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SUMMARY

Emerging single-cell epigenomic assays are used to investigate the heterogeneity of chromatin 

activity and its function. However, identifying cells with distinct regulatory elements and clearly 

visualizing their relationships remains challenging. To this end, we introduce TooManyPeaks 

to address the need for the simultaneous study of chromatin state heterogeneity in both rare 

and abundant subpopulations. Our analyses of existing data from three widely used single-cell 

assays for transposase-accessible chromatin using sequencing (scATAC-seq) show the superior 

performance of TooManyPeaks in delineating and visualizing pure clusters of rare and abundant 

subpopulations. Furthermore, the application of TooManyPeaks to new scATAC-seq data from 

drug-naive and drug-resistant leukemic T cells clearly visualizes relationships among these cells 

and stratifies a rare “resistant-like” drug-naive sub-clone with distinct cis-regulatory elements.
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In brief

Schwartz et al. present TooManyPeaks, a suite of algorithms to explore and visualize 

heterogeneity of regulatory elements by using single-cell ATAC-seq data. Using TooManyPeaks’s 

functionalities, they find evidence that heterogeneity of the chromatin accessibility state 

contributes to the propensity of Notch-mutated T leukemic cells to develop resistance to Notch 

inhibitors.

INTRODUCTION

Cell-type-specific transcriptional diversity is largely set by the interactions between 

transcription factors and their cognate cis-regulatory elements within accessible chromatin 

regions. The emergence of single-cell/single-nucleus assays for transposase-accessible 

chromatin using sequencing (here, collectively called scATAC-seq) has enabled profiling 

of accessible cis-regulatory elements (here, interchangeably referred to as the epigenome) 

for thousands of individual cells. Unique characteristics of scATAC-seq readouts coupled 

with the increase in data volume have created a need for efficient computational tools 

for identifying and visualizing cells with similar chromatin accessibility, including rare 

populations. Although some scATAC-seq data analysis methods have been proposed, 

it still remains challenging to simultaneously identify and visualize rare and abundant 

subpopulations with distinct chromatin structures. To address this need, we introduce 

TooManyPeaks, which is equipped with several functionalities and provides a standalone 
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end-to-end solution for scATAC-seq analysis. We assessed the accuracy and efficiency of 

TooManyPeaks in identifying and visualizing both rare and abundant populations by using 

several benchmarks. Given the key role of Notch signals in T cell acute lymphoblastic 

leukemia (T-ALL), we also used TooManyPeaks to investigate how heterogeneity of cis

regulatory elements influences divergent responses to Notch antagonist gamma-secretase 

inhibitor (GSI) in T-ALL. TooManyPeaks is open source and available through https://

github.com/faryabib/too-many-cells#too-many-peaks.

RESULTS

TooManyPeaks relates cells with distinct chromatin states

To identify and visualize cell subpopulations with distinct cis-regulatory elements from 

scATAC-seq data, we introduce TooManyPeaks (Figure 1A). TooManyPeaks provides an 

end-to-end solution for scATAC-seq data analysis from chromatin accessibility readouts to 

multi-scalar renderings of cell group relationships and is integrated into the TooManyCells 

suite (Schwartz et al., 2020), a platform originally built for single-cell RNA-seq 

(scRNA-seq) data analysis. To this end, TooManyPeaks implements a number of graph

based algorithms to extract distinct cis-regulatory elements of both rare and abundant 

subpopulations and creates cell clade relationships from scATAC-seq data (Figure 1A; see 

STAR Methods). These cell clades are represented by a nested cluster structure in which 

relationships among the groups are maintained. In contrast to single-resolution clustering 

algorithms commonly used for scATAC-seq analysis (Li et al., 2020; Pliner et al., 2018; 

Bravo González-Blas et al., 2019; Cusanovich et al., 2018; Danese et al., 2019; Stuart et al., 

2020; Fang et al., 2021), each inner node of the TooManyPeaks output is a cluster at a given 

resolution and a leaf node is a finer-grain cluster for which any additional partitioning would 

be as informative as randomly separating the cells (see STAR Methods).

The TooManyPeaks tree-based visualization offers several advantages over “flat” two

dimensional portrayals of data provided by projection-based methods such as t-distributed 

stochastic neighbor embedding (t-SNE) and uniform manifold approximation and 

projection (UMAP) (van der Maaten and Hinton, 2008; McInnes et al., 2018). Although 

frequently used, projection-based methods generally do not report quantitative inter-cluster 

relationships and lack interpretable visualizations across clustering resolutions (Kobak and 

Linderman, 2021). To complement these existing single-resolution visualization methods 

and enable multi-resolution scATAC-seq data exploration, TooManyPeaks provides a 

fully customizable dendrogram for the visualization of inter-cluster relationships. To 

facilitate data exploration, we included many features in the TooManyPeaks visualization 

output including, but not limited to, branch scaling, weighted-average color blending, 

and statistically driven tree pruning. TooManyPeaks can also display outputs of other 

scATAC-seq clustering algorithms to quantify the relationships among their identified cell 

populations.

To enable an end-to-end built-in scATAC-seq analysis solution, TooManyPeaks provides 

several specialized and commonly used functionalities for scATAC-seq data analysis. For 

example, TooManyPeaks provides an algorithm for cell-type annotation based on input 

reference cis-regulatory elements of fluorescence-activated cell sorting (FACS)-purified 
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cells. TooManyPeaks can also perform cluster- and cell-label-specific peak calling, as 

well as differential accessibility analyses across various clustering resolutions. Furthermore, 

TooManyPeaks enables several downstream analyses by generating normalized genome 

browser tracks and incorporating motif analysis methods (Heinz et al., 2010; Bailey et al., 

2009) for each population. All TooManyPeaks functionalities can be readily set through its 

command-line interface (see STAR Methods).

TooManyPeaks accurately segregates and clearly visualizes rare cells

To assess the accuracy of cell clustering, we compared the outputs of TooManyPeaks and 

seven commonly used scATAC-seq clustering methods, as follows: APEC (Li et al., 2020), 

Cicero (Pliner et al., 2018), CisTopic (Bravo González-Blas et al., 2019), Cusanovich2018 

(Cusanovich et al., 2018), EpiScanpy (Danese et al., 2019), Signac (Stuart et al., 2020), 

and SnapATAC (Fang et al., 2021). Importantly, these methods use different combinations 

of features for cell clustering. TooManyPeaks and Cusanovich2018 use latent semantic 

analysis (LSA) (Deerwester et al., 1990) for producing features in lower dimensional 

space, whereas CisTopic uses latent Dirichlet allocation (LDA) to identify “topics” as a 

form of feature definition (Falush et al., 2003). In contrast, Cicero and APEC summarize 

scATAC-seq signals into gene activity scores and “accessons,” respectively. As CisTopic 

recommends density peak clustering but other selected algorithms use Louvain clustering, 

we also included CisTopic topics as features for Louvain clustering (referred to as CisTopic 

with Louvain) in our comparative analysis (see STAR Methods).

To assess the performance of each method in identifying homogeneous cell label clusters, 

we used purity (Manning et al., 2008), entropy (Tan et al., 2019), mutual information 

(Kvålseth, 2017), adjusted rand index (ARI), homogeneity (Rosenberg and Hirschberg, 

2007), and residual average Gini index (RAGI) (Chen et al., 2019). More homogeneous 

clusters result in higher purity, normalized mutual information (NMI), homogeneity, and 

RAGI, as well as lower entropy (see STAR Methods). We compared the ability of each 

algorithm to identify pure cell clusters of synthetic data (Chen et al., 2019; Figure 1B) 

and phenotypically defined cells within bone marrow and blood samples profiled using 

10x Genomics (Satpathy et al., 2019; Figure 1C) or Fluidigm C1 (Buenrostro et al., 

2018; Figure 1D) scATAC-seq platforms. We chose a 5-kb genomic bin size and 50 LSA 

dimension due to the low variability of performance across parameter choices (Figures S1A 

and S1B). As expected, TooManyPeaks resulted in low ARI, a measure that is sensitive 

to true label uncertainty and is biased against multi-resolution clustering methods (Chen 

et al., 2019). Nevertheless, TooManyPeaks, Cusanovich2018, and SnapATAC generated 

the purest clusters in both synthetic and complex real datasets included in this analysis 

(Figures 1B–1D). Together, these comprehensive analyses indicated the advantage of 

using TooManyPeaks for clustering individual cells based on their chromatin state, while 

maintaining their multi-scalar relationships in highly diverse hematopoietic cells.

Although some clustering methods provide resolution parameters to focus on small or 

large populations, concurrent identification and visualization of rare and abundant cells 

from scATAC-seq data remain challenging (Lancichinetti and Fortunato, 2011; Fang et al., 

2021). Previous clustering benchmarks (Figures 1C and 1D) measured the diversity of cell 
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labels within clusters, yet they did not directly quantify an algorithm’s ability to detect rare 

subpopulations with distinct regulatory elements. To rigorously assess the ability of various 

scATAC-seq clustering algorithms to simultaneously identify rare and abundant cells, we 

adapted our previous scRNA-seq rare population benchmark (Schwartz et al., 2020) to 

scATAC-seq. We used synthetic data (Navidi et al., 2021), 10x Genomics (Satpathy et al., 

2019), and Fluidigm C1 (Buenrostro et al., 2018) scATAC-seq datasets and generated several 

controlled cell admixtures with various ratios of one “common” and two equally abundant 

“rare” populations. We then assessed how each algorithm separated the two rare populations 

from each other and from the common population in 10 controlled cell admixtures with 

various levels of rare populations. We found that TooManyPeaks outperformed all other 

tested algorithms or tied with SnapATAC in recovering rare populations (Figures 1E–1G).

Feature choice can significantly affect scATAC-seq analysis outputs. Given that several 

genomic elements could be involved in the regulation of a gene, scATAC-seq data have 

orders of magnitude more features than scRNA-seq and cannot necessarily be collapsed to 

the resolution of genes. As such, genomic bins or peaks, defined as equal-sized genomic 

windows or loci with enriched accessibility in pseudo-bulk ATAC-seq, respectively, are 

commonly used as scATAC-seq analysis features (Chen et al., 2019). Alternatively, some 

algorithms use topic and gene activity features. TooManyPeaks can readily compute on 

all four types of features (Figures S1C–S1H). More importantly, our data revealed that 

TooManyPeaks, Cusanovich2018, and SnapATAC, which are algorithms that use genomic 

bin features, show superior performance in detecting rare cells compared to algorithms using 

peaks or other features (Figures 1F and 1G). Timing benchmark on a set of 2,954 cells 

(Figure S1I) further showed that TooManyPeaks operates at a comparable rate or faster than 

other algorithms, even with its multi-resolution output.

TooManyPeaks classifies and relates cells from mouse bone marrow and spleen

Cell-type classification is one of the major applications of scATAC-seq analysis. To this 

end, we equipped TooManyPeaks with functionality to annotate individual cells based on 

input reference cis-regulatory element sets, including those from FACS-sorted bulk ATAC

seq data. Briefly, TooManyPeaks implements a fast bipartite-graph algorithm using cosine 

similarity to assign each cell to one of the reference cell types with a known cis-regulatory 

element repertoire (see STAR Methods and Figure 1A). To assess the efficacy of the 

TooManyPeaks cell-type classification, we annotated murine bone marrow and spleen cells 

(Cusanovich et al., 2018) based on reference cis-regulatory elements defined by bulk ATAC

seq analysis of 92 FACS-purified progenitor and differentiated hematopoietic cells (Yoshida 

et al., 2019). Visual inspection of the TooManyPeaks tree showed general separation of 

major phenotypically defined hematopoietic cell types (e.g., B cells segregate into a single 

branch) without or with modularity-guided pruning (Schwartz et al., 2020; Figures S2 and 

2A).

To further inspect the localization of more refined cellular sub-types, we next overlayed 

the positions of late transitional T3 B cells on the TooManyPeaks tree and projection 

outputs of all other algorithms included in this analysis including PAGA, which attempts 

to conserve and display global topology by using a network (Wolf et al., 2019; Figures 
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2B–2J). Interestingly, Cicero failed to complete the analysis of 16,749 cells. T3 B cells were 

mostly compartmentalized within a single TooManyPeaks tree branch (Figure 2B), whereas 

they were spread across the projection plots (Figures 2C–2J, left panels) and separated 

into multiple clusters (Figures 2C–2J, right panels) with the other algorithms. Notably, T3 

B cells were spread out over 13 nodes of the PAGA network (Figure 2J). Furthermore, 

quantitative assessment of cell-type classification based on reference cis-regulatory elements 

of hematopoietic cells showed the improved performance of TooManyPeaks compared to all 

the other algorithms in accurately detecting (Figure 2K) and clearly visualizing (Figure S3) 

92 distinct cell types in murine bone marrow and spleen.

Similar to the T3 B cell analysis of single-cell combinatorial indexing ATAC-seq (sciATAC

seq) data (Cusanovich et al., 2018; Figure 2), human hematopoietic stem cells (HSCs) 

profiled with the Fluidigm C1 platform (Buenrostro et al., 2018) were clearly distinguishable 

within the TooManyPeaks tree, but not in the projection plots of other algorithms, and the 

PAGA network (Figure S4).

TooManyPeaks determines the unique chromatin state of GSI-“resistant-like” drug-naive 
T-ALL cells

Notch mutations are observed in nearly 60% of patients with T-ALL and correlate with 

poor prognosis (Marks et al., 2009). These observations provide a compelling rationale 

for focusing on Notch signaling antagonists, such as GSI, as targeted therapies for Notch

mutated T-ALL. Nevertheless, progress toward targeted treatment of Notch-mutated T-ALL 

has been stymied partly due to a limited understanding of GSI-resistance acquisition. To 

investigate the underlying mechanisms of GSI resistance, we selected for GSI-resistant 

T-ALL cells by prolonged treatment of parental NOTCH1-mutated DND-41 cells with a 

high GSI dose (Schwartz et al., 2020). Given the genetic homogeneity of DND-41 cells and 

results of earlier studies showing the reversibility of the GSI resistance phenotype (Knoechel 

et al., 2014), we hypothesized that epigenetic differences contribute to the divergence of 

parental cells with resistant-like regulatory programs from non-resistant-like parental cells.

To test this hypothesis, we measured the accessibility of chromatin in 7,989 parental and 

GSI-resistant DND-41 cells. TooManyPeaks revealed that although parental cells are largely 

segregated from resistant cells, a rare resistant-like subpopulation of 144 parental cells had 

a chromatin state similar to that of the GSI-resistant cells (Figures 3A and S5A). Analyses 

with other selected tools (Figures S5B–S5E and S6A–S6E) showed resistant-like from non

resistant-like parental cells were separated partially. Nevertheless, the flat outputs of these 

algorithms generally obscured full separation of resistant-like cells from non-resistant-like 

parental cells. In contrast, the TooManyPeaks tree immediately rendered the relationship 

between resistant-like parental and resistant cells and clearly placed them within the 

resistant-cell-dominant subtree (Figure 3A).

To gain insights into transcriptional regulatory programs conferring resistance to GSI, we 

used TooManyPeaks to directly compare the chromatin accessibility of resistant-like and 

non-resistant-like parental cells. We identified 28,593 genomic elements with significantly 

higher accessibility in resistant-like cells (q < 0.05; see STAR Methods), which were 

collectively enriched with motifs associated with transcription factors with known functions 
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in T cell development, transformation, and malignancies, such as GATA3, RUNX1, and 

MYC (Figure S7A; Table S1). Integration of scATAC-seq and scRNA-seq data (Table S1) 

further revealed that MYC had both significantly elevated expression (Figure S7B; Table S1) 

and higher accessible consensus binding sequences in the resistant-like parental cells (Figure 

S7C).

Guided by the differential activity of MYC in resistant-like cells, we used TooManyPeaks to 

map putative MYC regulatory elements in GSI-resistant and non-resistant-like parental cells. 

Concordant with transcriptional levels, the MYC promoter was active in both non-resistant

like parental and GSI-resistant cells (Figures 3B and 3C; Table S2). Our scATAC-seq data 

of non-resistant-like parental cells delineated clusters of accessible elements within ~2-Mb 

region 3′ of the MYC promoter (Figure 3B). Importantly, we observed marked differences 

in accessibility of three chromatin regions flanking the MYC promoter when comparing 

non-resistant-like parental and GSI-resistant cells (Figure 3B). Accessibility of genomic 

element E1 (~1.42-Mb 3′ of the MYC promoter), and E2 (~1.5-Mb 3′ of the MYC promoter 

and proximal to the long non-protein coding gene LINC00977) were significantly (p < 

0.05 and q < 0.05) reduced in the GSI-resistant cells (Figures 3B, 3D, 3E, 3G, and S7D; 

Table S2; E1: log2FC = − 1.74 and E2: log2FC = − 2.78). In contrast, genomic element 

cluster E3 (~1.85-Mb 3′ of the MYC promoter) significantly gained accessibility in the 

GSI-resistant cells (Figures 3B, 3F, 3G, and S7D; Table S2; log2FC = 0.924). Together, this 

scATAC-seq analysis revealed significant chromatin restructuring of the MYC locus during 

GSI resistance development.

To further elucidate the function of differentially accessible elements at the MYC locus, 

we complemented our single-cell measurements with chromatin immunoprecipitation 

sequencing (ChIP-seq) analysis of enhancer histone mark H3K27ac. In concordance with 

the scATAC-seq data (Figures 3B and 3G), we recapitulated the loss of activity at E1 

and E2 and gain of activity in E3 in GSI-resistant cells (Figure 3B). Interestingly, earlier 

studies showed that although genomic element E1 binds the Notch transcription complex 

and functions as a Notch-dependent MYC enhancer, E2 does not bind Notch and functions 

as a Notch-independent MYC enhancer (Yashiro-Ohtani et al., 2014; Herranz et al., 2014; 

Shi et al., 2013). Together, our bulk ChIP-seq analysis confirmed our scATAC-seq results 

and further showed differential activity of Notch-dependent and Notch-independent MYC 
distal enhancers E1 and E3, as well as uncharacterized LINC00977-proximal putative MYC 
enhancer E2, in GSI-sensitive and GSI-resistant DND-41 cells.

To more directly test whether chromatin accessibility differences in drug-naive cells 

contribute to the GSI-resistant phenotype, we next benefited from our scATAC-seq data 

to identify potential chromatin changes underpinning differential MYC expression in the 

resistant-like compared to non-resistant-like parental cells (Figure S7B). Notch-independent 

MYC enhancer E3 was similarly accessible in the resistant-like and non-resistant-like 

parental cells (Figures 3B and 3G; Table S3). Similarly, the accessibility of Notch-dependent 

MYC enhancer E1 was comparable in these two subpopulations of parental cells (Figures 

3B and 3G; Table S3; log2FC = − 0.316, q = 2.65×10−3). In contrast, enhancer E2 

accessibility was markedly different between these two parental subpopulations (Figures 

3B and 3G). Similar to GSI-resistant cells, enhancer E2 was significantly less accessible in 
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resistant-like than in non-resistant-like subpopulation of parental cells (Figures 3B and 3G; 

Table S3; log2FC = − 0.802, q = 0.0286). To assess if the loss of enhancer E2 accessibility 

may further affect LINC00977 expression, we used TooManyCells (Schwartz et al., 2020) to 

quantify LINC00977 transcript levels in 7,371 parental and resistant cells (Figures 3H and 

3I). This scRNA-seq analysis revealed that LINC00977 expression was markedly lower in 

the GSI-resistant cells than in non-resistant-like parental cells (Figures 3H and 3I; Table S4; 

log2FC = − 1.84, q < 2.22×10−16). Notably, in concordance with enhancer E2 accessibility 

loss (Figures 3B and 3G), we also observed reduced LINC00977 expression in resistant-like 

compared to non-resistant-like parental cells (Figures 3H and 3I, and Table S1; log2FC = − 

0.568, p = 0.117).

To further elucidate the underlying mechanisms of differential LINC00977-proximal 

enhancer E2 activity in the two parental sub-populations, we used motif search to explore 

transcription factors that potentially bound enhancer E2 in non-resistant-like but not 

resistant-like parental cells (Figure S7E; Table S5). These data revealed the presence of 

consensus binding motifs of TCF high-mobility group (HMG) family of proteins in the 

sequences of enhancer E2. Notably, scRNA-seq data showed significant downregulation 

of TCF-7, the gene encoding for T cell-lineage determinant factor TCF-1 (Johnson et 

al., 2018), in both GSI-resistant and resistant-like parental compared to non-resistant-like 

parental cells (Figures S7E and S7F; log2FC = − 2.63, q = 9.30×10−5). Together, these 

data suggest that in addition to MYC, differential activity of TCF-1 and its cognate 

regulatory elements such as LINC00977-proximal enhancer E2 may play a role in setting 

disparate epigenetic transcriptional regulatory programs in resistant-like and non-resistant

like parental sub-populations.

DISCUSSION

We developed TooManyPeaks, which provides complementary algorithms for clustering and 

visualizing scATAC-seq data. TooManyPeaks visualization and clustering are fundamentally 

different from projection-based visualization and single-resolution clustering. In addition to 

various visualization features, TooManyPeaks provides other capabilities including, but not 

limited to, flexible genomic feature options and cell type classification based on reference 

cis-regulatory elements. To enhance usability, TooManyPeaks is extensively documented 

(https://github.com/faryabib/too-many-cells#too-many-peaks) and is available as an easy-to

install standalone program through Nix or Docker.

Using the unique capabilities of TooManyPeaks, we identified a rare resistant-like 

population of Notch-mutated T-ALL DND-41 cells with chromatin accessibility more 

similar to GSI-resistant cells than non-resistant-like parental cells. Our new scATAC-seq 

data also suggested regulatory element markers of cells with a propensity for developing 

GSI resistance and signify potential transcription factor drivers of the resistance phenotype.
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STAR★METHODS

RESOURCE AVAILABILITY

Lead contact—Further information and requests for resources and reagents should 

be directed to and will be fulfilled by the lead contact, Robert B. Faryabi 

(faryabi@pennmedicine.upenn.edu).

Materials availability—This study did not generate new unique reagents.

Data and code availability—DND-41 T-ALL scATAC-seq and ChIP-seq data have been 

deposited at the Gene Expression Omnibus and are publicly available as of the date of 

publication. Accession numbers are listed in the Key resources table.

In addition, Bulk ATAC-seq of purified progenitor and differentiated hematopoietic cells, 

10x Genomics scATAC-seq, Fluidigm C1 scATAC-seq, sciATAC-seq, and GSI-resistant 

scRNA-seq data are existing, publicly available data. The accession numbers for these 

datasets are listed in the Key resources table.

All original software code has been deposited at https://github.com/faryabib/too-many

cells#too-many-peaks (source), https://hub.docker.com/repository/docker/gregoryschwartz/

too-many-cells/ (Docker), https://cran.r-project.org/web/packages/TooManyCellsR (R 

wrapper), and https://github.com/faryabib/CellReports_TooManyPeaks_analysis (analysis 

code) and is publicly available as of the date of publication. DOIs are listed in the Key 

resources table.

Any additional information required to reanalyze the data reported in this paper is available 

from the lead contact upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

GSI-resistant T-ALL cell culture—DND-41 cells (DSMZ, cat# ACC525) were 

purchased from the Leibniz-Institute DSMZ-German Collection of Microorganisms and 

Cell Lines. These male cells were cultured in RPMI 1,640 (Corning, cat# 10-040-CM) 

supplemented with 10% fetal bovine serum (Thermo Fisher Scientific, cat# SH30070.03), 

2 mM L-glutamine (Corning, cat# 25-005-CI), 100 Ug/mL and 100 μg mL−1 penicillin/

streptomycin (Corning, cat# 30-002-CI), 100 mM nonessential amino acids (GIBCO, 

cat# 11140-050), 1 mM sodium pyruvate (GIBCO, cat# 11360-070) and 0.1 mM of 2

mercaptoethanol (Sigma, cat# M6250). All cells were grown at 37°C and 5% CO2 with 

media refreshed every 3–4 days. Cells were regularly tested for mycoplasma contamination.

IC50 values for gamma-secretase inhibitor (GSI) compound E (Calbiochem, cat# 565790) 

were calculated from dose-response curves using CellTiter Glo Luminescent Cell Viability 

Assay (Promega, cat# G7571). Briefly, 1,000 treatment-naive DND-41 cells in 5 replicates/

condition were plated in 96-well plates with vehicle or increasing concentrations of GSI 

(0.016, 0.031, 0.062, 0.125, 0.25, 0.5, 1, 2 μM). Luminescence was measured on day 

7 with CellTiter Glo Luminescent Cell Viability Assay according to the manufacturer’s 

instructions. DND-41 IC50 of GSI was determined to be 5 nM.
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To generate GSI-resistant cells, DND-41 treatment-naive cells were cultured in the presence 

of 125 nM GSI for at least six weeks. The establishment of GSI-resistance was determined 

with IC50 assay as described above. GSI-resistant DND-41 cells can tolerate 10 mM GSI 

with less than 20% cell death. Short-term DMSO treatment was performed on treatment

naive DND-41 cells with 125 nM DMSO for 24 hours.

METHOD DETAILS

GSI-resistant T-ALL single-cell ATAC-sequencing—We performed single-cell 

ATACseq for parental and GSI-resistant DND-41 cells following manufacture’s instructions 

for Chromium Single Cell ATAC Library & Gel Bead Kit and Chromium Chip E Single 

Cell ATAC Kit (10x Genomics). Briefly, we loaded cells onto independent channels of 

a Chromium Controller for targeted recovery of 4,000 cells per condition. We assessed 

libraries with Agilent TapeStation using High sensitivity D1000 chip and quantified using 

KAPA Library Quantification Kits for Illumina platform (KAPA Bio-systems, Roche, cat# 

KK4824). We performed paired-end sequencing on NextSeq 550 using 150 cycles High 

Output kit.

We performed FASTQ file generation and alignment to hg19 using Cell Ranger ATAC 

v1.2.0 (Satpathy et al., 2019) default arguments. We aggregated these cells using Cell 

Ranger. We sequenced parental and GSI-resistant cells at 253,594,800 and 252,343,254 

read pair depth, respectively. In total, 8,041 cells passed the Cell Ranger QC and showed 

the typical “knee” plots indicating high quality from DMSO-treated parental (3,887) and 

GSI-resistant (4,154). We used sequence fragments of parental and resistant cells, with 

median of 13,238 and 33,523 per cell respectively, either directly as TooManyPeaks and 

SnapATAC inputs, or indirectly as Cicero, CisTopic, EpiScanpy, Cusanovich2018, APEC, 

Signac, and PAGA via pseudo-bulk ATAC-seq peak calling.

H3K27ac ChIP-seq—We performed H3K27ac ChIP-seq as previously described (Petrovic 

et al., 2019). Briefly, we sonicated and cleared chromatin samples prepared from 107 fixed 

cells with recombinant protein G–conjugated Agarose beads (Invitrogen, cat# 15920-010) 

and subsequently immunoprecipitated these cells with antibodies recognizing H3K27ac 

(Active Motif, cat# 39133). We captured Antibody-chromatin complexes with recombinant 

protein G–conjugated Agarose beads, washed them with Low Salt Wash Buffer, High 

Salt Wash Buffer, LiCl Wash Buffer and TE buffer with 50mM NaCl and eluted them. 

After reversal of cross-linking, we performed RNase and Proteinase K (Invitrogen, cat# 

25530-049) treatment and purified DNA with QIAquick PCR Purification Kit (QIAGEN, 

cat# 28106). We then prepared libraries using the NEBNext Ultra II DNA library Prep 

Kit for Illumina (NEB, cat# E7645S). We validated indexed libraries for quality and size 

distribution using a TapeStation 2200 (Agilent). We performed paired-end sequencing (38 

bp+38 bp) on a NextSeq 550.

Reads from H3K27ac ChIP-seq experiments were trimmed with Trim Galore (version 

0.4.1, https://www.bioinformatics.babraham.ac.uk/projects/trim_galore/) with parameters -q 

15–phred33–gzip–stringency 5 -e 0.1–length 20. Trimmed reads were aligned to the 

Ensembl GRCh37.75 primary assembly including chromosome 1–22, chrX, chrY, chrM 
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and contigs using BWA (version 0.7.13) (Li and Durbin, 2009) with parameters bwa aln -q 

5 -l 32 -k 2 -t 6 and paired-end reads were group with bwa sampe -P -o 1000000. Reads 

mapped to contigs, ENCODE blacklist and marked as duplicates by Picard (version 2.1.0, 

https://broadinstitute.github.io/picard/) were discarded and the remaining reads were used in 

downstream analyses and visualization. Bedgraph of reads normalized to reads per million 

(RPM) from ChIP-seq were generated with bedtools genomecov (Quinlan and Hall, 2010). 

Genome-wide uploadable bigWig files were generated with UCSC tools (version 329) (Kent 

et al., 2010) bedGraphToBigWig.

QUANTIFICATION AND STATISTICAL ANALYSIS

TooManyPeaks analysis of scATAC-seq data—TooManyPeaks is a collection of 

specialized functionalities and entry points for the parent suite TooManyCells, and extends 

TooManyCells to analyze chromatin accessibility of individual cells. TooManyPeaks 

provides many additional functionalities such as processing genomic region features (e.g., 

parsing regions for merging features) for sequence fragment file and / or peak matrix input, 

binning of regions, filtering out “black list” regions, and dimensionality reduction with LSA. 

In addition TooManyPeaks provides TooManyCells with several new entry points: peaks 

for peak finding with MACS2 (customizable with any other program), motifs for de novo 
or known motif search with MEME or HOMER (customizable with any other program), 

and classify for cell-type assignment from bulk ATAC-seq. While both MACS2 and MEME 

are included in the Nix derivation, any command line program can be integrated into the 

TooManyPeaks framework for use with these entry points.

Accessibility matrix—Given a sequence fragment file where each line consists of 

an initial three BED columns followed by cell barcode and duplicate count columns, 

TooManyPeaks initially generates an m×n matrix M of m observations (cells) and n genomic 

loci (equal-size genomic bins or pseudo-bulk ATAC-seq peaks) features, where M(i,j) is 

the number of counts for cell i at feature j. When starting from a fragments file, “black 

list” regions of the genome are known to have high signal (Amemiya et al., 2019). All 

analyses presented here that originate from a sequence fragment file filter out known 

“black list” regions with erroneously high signal (Amemiya et al., 2019), unless otherwise 

specified using–blacklist-regions-file. The width of genomic bin features across all the 

cells specified using–binwidth, which is set here to 5000 bp unless stated otherwise. By 

default, TooManyPeaks converts the matrix into a binary matrix to represent accessible or 

inaccessible sites.

Tree of single-cell clades—Potentially due to the “curse of dimensionality,” the large 

number of features in scATAC-seq data may result in every cell being an outlier, which 

in turn leads to low modularity in the initial bi-partitioning and stops the tree generation 

prematurely. To avoid this situation, we use latent semantic analysis for dimensionality 

reduction (here using 50 dimensions with–lsa) (Deerwester et al., 1990). TooManyPeaks 

passes this reduced feature space matrix to TooManyCells, which generates a tree of single

cell relationships based on the accessibility of their chromatins. Briefly, we generate a tree 

of cell clade relationships by recursively bi-partitioning the cells using an efficient matrix

free divisive hierarchical spectral clustering (Schwartz et al., 2020). To simultaneously 
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detect large and small populations and avoid creating arbitrary small clusters, we use 

Newman-Girvan modularity (Newman and Girvan, 2004) as a stopping criterion for 

recursive cell bi-partitioning. The TooManyPeaks divisive hierarchical spectral clustering 

algorithm produces a nested cluster structure where relationships among the groups are 

maintained.

Peak calling and downstream analyses—Each node in the tree contains a collection 

of cells. The TooManyPeaks peaks entry point can be used to directly call peaks using 

MACS2 that is integrated into TooManyPeaks. TooManyPeaks calls peaks at each node 

specified (or all nodes) for downstream differential peak calculations. TooManyPeaks can 

be instructed with the–bedgraph option to generate bedGraph and bigWig files to visualize 

chromatin accessibility of each node on a genome browser. Given labels such as cell type 

or disease state, TooManyPeaks can also make tracks filtered for a label for a set of nodes. 

Transcription factor binding sequence motif search programs MEME and HOMER are 

integrated into TooManyPeaks and can be used to identify de novo motifs and search for 

known motifs for each node. TooManyPeaks motif analysis options can be controlled from 

the motifs entry point.

Classification based on reference elements—To assign cell types to individual cells 

in the TooManyPeaks tree, TooManyPeaks can use peaks from pseudo-bulk scATAC-seq or 

bulk ATAC-seq data from FACS-purified cells as reference cis-regulatory elements. Here, 

we annotated each murine bone marrow and spleen cells (Cusanovich et al., 2018) based 

on reference cis-regulatory elements. We generated reference cis-regulatory elements of 92 

phenotypically defined FACS-sorted progenitor and differentiated hematopoietic cell types 

by analyzing their bulk ATAC-seq. To this end, fastq files for 186 samples were obtained 

from ImmGenn GSE100738 (Yoshida et al., 2019), and aligned to mm9 genome with BWA 

(version 0.7.13) (Li and Durbin, 2009) with parameters bwa aln -q 5 -l 32 -k 2 -t 6, after 

trimming with Trim Galore (version 0.4.1) with parameters -q 15–phred33–gzip–stringency 

5 -e 0.1–length 20. Reads mapped to contigs, ENCODE blacklist, and marked as duplicates 

by Picard (version 2.1.0) were discarded and the remaining reads were used for peak calling 

and creating genome tracks.

Reproducible peaks in ATAC-seq replicates were identified following an implementation 

of ENCODE Irreproducible Discovery Rate (IDR) pipeline. Peaks in true replicates, 

pseudoreplicates, and pooled samples were identified using MACS (version 2.0.9) (Zhang et 

al., 2008) with parameters -p 1E-5 -g mm9–nomodel–format = BAM–bw = 300–keep-dup 

= 1. IDR cutoffs for true replicates, pseudoreplicates, and pooled samples were 0.05, 

0.05 and 0.005 respectively. Replicates with Np/Nt, 2 and N1/N2, 2 were considered 

reproducible. The resulting ATAC-seq peaks were used as reference cis-regulatory elements 

of 92 phenotypically defined progenitor and differentiated hematopoietic cell types.

Given a set of observations (cells) O = {1…m}, a set of features (regions or genes) F = 

{1…n}, a set of reference regulatory elements (pseudo-bulk scATAC-seq or bulk ATAC-seq 

FACS-purified populations) R = 1…r, an m×n observation feature matrix M and a new r×n 
reference matrix R, TooManyPeaks first normalizes each row in M and R such that for some 

m×n matrix X,
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p X i, j = ei−1X i, j , (Equation 1)

where ei = ∑k = 1
n X2 i, k  is the Euclidean norm of X row i. Then we can generate a new 

matrix S representing a bipartite graph of relationships between the observations in M and 

bulk populations in R with

S = p M p R T , (Equation 2)

where −1≤S(i,j)≤1 is the score (cosine similarity) of relatedness between observation 1≤i≤m 
to reference 1≤j≤r, with higher score indicating higher relatedness. Then the set of cell-type 

assignments A of length m by maximum score is defined by

Ai = max
j ∈ R

S i, j . (Equation 3)

Clustering benchmarks—We adapted the clustering benchmark for scRNA-seq as 

previously described (Schwartz et al., 2020) to scATAC-seq . Briefly, using TooManyPeaks, 

APEC (Li et al., 2020), Cicero (Pliner et al., 2018), CisTopic (Bravo González-Blas et 

al., 2019), CisTopic with Louvain, Cusanovich2018 (Cusanovich et al., 2018), EpiScanpy 

(Danese et al., 2019), Signac (Stuart et al., 2020), and SnapATAC (Fang et al., 2021), we 

clustered separately two datasets of phenotypically defined cells within bone marrow and 

blood samples profiled using 10x Genomics (Satpathy et al., 2019) (starting from a cell-by

peak file generated by TooManyPeaks to keep cells consistent) or Fluidigm C1 (Buenrostro 

et al., 2018) (starting from peaks as given in the dataset) scATAC-seq platforms. To increase 

the robustness of our benchmark, we additionally clustered a simulated bone marrow dataset 

with a moderate noise level of 0.2 (Chen et al., 2019). As Cicero and CisTopic focused on 

generating features, we also ensured a version of CisTopic using Louvain clustering from 

Signac instead of densityClust. We based this clustering benchmark on the assumption that 

similar cell types should cluster together. As such, we used purity (Manning et al., 2008), 

entropy (Tan et al., 2019), mutual information (Kvålseth, 2017), adjusted rand index (ARI), 

homogeneity (Rosenberg and Hirschberg, 2007), and residual average Gini index (RAGI) 

(Chen et al., 2019) to compare clustering performances between algorithms. In summary, 

entropy and homogeneity assess the extent of cell-type label diversity within clusters. Purity 

evaluates the extent of the dominant cell-type labels within the clusters. RAGI evaluates 

cluster-specificity of enrichment for marker accessible elements. Finally, NMI measures 

dependency of information of the cell-type labels given the cluster labels. RAGI requires 

gene activities as well as a list of known marker genes and housekeeping genes, so we used 

Cicero to generate the gene activity matrix and the gene lists originally given with RAGI’s 

introduction (Chen et al., 2019).

Purity is based on the frequency of the most abundant class (e.g., cell type) in a cluster. Let 

Ω = {ω1, ω2, …, ωK} be the set of clusters and ℂ = c1, c2, …, cJ  be the set of classes. Then 

purity is defined as
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purity Ω, ℂ = 1
N ∑

k
max

j
ωk ∩ cj ,

where N is the total number of cells, ωk is the set of cells in cluster k, and cj is the set of 

cells in class j (Manning et al., 2008). This measure ranges from 0, poor clustering, to 1, 

perfect clustering.

Entropy as a measure of cluster accuracy uses Shannon entropy (Shannon, 1948) to measure 

the expected amount of information from the clusters. The entropy of each cluster k is 

defined by

H ωk = ∑
j

ωkj
ωk

log
ωkj
ωk

,

where ωkj is the set of cells from ωk∩cj. Then the entropy for the entire clustering is (Tan et 

al., 2019)

entropy Ω, ℂ = ∑
k

ωk
N H ωk .

Here, lower entropy of a clustering indicates higher accuracy.

Normalized mutual information (NMI) measures the normalized dependency of the class 

labels on the cluster labels, or the amount of information about the class labels gained when 

the cluster labels are given. Mutual information is defined by

I Ω; ℂ = ∑
k

∑
j

ωk ∩ cj
N log

N ωk ∩ cj
ωk cj

.

To compare mutual information across clusterings, I Ω; ℂ  is normalized to the interval [0, 

1]. As I Ω; ℂ  is bounded by min H Ω , H ℂ  where

H Ω = − ∑
k

ωk
N log

ωk
N

is the entropy of Ω along with the analogous H ℂ , total normalization NMI can be defined 

by

NMI Ω, ℂ = I Ω; ℂ
min H Ω , H ℂ ,

where higher values indicate more accurate clustering based on ℂ (Kvålseth, 2017).
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Homogeneity makes the assumption that clusterings assign all members within a single 

cluster a single label. Therefore, the label distribution within a single cluster should result 

in zero entropy. Thus, the perfect case of homogeneity would be the Shannon entropy 

of H ℂ ∣ Ω = 0. Then, instead of the raw entropy, homogeneity produces the normalized 

entropy by the maximum reduction in entropy from the clustering, namely H ℂ . As 1 would 

be desirable as a maximum rather than 0, homogeneity is thus defined as (Rosenberg and 

Hirschberg, 2007)

ℎ =
1 if H ℂ ∣ Ω = 0

1 − H(ℂ ∣ Ω)
H(ℂ) otherwise

where

H ℂ ∣ Ω = − ∑
k

∑
j

ωkj
N log

ωkj
∑j ωkj .

Adjusted Rand Index (ARI) is calculated based on the number of pairings between two 

data clusterings, then adjusted for chance (Hubert and Arabie, 1985). Specifically, we first 

compute the Rand index

RI = TP + TN
TP + FP + FN + TN ,

where TP and FP is the number of true or false positives respectively, while TN and FN 
is the number of true or false negatives respectively, based on cells in the clustering pairs. 

Then, we can define the adjustment for chance as (Hubert and Arabie, 1985)

ARI = RI − Expected RI
max RI − Expected RI .

For single-cell clustering accuracy, this measure requires a “ground truth” which was based 

on the given labels from each published dataset which defines coarse labels which some 

algorithms, such as TooManyPeaks, attempt to further delineate. As such, TooManyPeaks 

tends to perform poorly when using this type of measure with ambiguous “ground truth” 

clusterings.

Residual Average Gini Index (RAGI) is a recently proposed measure to define accuracy 

based on accessibility between known housekeeping genes and marker genes (Chen et al., 

2019). This method first requires a gene activity matrix generated from the accessibility 

data, which we created using Cicero. Next, we calculate the mean accessibility values for 

all cells in each cluster. We use the Gini index on this vector of values based on either 

housekeeping genes or marker genes, both of which we used as previously reported (Chen 

et al., 2019). The Gini index (Gini, 1997) measures dispersion based on inequality among 
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values in a distribution. Briefly, if xi is the mean accessibility of i of all cells in a cluster, 

then the Gini index of n accessibility sites would be

G =
∑i = 1

n ∑j = 1
n xi − xj

2∑i = 1
n ∑j = 1

n xj
.

Then, we define the RAGI value as the difference in Gini index means between the 

housekeeping and marker genes for a clustering (Chen et al., 2019).

We used all algorithms with either default parameters as outlined in their function definitions 

or associated vignettes throughout the entire study which includes preprocessing with Seurat 

(Butler et al., 2018), with the exception of: knn = False in epi.pp.neighbors followed by 

episcanpy.tl.diffmap and another neighbor identification round for EpiScanpy and PAGA for 

visualizations to avoid low nearest neighbor errors as suggested by the Scanpy vignettes, 

and RunSVD with 3 dimensions to have fewer dimensions than topics in CisTopic with 

Louvain in the rare population benchmarks to also avoid an error. Furthermore, while the 

recommended latent semantic indexing (LSI, analogous to LSA) transformation through 

Signac was done to maintain a standard between Cicero and CisTopic with Louvain 

clusterings, topics were directly inputted into Signac UMAP for visualization of CisTopic 

with Louvain to avoid UMAP artifacts. All UMAP projections of the same data from 

different tools used the same seed.

Rare population benchmarks—We adapted the rare population benchmark for scRNA

seq as previously described to scATAC-seq (Schwartz et al., 2020). To this end, we 

generated ten random datasets each from two immune cell datasets using subsampling. 

The first set of ten samples included 1000 cells each with one common B cell population 

(ranging from 900 to 990 cells), one rare CD8+ T population (5 to 50 cells), and one 

rare T regulatory cell (Treg) population (5 to 50 cells) (starting from sequencing fragments 

or peaks, depending on which algorithm accepts which format as all cells were included) 

(Satpathy et al., 2019). The second set of ten samples included 500 cells each with one 

frequent common myeloid progenitor population (400 to 450 cells), one rare monocyte 

population (5 to 25 cells), and one rare plasmacytoid dendritic cell population (5 to 25 

cells), with fewer cells due to a smaller dataset (starting from peaks as given in the dataset) 

(Buenrostro et al., 2018). Additionally, we benchmarked on synthetic data generated using 

simATAC (Navidi et al., 2021), where each of the common and two rare populations were 

generated from different seeds.

To quantify these benchmarks, we calculated a contingency table of the fraction of pairwise 

labels. For all rare cell pairs, we called a true pair if the two cells were of the same cell type 

(e.g., a Treg with another Treg or a CD8+ T cell with another CD8+ T), while we assigned a 

false pair if the two cells were of different cell types (e.g., a Treg with a CD8+ T cell). Then, 

the measure for accuracy in this benchmark was the fraction of true pairs in all pairs.
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Timing benchmark—We ran each algorithm three times on a dataset of 2,954 cells 

(Buenrostro et al., 2018) using a machine with Ubuntu 20.04, 512GiB Memory, Intel® 

Xeon® CPU E5–2670 v3 @ 2.30GHz, 2 physical processors 24 cores, and 48 threads.

T-ALL scATAC-seq statistical analyses—We used the Kruskal-Wallis test with the 

Benjamini–Hochberg method for multiple-hypothesis correction (Benjamini and Hochberg, 

1995) for differential accessibility between populations normalized by total sequence 

fragment. For the differential expression analysis, we used edgeR (Robinson et al., 2010) 

for normalization and the Benjamini–Hochberg multiple-hypothesis correction with quasi

likelihood (QL) F-test p value.

T-ALL scATAC-seq motif analyses—We used HOMER findMotifsGenome.pl (Heinz et 

al., 2010) on the differential accessibility list of resistant-like / other parental cells, keeping 

peaks that were considered significant at q < 0.05. This process generated a list HOMER 

identified as known motifs differential between these subpopulations. To understand the 

ontology of these motifs, we then performed a Metascape (Zhou et al., 2019) analysis on 

the motifs significant at q < 0.05. To identify putative regulatory elements that correlated 

with differential expression, we intersected these found elements with the differential 

gene expression between resistant-like and non-resistant-like parental cells of this system 

(Schwartz et al., 2020).

In order to identify motifs for putative regulatory elements at the LINC00977 locus, we 

used FIMO (Bailey et al., 2009) on the LINC00977 peak using the JASPAR reference 

database (Sandelin et al., 2004). To identify regulatory elements correlating with differential 

gene expression as with the global analysis above, we intersected this candidate list with 

the differential gene expression between resistant-like and non-resistant-like parental cells 

(Schwartz et al., 2020).

Statistical parameter definitions—Definitions of statistical parameters such as n and 

box-plot notations are defined in their respective figure legends.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• TooManyPeaks identifies genomic element heterogeneity from single-cell 

ATAC-seq

• TooManyPeaks tree shows relationships among cells based on genomic 

elements

• Genomic element heterogeneity contributes to leukemia drug resistance

• Drug-naive leukemic cells exist with accessibility similar to that of resistant 

cells
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Figure 1. TooManyPeaks overview and performance comparison
(A) Graphical representation of the TooManyPeaks algorithm. Following the arrows 

from left to right, TooManyPeaks converts scATAC-seq data to a cell-by-bin matrix, 

binarizes each value (accessible or inaccessible), and identifies and visualizes cell clade 

relationships by using matrix-free divisive hierarchical spectral clustering (see STAR 

Methods). TooManyPeaks trees are interpreted by following the cell groups from the root 

(the largest inner node) to the leaves. A leaf node here is shown as a pie chart of its cell 

composition. The sizes of a leaf and branches are proportional to the number of cells in the 

node. TooManyPeaks may then perform several downstream analyses.

(B–D) Clustering benchmarks with, from left to right, lower entropy, higher purity, 

higher normalized mutual information (NMI), higher adjusted Rand index (ARI), higher 

homogeneity, and higher residual average Gini index (RAGI; not applicable to synthetic 

data) representing more accurate clustering of simulated bone marrow cells with a moderate 

noise level of 0.2 (Chen et al., 2019) (B), CD34+ hematopoietic progenitor cells profiled 
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using 10x Genomics (n = 7,771 cells) (Satpathy et al., 2019) (C), or Fluidigm C1 (n = 2,954 

cells) (Buenrostro et al., 2018) (D).

(E–G) Detection of cells from two “rare” populations mixed with a “common” population 

was benchmarked. Box-and-whisker plots quantifying the accuracy of rare population 

detection in controlled admixtures from various datasets (m = 10 admixtures), as follows: 

n = 1,000 synthetic cells generated by simATAC (Navidi et al., 2021) (E); n = 1,000 B 

(common), CD8+ T (“rare1”) and Treg cells (“rare2”) (Satpathy et al., 2019) (F); and n = 

500 common myeloid progenitors (CMPs) (common), monocytes (rare1), and plasmacytoid 

dendritic cells (pDC) (rare2) (Buenrostro et al., 2018) (G). Each point represents the average 

performance of 10 experiments from an admixture (100 admixtures overall). Performance 

indicates (true rare pairs (cells from the same rare population in the same cluster)/total 

rare pairs (true rare pairs and cells from different rare populations)). Box-and-whisker 

plots represent the following: center line, median; box limits, upper (75th) and lower (25th) 

percentiles; whiskers, 1.5 × interquartile range; points, outliers. See also Figure S1.
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Figure 2. Stratification and annotation of murine bone marrow and spleen cells
(A) The TooManyPeaks algorithm for cell-type annotation based on input reference cis

regulatory elements is used to predict the cell types in mouse bone marrow and spleen 

(n = 16,749 cells) (Cusanovich et al., 2018). Reference cis-regulatory elements of 92 

phenotypically defined progenitor and differentiated hematopoietic cell types are generated 

from the analyses of bulk ATAC-seq in FACS-sorted cells (Yoshida et al., 2019). A 

TooManyPeaks tree pruned at median(modularity) + 15 × MAD (modularity) threshold 

shows major hematopoietic lineages. At each bipartitioning, a darker circle circumference 

represents higher modularity.

(B–J) TooManyPeaks tree (B) and UMAP outputs (C–J) colored by T3 B cells (red, left) or 

cluster label (right) generated by the noted algorithms.

Schwartz et al. Page 24

Cell Rep. Author manuscript; available in PMC 2021 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(K) Clustering benchmarks with, from left to right, lower entropy, higher purity, 

higher NMI, higher ARI, and higher homogeneity showing more accurate clustering of 

phenotypically defined progenitor and differentiated hematopoietic cell types in mouse bone 

marrow and spleen by TooManyPeaks. An “X” marks algorithms that failed to complete. 

See also Figures S2, S3, and S4.
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Figure 3. TooManyPeaks identifies genomic elements specific to resistant-like parental T-ALL 
cells
(A) TooManyPeaks tree of parental (n = 3,831 cells) and GSI-resistant (n = 4,158 cells) 

DND-41 T-ALL cells showing a resistant-like parental subpopulation of n = 144 cells.

(B) Genome tracks highlight key genomic elements at the MYC locus from 5′ to 3′, 
as follows: MYC promoter, Notch-dependent MYC enhancer E1, LINC00977-proximal 

enhancer E2, and Notch-independent MYC enhancer E3. The top two and bottom two tracks 

show H3K27ac and aggregated scATAC-seq of DND-41 populations in (A), respectively.

(C–F) TooManyPeaks tree as in (A) showing the accessibility of the MYC promotor (C) and 

enhancers E1 (D), E2 (E), and E3 (F).

(G) Box-and-whisker plot showing normalized accessibility at each locus in (B) for each 

population from (A).
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(H) TooManyCells tree of gene expression showing elevated LINC00977 levels in the 

parental population (n = 7,371 cells).

(I) Box-and-whisker plot quantifying upper-quartile-normalized LINC00977 expression in 

each population from (H). See also Figures S5, S6, and S7 and Tables S1, S2, S3, S4, and 

S5.
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Rabbit polyclonal anti-H3 acetyl-K27 Active Motif Cat# 39133; RRID:AB_2561016

Chemicals, peptides, and recombinant 
proteins

Recombinant Protein G Agarose Invitrogen Cat# 15920-010

Proteinase K Invitrogen Cat# 25530-049

RNase A Roche Cat# 10109169001

γ-Secretase Inhibitor XXI (compound E) Calbiochem Cat# 565790

RPMI 1640 Corning Cat# 10-040-CM

HyClone Fetal bovine serum Thermo Fisher Scientific Cat# SH30070.03

L-glutamine Corning Cat# 25-005-CI

Penicillin-Streptomycin Corning Cat# 30-002-CI

MEM Non-Essential Amino Acids GIBCO Cat# 11140-050

Sodium Pyruvate GIBCO Cat# 11360-070

Glycine Invitrogen Cat# 15527-013

Pierce 16% Formaldehyde Thermo Fisher Scientific Cat# 28908

Trizma Hydrochloride Solution, pH 7.4 Sigma-Aldrich Cat# T2194-100ml

Sodium Chloride Solution, 5M Sigma-Aldrich Cat# 59222C-500ml

Magnesium Chloride Solution, 1M Sigma-Aldrich Cat# M1028-100ml

Nonidet P40 Substitute Sigma-Aldrich Cat# 74385-5l

MACS BSA Stock Solution Miltenyi Biotec Cat# 130-091-376

Flowmi Cell Strainer, 40 mm Bel-Art Cat# H13680-0040

Digitonin Thermo Fisher Scientific Cat# BN2006

Dulbecco’s Phosphate-Buffered Salt 
Solution 1X

Corning Cat# 21031CV

Critical commercial assays

KAPA Library Quant Kit Roche Cat# KK4824

D1000 ScreenTape Agilent Cat# 5067-5582

D1000 Reagents Agilent Cat# 5067-5583

High Sensitivity D1000 ScreenTape Agilent Cat# 5067-5584

High Sensitivity D1000 Reagents Agilent Cat# 5067-5585

QIAquick PCR Purification Kit QIAGEN Cat# 28106

NEBNext Ultra II DNA Library Prep Kit NEB Cat# E7645S

Chromium Single Cell ATAC Library & 
Gel Bead Kit, 4 rxns

10X GENOMICS Cat# PN-1000111

Chromium i7 Multiplex Kit N, Set A 10X GENOMICS Cat# PN-1000084

Chromium Chip E Single Cell ATAC Kit, 
48 rxns

10X GENOMICS Cat# PN-1000082

NextSeq® 500/550 High Output Kit v2 
(75 cycles)

Illumina Cat# FC-404-2005

NextSeq® 500/550 High Output Kit v2 
(150 cycles)

Illumina Cat# FC-404-2002
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REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

Raw and analyzed scATAC-seq data This paper GEO: GSE155916

Raw and analyzed ChIP-seq data This paper GEO: GSE171098

Bulk ATAC-seq of purified progenitor and 
differentiated hematopoietic cells

Yoshida et al., 2019; https://doi.org/
10.1016/j.cell.2018.12.036

GEO: GSE100738

10x Genomics scATAC-seq of 
CD34\textsuperscript{+} hematopoietic 
progenitor cells

Satpathy et al., 2019; https://doi.org/
10.1038/s41587-019-0206-z

GEO: GSE129785

Fluidigm C1 scATAC-seq of 
CD34\textsuperscript{+} hematopoietic 
progenitor cells

Buenrostro et al., 2018; https://doi.org/
10.1016/j.cell.2018.03.074

GEO: GSE96769

sciATAC-seq of murine marrow and spleen 
cells

Cusanovich et al., 2018; https://doi.org/
10.1016/j.cell.2018.06.052

GEO: GSE111586

scRNA-seq of GSI-resistant DND-41 cells Schwartz et al., 2020; https://doi.org/
10.1038/s41592-020-0748-5

GEO: GSE138892

Experimental models: Cell lines

DND-41 DSMZ ACC 525

Software and algorithms

APEC v1.2.2 Li et al., 2020; https://doi.org/10.1186/
s13059-020-02034-y

https://github.com/QuKunLab/APEC

Cicero v1.9.1 Pliner et al., 2018; https://doi.org/10.1016/
j.molcel.2018.06.044

https://github.com/cole-trapnell-lab/cicero-release

CisTopic v0.3.0 Bravo González-Blas et al., 2019; https://
doi.org/10.1038/s41592-019-0367-1

https://github.com/aertslab/cisTopic

Cusanovich2018 Cusanovich et al., 2018; https://doi.org/
10.1016/j.cell.2018.06.052

This paper https://github.com/faryabib/
CellReports_TooManyPeaks_analysis

EpiScanpy v0.3.0 Danese et al., 2019; https://doi.org/
10.1101/648097

https://github.com/colomemaria/epiScanpy

Seurat v3.2.3 Butler et al., 2018; https://doi.org/10.1038/
nbt.4096

https://github.com/satijalab/seurat

Signac v1.1.0 Stuart et al., 2020; https://doi.org/
10.1101/2020.11.09.373613

https://github.com/timoast/signac

SnapATAC v1.0.0 Fang et al., 2021; https://doi.org/10.1038/
s41467-021-21583-9

https://github.com/r3fang/SnapATAC

tsne v0.1.3 van der Maaten and Hinton, 2008 https://github.com/jdonaldson/rtsne/

TooManyPeaks v2.2.0.0 This paper https://doi.org/10.5281/
zenodo.5130671

https://github.com/faryabib/too-many-cells#too
many-peaks

TooManyPeaks analysis code This paper https://doi.org/10.5281/
zenodo.5130655

https://github.com/faryabib/
CellReports_TooManyPeaks_analysis

R wrapper for TooManyCells v0.1.1.0 Schwartz et al., 2020; https://doi.org/
10.1038/s41592-020-0748-5

https://github.com/GregorySchwartz/
tooManyCellsR

umap-learn v0.4.6 McInnes et al., 2018; https://doi.org/
10.21105/joss.00861

https://github.com/lmcinnes/

HOMER v4.9 Heinz et al., 2010; https://doi.org/10.1016/
j.molcel.2010.05.004

http://homer.ucsd.edu/homer

bedtools v2.30.0 Quinlan and Hall, 2010; https://doi.org/
10.1093/bioinformatics/btq033

http://bedtools.readthedocs.io/en/stable

BWAv0.7.13 Li and Durbin, 2009; https://doi.org/
10.1093/bioinformatics/btp324

http://bio-bwa.sourceforge.net

Cell Ranger ATAC v1.2.0 Satpathy et al., 2019; https://doi.org/
10.1038/s41587-019-0206-z

https://support.10xgenomics.com/single-cell-atac/
software/pipelines/latest/what-is-cell-ranger-atac

Picard v2.1.0 Broad Institute https://github.com/broadinstitute/picard
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REAGENT or RESOURCE SOURCE IDENTIFIER

Trim Galore v0.4.1 Babraham Bioinformatics https://www.bioinformatics.babraham.ac.uk/
projects/trim_galore

UCSC tools v404 Kent et al., 2010; https://doi.org/10.1093/
bioinformatics/btq351

https://github.com/ucscGenomeBrowser/kent
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