features known from ray optics [cf. 
Fig. 6, middle right]. Such size parameters can only be realized by very large R, i.e., by a large number of cells (of 
the order of 108) enclosed in the quantum dot region. The excitation of a large number of partial waves and their 
interference results in a caustics-like pattern of the transmitted wave inside the quantum dot and, most strikingly, 
the circular optomechanical barrier acts as a lens, focusing the light beam in forward direction, whereas the 

Figure 6.  Left: angle-resolved ratio of photonic (jo) and phononic (jm) currents in the far field depending on Rg. 
Middle left: polar plot of the photonic (orange) and phononic (black) far-field currents (arbitrary units) for case 
(iii) of Fig. 3 [right panel] (marked by the vertical blue dashed line in the left panel). The phononic current was 
multiplied by a factor of four. Middle right: probability density ρ inside and outside the quantum dot. Right: 
photonic (orange) and phononic (black) currents in the far-field for R = 150 (g = 1), E = 0.5, i.e., the size-
parameter ER 1.
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sound propagation is depleted [cf. Fig. 6, right]. The far-field currents strongly oscillate when φ becomes finite, 
whereby the phonon contribution is on average much smaller than those of the photon.

To sum up, we have demonstrated Dirac physics in an optomechanical setting. Solving–within Dirac-Weyl 
theory–the problem of light scattering by circular barriers in artificial graphene composed of tunable optome-
chanical cells, we show that large quantum dots enable photon lensing, while small dots trigger the formation of 
polariton (photon-phonon) states which cause a spatial and temporal trapping of the incident wave in vortex-like 
structures, and a subsequent direction-dependent re-emittance of light and sound. In the latter case (quantum 
regime), the quantum dot can be used to entangle photons and phonons and convert light to sound waves and 
vice versa. Equally important, the forward scattering and Klein tunneling of photons could switched off for small 
dots by optically tuning a Fano resonance arising from the interference between resonant scattering and the 
background partition. In this way optomechanical cells might be utilized to transfer, store, translate and process 
information in (quantum) optical communications, or simply to realize a coherent interface between photons 
and phonons.
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