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Abstract

Herpesviruses are enveloped viruses prevalent in the human population, responsible for a host of 

pathologies ranging from cold sores to birth defects and cancers. They are characterized by a 

highly pressurized, T (triangulation number) = 16 pseudo-icosahedral capsid encapsidating a 

tightly packed dsDNA genome1–3. A key process in the herpesvirus life cycle involves the 

recruitment of an ATP-driven terminase to a unique portal vertex to recognize, package, and cleave 

concatemeric dsDNA, ultimately giving rise to a pressurized, genome-containing virion4,5. 

Though this process has been studied in dsDNA phages6–9—with which herpesviruses bear some 

similarities—a lack of high-resolution in situ structures of genome-packaging machinery has 

prevented the elucidation of how these multi-step reactions, which require close coordination 

among multiple actors, occur in an integrated environment. Thus, to better define the structural 

basis of genome packaging and organization in the prototypical herpesvirus, herpes simplex virus 

type 1 (HSV-1), we developed sequential localized classification and symmetry relaxation 

methods to process cryoEM images of HSV-1 virions, enabling us to decouple and reconstruct 

hetero-symmetric and asymmetric elements within the pseudo-icosahedral capsid. Here we show 

in situ structures of the unique portal vertex, genomic termini, and ordered dsDNA coils in the 

capsid spooled around a disordered dsDNA core. We identify tentacle-like helices and a globular 
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complex capping the portal vertex not observed in phages, indicative of adaptations in the DNA-

packaging process specific to herpesviruses. Finally, our atomic models of portal vertex elements 

reveal how the five-fold-related capsid accommodates symmetry mismatch imparted by the 

dodecameric portal—long a mystery in icosahedral viruses—and inform possible DNA sequence-

recognition and headful-sensing pathways involved in genome packaging. Our work represents the 

first fully symmetry-resolved structure of a portal vertex and first atomic model of a portal 

complex in a eukaryotic virus.

Applying our method of symmetry relaxation, we first sorted out the unique portal vertex 

from eleven penton vertices for each capsid, obtaining a 4.3-Å resolution structure of the 

portal vertex region with 5-fold (C5) symmetry (Extended Data Table 1; Extended Data 

Figs. 1–2). Subsequent rounds of sequential localized classification and sub-particle 

reconstruction yielded four other reconstructions: a 12-fold-symmetric (C12) reconstruction 

of the dodecameric portal (Extended Data Fig. 2a,e) and asymmetric (C1) reconstructions of 

the portal vertex region (Extended Data Fig. 2a,d), genome-containing virion (Extended 

Data Fig. 2a,f), and genome terminus in the DNA translocation channel (Extended Data Fig. 

2b,g; Extended Data Table 1). Segmenting and aligning these reconstructions allow for the 

simultaneous visualization of all elements in the capsid-associated tegument complex 

(CATC)-decorated, genome-containing capsid (Fig. 1a; Supplementary Video 1).

Our C1 virion reconstruction reveals ordered, concentric dsDNA shells spooled in a left-

handed manner around a disordered, ellipsoidal core of dsDNA (Fig. 1b). Up to ten 

concentrically equidistant layers are distinguishable, which we denote alphabetically from 

the outside in (Fig. 1c). As expected given the extreme space constraints within the capsid, 

inter- and intra-layer dsDNA strands exhibit a space-efficient honeycomb topology, 

consistent with indications of near-crystalline genomic packing in many dsDNA viruses10,11. 

Two other genomic structures are visible at the portal vertex. An asymmetric serpent-like 

density exhibiting major grooves and two distinctive right-handed toroidal regions occupies 

the portal vertex channel extending from the base of the portal to a portal vertex-capping 

density (Fig. 1d). On account of phage studies indicating one viral genomic end is so 

positioned as to poise the genome for ejection7,10 as well as the consensus that the last-

packaged end is the first ejected12, we interpret this serpent-like density to be the last-

packaged end of the HSV-1 genome and name it “terminal DNA”. In close proximity, a 

ringed density exhibits faint groove-like patterns and encircles the base of the dodecameric 

portal (Fig. 1d). Notably, this ringed density is exceptionally strong relative to adjacent 

concentric genomic density, indicative of an especially strong and perhaps specific 

association with the portal. Intriguingly, a previous study demonstrated that T4 phage’s 

genomic ends are consistently localized to maintain a 9-nm separation13. Given HSV-1 

portal vertex contains ~11-nm long “tentacle helices” for which T4 has no analogues, the 

~20-nm distance between the last-packaged end of terminal DNA and the portal-anchored 

ringed density suggest the ringed density to be the first-packaged anchoring segment of 

genome. We thus name this density “anchor DNA”.

We next atomically modeled pUL6 using our C12 portal reconstruction (Fig. 2a; Extended 

Data Table 1). Structurally, each 676 amino acid (aa) pUL6 monomer consists of five 
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domains—wing (aa. 33–62 and 150–271), stem (aa. 272–300 and 517–540), clip (aa. 301–

516 [aa. 308–516 unmodeled]), β-hairpin (aa. 541–558), and wall (aa. 63–149 and 559–623)

—and unresolved N- and C-terminal stretches of 32 and 53 residues, respectively (Fig. 2b; 

Extended Data Fig. 3; Supplementary Video 2). Twelve pUL6 monomers constitute the 

portal and are arranged such that their loop-rich wing domains form the outer periphery of 

the complex (Fig. 2c). The remaining stem, clip, β-hairpin, and wall domains line the 

interior of the portal’s DNA translocation channel (Fig. 2d).

Within this channel, aforementioned terminal DNA extends outwards, terminating within the 

bell-like portal cap (Fig. 1d). Taking this as the site of concatemeric cleavage, we used our 

C1 reconstruction of terminal DNA to generate a density-fitted 3D model of the final 67-

base pair (bp) stretch of HSV-1 genome terminus, comprised of the cleavage site’s 3’ 

overhang, a single bp of directly-repeated elements (DR1) preceding the cleavage site, and 

the preceding 66-bp stretch of unique sequence (Ub)14–16 (Fig. 2d; Extended Data Fig. 4; 

Supplementary Video 3). Within the 66-bp Ub sequence, a stretch consisting of pac1 T 

element flanked by two short G tracts (GGGGGG and GGGGGGGG from pac1 proximal 

and distal GC elements of Ub, respectively) forms the major conserved motif at the termini 

of herpesvirus genomes, constituting the minimal sequence necessary for proper 

concatemeric cleavage17,18. Whereas both flanking G tracts are sequence critical, the T 

element tolerates substitutions, though not deletions, suggesting it may function as a 

regulatory spacer element15. Interestingly, proximal and distal G tracts in our fitted model 

map to the two right-handed toroidal densities of terminal DNA, which contact the portal 

channel’s interior walls, while the T element occupies a straight segment of density that 

exhibits no such contacts (Fig. 2d; Extended Data Fig. 4). Though reflecting a packaged 

state, our structure and model may be circumstantial evidence of sequence sensitivity of 

portal during genome packaging.

On the portal side, contact with terminal DNA’s proximal and distal toroids occur through 

clip and β-hairpin domains, both of which contain distinctive β-sheet motifs. Density of the 

clip is visible at lower thresholds in our C1 reconstructions, but disordered in our C12 

reconstruction, indicating flexibility and/or deviation from strict 12-fold symmetry. While 

the full clip could not be modeled atomically, three β-strands visibly form a β-sheet in the 

clip above each monomer (Fig. 2e). Twelve sets of clip β-sheets give rise to a right-handed-

twisted turret-like structure, which walls an upper narrow region of portal channel ~33-Å 

across at its narrowest, and where interactions with proximal toroidal DNA occur through 

the inner ring of β-strands (Fig. 2f). In contrast, β-hairpins are well-resolved in our C12 

reconstruction, indicating a high degree of 12-fold symmetry. Each β-hairpin consists of two 

β-strands joined by an asparagine and glutamine-rich loop, which contacts distal toroidal 

DNA at several registers. Twelve β-hairpins extend perpendicularly towards the portal 

channel’s central axis, forming a disk-like structure with a central aperture ~30-Å in 

diameter that defines the portal channel’s narrowest point (Fig. 2g).

Unlike the clip and β-hairpin, stem and wall domains do not contact terminal DNA. 

Prominently, stem helices give rise to a left-handed corkscrew structure (distinctively shared 

with phage portals6 just beneath the clip (Fig. 2c; Extended Data Fig. 5). In tandem, helix-

rich stem and wall domains appear to form the structural framework upon which the DNA-

Liu et al. Page 3

Nature. Author manuscript; available in PMC 2019 November 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



interacting clip and β-hairpin aperture are mounted. Indeed, force studies of ϕ29 portal 

demonstrated that these structural elements optimize the portal to withstand extreme 

mechanical stress, as might be imparted by translocating DNA19. Further evidence of 

portal’s highly optimized structure is apparent in an electrostatic-surface rendering 

calculated from our model (Fig. 2h). Generally, surfaces that interact with negatively-

charged DNA are positively-charged. Particularly, a chamber-like space beneath the portal 

aperture is strongly negatively-charged, likely preventing interactions with newly 

translocated DNA that might otherwise affect proper genome compaction.

A pseudo-5-fold-symmetric portal cap emerges upon filtering our C1 portal vertex 

reconstruction (Fig. 3a). When aligned with terminal DNA, portal cap appears to anchor the 

last five bp of genome terminus (Fig. 3b). Interestingly, studies implicate CATC’s pUL25 in 

several DNA/portal vertex-related capacities, including direct binding of DNA20, DNA 

cleavage during packaging termination20, and interaction with nuclear pore complexes 

during viral genome uncoating21,22. Given that 1) five sets of pUL25 head domain dimers 

form pentameric complexes above penton capsomers23–25; 2) the volume and five dual-

lobed appearance of portal cap density align with five pUL25 head dimers; and 3) 

connections between portal cap and CATC helix bundles are visible at lower thresholds (Fig. 

3c–d), consistent with pUL25 head domain being flexibly-linked23,24; we posit the portal 

cap is a portal-vertex specific configuration of five sets of pUL25 dimers, which plugs the 

DNA translocation channel upon dissolution of actively-packaging terminase complex.

Visible in both C1 and C5 structures of the portal vertex, five sets of tentacle-like helix 

densities ring the DNA translocation channel, extending from the portal’s clip to the portal 

cap (Fig. 3e). While unable to be modeled atomically, Cα bumps were sufficiently visible to 

permit poly-alanine traces for each helix set. Each set consists of three short helices (α1-α3) 

and two long helices (α4-α5) arranged in a classic coiled coil (Fig. 3f). Gradually 

decreasing the threshold in our C1 portal vertex reconstruction reveals increasingly 

connected density between the portal clip and α4 (Fig. 3g). Given that the portal’s missing 

clip residues (aa. 308–516) contain predicted long helical stretches interspersed with 

disordered residues (Extended Data Fig. 3)—in agreement with our density’s strong but 

unconnected helical densities—we postulate that tentacle helices belong to unmodeled 

residues of the clip. While this interpretation necessitates an at-first-glance outlandish 12-

to-5-fold symmetry reorganization within the portal structure, dodecameric procapsid portal 

in P22 phage is known to expose a “quasi-5-fold symmetric surface” at the apex of its clip26, 

where pentameric terminase presumably interfaces. (HSV-1 portal association with 

terminase is known to require a leucine zipper in the unmodeled region of pUL6’s clip27.) 

Though the degree of 5-fold symmetry in our tentacle helices exceeds that of P22 procapsid 

portal, both examples underscore a tendency of plasticity, which one can imagine as 

necessary, in a symmetry-mismatched interfacing region.

Finally, using our C5 reconstruction, we built atomic models of periportal SCP-decorated P 

hexon, Ta and Tc triplex, and CATC, enabling direct comparison of penton23 and portal 

vertices (Supplementary Video 4). Portal-specific structures aside—i.e., portal, tentacle 

helices, and portal cap—periportal CATC helix bundles are visibly oriented more 

perpendicularly to the vertex’s central axis (Fig. 4a–b), perhaps to facilitate a portal vertex-
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specific configuration of pUL25 head dimers required to form the portal cap. Furthermore, 

periportal Ta triplexes are rotated ~120° counter-clockwise about their respective centers, 

relative to peripenton Ta (Fig. 4c–f), such that periportal Ta Tri1’s capsid-penetrating N-

anchor (of which an additional 24 residues are visible versus peripenton Ta Tri1’s [Extended 

Data Fig. 6]) is brought into direct contact with α5 of the tentacle helices through Tri1’s 

Arg111 (Fig. 4g–h). Our models also reveal a repurposing of MCP N-lasso and dimerization 

domains23 in the periportal floor, facilitating a “rigid framework-flexible contact” strategy to 

accommodate the symmetry-mismatched pseudo-5-fold-symmetric capsid and dodecameric 

portal (Fig. 4i–j; Extended Data Fig. 6). This rearrangement results in five sets of β-barrels 

occupying five portal-surrounding registers, which, together with five corresponding MCP 

spine helices, provide a structured framework from which short, flexible MCP elements 

extend to interface with portal’s loop-rich wing domains (Fig. 4k–l).

Our work here thus resolves previously averaging-obscured structures of the HSV-1 portal 

vertex and reveals an accommodation of symmetry mismatches through both intermolecular 

and intramolecular plasticity. Exceptionally, the projection of tentacle helices from the portal 

clip toward the terminase docking site/portal cap and α4/α5’s coiled-coil arrangement 

(widely implicated in propagating conformation changes28) are evocative of a signaling 

pathway. In light of evidence of sequence- and headful-sensing regulatory effects in genome 

packaging17,18,29,30, that α4 contacts the DNA-interacting region of portal clip and α5 

interacts with the probe-like, capsid penetrating N-anchor of Tri1 provide tantalizing 

structural clues as to possible mechanistic bases of these modes of genome packaging 

regulation.

Methods

CryoEM sample preparation and imaging.

Sample preparation (HSV-1 virion) and cryoEM imaging have been described previously23. 

Briefly, virions of HSV-1 strain KOS were purified with density gradient centrifugation and 

frozen for cryoEM imaging. About 8,000 movies were collected with Leginon31 in a Titan 

Krios with energy filter and K2 direct electron detector. Each movie stack was drift-

corrected32 and averaged to produce a corresponding micrograph. Defocus values for each 

micrograph were determined with CTFFIND333 and found to be in the range of −1 μm to −3 

μm. A total of 45,445 particles (1,440×1,440 pixels and 1.03 Å/pixel) were picked manually 

with the boxer program in EMAN34 and boxed out from the micrographs with 

relion_preprocess in Relion35.

Icosahedral reconstruction and vertex sub-particle extraction.

At 1,440×1,440 pixels per individual particle image, the dataset required an unrealistic 

amount of computational resources and was too large to process with Relion. Thus, particles 

were binned 4 times using relion_preprocess and submitted for auto refinement with 

Relion2.135,36 imposing I3 symmetry. A Gaussian ball was used as an initial reference of the 

icosahedral reconstruction.
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To perform symmetry relaxation, we expanded the icosahedral symmetry of the particles 

using relion_particle_symmetry_expand, generating 60 orientations for each particle. Each 

orientation has three Euler angles denoted as parameters within the Relion star files: rot 
(_rlnAngleRot), tilt (_rlnAngleTilt), and psi (_rlnAnglePsi). We then selected 12 orientations 

of 12 vertices from the 60 icosahedrally-related orientations as follows. First, we noted that 

because the icosahedral reconstruction was performed using I3 symmetry, there are 5 

redundant orientations relative to each vertex that differ only in their rot angles (the first 

angle rotated about the z-axis). Given this observation, we then assigned 60 orientations into 

12 groups with 5 orientations in each group. Importantly, the orientations within a group 

each have different rot angles, but the same tilt and psi angles. Lastly, we selected one 

orientation in each group as the orientation of a vertex, thereby generating one orientation 

for each vertex out of the 60 icosahedral-related orientations.

Previous study showed sub-particle reconstruction could solve structures of symmetry-

mismatched parts of macromolecular complexes37. We then sought to extract sub-particles 

containing only vertices from the unbinned virion particles based upon the unique 

orientations previously selected. To do so, the two-dimensional Cartesian positions (x, y) of 

each sub-particle on their respective particle images were calculated using the following 

formula:

x = cos(psi)sin(tilt) d + C − Ox
y = − sin(psi)sin(tilt) d + C − Oy

(1)

where d is the distance from the center of the reconstructed capsid to the vertex (in our case, 

d = 567 pixels) and C is the center of the 2D projection image (in our case, the projection 

center is at [720, 720], so C = 720 pixels). Because icosahedral reconstruction was 

performed with 4 times-binned particles, Ox and Oy are four times the offset distance 

(_rlnOriginX and _rlnOriginY in Relion) of each particle image relative to the projection 

center of the icosahedral reconstruction. Finally, sub-particles (384×384 pixels) containing 

only vertices, henceforth termed “vertex sub-particles,” were extracted from particle images 

based on their calculated positions using relion_preprocess without further normalization.

The resolution of the enormous virus particles was largely limited by the well-documented 

depth-of-focus problem38,39. To overcome this limitation, the defocus value of each vertex 

sub-particle was calculated based upon their locations with the following formula, where Δz0
is the original defocus and Δz is the new defocus for each vertex:

Δz = Δz0 − cos(tilt) d (2)

Classification and refinement of vertex sub-particles with 5-fold symmetry.

To classify the portal vertex from the 12 vertices of each virus, we used Relion2.1 to 

perform 3D classification without rotational search (only ±4 pixels offset search) on the 

extracted vertex sub-particle, using the predetermined orientation of vertices while imposing 
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5-fold symmetry. The initial reference for classification was a 30Å reconstruction of the 

vertex sub-particles using relion_reconstruct. After 29 iterations, 4 classes were generated 

through 3D classification. 1 of the 4 classes exhibited apparent structural differences 

compared to the rest of the classes, which we deemed a portal vertex. This class contained 

7.9% (~1/12) of the vertex sub-particles, consistent with exactly 1 out of 12 capsid vertices 

being a portal vertex. In rare cases, more than one vertex from each capsid were classified 

into the portal vertex class, likely due to the low quality of these particles and/or errors in 

classification. These redundant particles were removed per the following: if two or more 

vertices from the same virus particle were assigned to the portal vertex class, only the vertex 

sub-particle with the highest _rlnMaxValueProbDistribution score was retained. Upon 

removing all redundant particles, 42,857 vertex sub-particles remained and were deemed 

sub-particles of the portal vertex, henceforth referred to as “portal vertex sub-particles”. 3D 

auto refinement with imposed 5-fold symmetry was then performed on these portal vertex 

sub-particles with only a local search for orientation determination. The final resolution of 

the reconstruction was estimated with two independently refined maps from halves of the 

dataset with gold-standard FSC at the 0.143 criterion40 using relion_postprocess, and 

determined to be 4.3Å (Extended Data Fig. 2a). This reconstruction of the portal vertex 

contains a well-resolved 5-fold-arranged capsid, tegument, and 5-fold-symmetric DNA 

packaging-related structures, but a smeared portal dodecamer density due to symmetry 

mismatch.

Reconstructing the pUL6 dodecameric portal with 12-fold symmetry.

In the portal vertex sub-particles, we can further extract sub-particles that contain only the 

pUL6 dodecamer in order to reconstruct the 12-fold symmetric portal. The positions of 

pUL6 dodecamer on portal vertex sub-particles were determined using formula (1). The 

Euler angles (rot, tilt, and psi), Ox, and Oy are the orientation parameters of the portal vertex 

sub-particles; d is the distance from the center of the dodecamer to the center of the portal 

vertex sub-particle reconstruction (−126 pixels); and C is the center of 2D projection image 

of the portal vertex sub-particle (192 pixels). The sub-particles of pUL6 dodecamer 

(192×192 pixels), henceforth referred to as “dodecamer sub-particles” were then extracted 

with relion_preprocess using these parameters.

To obtain a reconstruction of the pUL6 dodecamer, we first expanded the 5-fold symmetry 

of the dodecamer sub-particles using relion_particle_symmetry_expand, generating five 

unique orientations for each dodecamer sub-particle. We then applied 3D classification with 

imposed C12 symmetry without orientation search, which after 100 iterations yielded 5 

classes of similar structures with a rotational difference of approximately 72° in between 

classes. Ideally, each of the 5 expanded orientations of each dodecamer sub-particle should 

be assigned to exactly one of the five classes such that each class should contain 20% of the 

symmetry expanded sub-particles. After removing redundant particles as previously 

described—only particles with the highest _rlnMaxValueProbDistribution score was retained

—the 5 classes contained 32,975, 39,939, 38,694, 36,102 and 34,722 particles, respectively. 

Since the 5 reconstructed classes were of the same quality upon visual inspection, we chose 

the class with the most abundant particles for 3D refinement with imposed 12-fold 

symmetry and limited to local orientation search. As before, the resolution of the pUL6 
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dodecamer was determined with relion_postprocess using gold-standard FSC at the 0.143 

criterion40 (Extended Data Fig. 2a), indicating an overall resolution of approximately 5.6 Å 

for our 12-fold-symmetric reconstruction. However, a visual assessment of the region’s 

density quality and the local resolution estimate from ResMap41 indicates the majority of the 

portal itself to be within the 4–5 Å resolution range (Extended Data Fig. 2e), thereby 

allowing ab initio modeling. The lower resolution estimated by FSC may be due to 

unresolved, fairly flexible regions of the portal as well as other protein and nucleic acid 

densities that deviate from proper 12-fold symmetry.

Asymmetric reconstruction of the portal vertex and virion.

As the orientations determined from the previous classification of pUL6 dodecamer were 

selected from one of the five expanded orientations, these orientations can be used for 3D 

refinement of the portal vertex and whole virion without symmetry. Due to the large 

computational requirement for refinement of the whole virion, we performed this refinement 

using two times binned particles. The asymmetric auto refinement for both portal vertex sub-

particles and virion particles were performed with a local search for orientations determined 

from the classification of the pUL6 dodecamer. The resolution of the portal vertex complex 

and the whole virion as determined by relion_postprocess are 5.4 Å and 6.2 Å, respectively 

(Extended Data Fig. 2a), according to the gold-standard FSC at 0.143 criterion40.

Asymmetric reconstruction of terminal DNA.

Despite obtaining an asymmetric reconstruction of the portal vertex structure with well-

resolved high-resolution features, the terminal DNA within the portal channel remained 

smeared. Given that terminal DNA interacts with the portal, it could occupy any one of the 

twelve equivalent registers of the portal channel and the smeared DNA density is likely a 

result of undistinguished orientations of the terminal DNA among 12 possibilities.

To determine terminal DNA structure, we further expanded the orientations determined 

during the asymmetric portal vertex reconstruction with 12-fold symmetry using 

relion_particle_symmetry_expand. A cylindrical mask with a radius of 1.8 nm and a length 

of 18.5 nm encompassing the inner portal channel region was generated to facilitate 3D 

masked classification, which was performed without orientation search on the symmetry-

expanded portal vertex particles (384×384 pixels). To enhance the signal-to-noise ratios of 

the classified structures, we classified the particles into six rather than twelve classes, setting 

the tau factor in Relion to 8042, given the small size of the mask region. After 72 iterations 

of classification, six classes were generated, from which we chose the class with the best 

structure of continuous DNA density. Redundant particles from this class were removed as 

previously described, after which we performed 3D refinement with local searching for 

orientations and with a mask covering both the portal and terminal DNA. Using 

relion_postprocess, we determined the resolution of our terminal DNA reconstruction to be 

10.1 Å (Extended Data Fig. 2b), once again according to the gold-standard FSC at 0.143 

criterion40.
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Atomic modeling of capsid, CATC, and portal proteins.

Atomic models of peripentonal (i.e., non-portal vertex adjacent) MCP, Tri1, Tri2A, Tri2B, 

SCP, pUL17, pUL25, and pUL36 have been described previously23. Using our C5 map of 

the portal vertex region, we docked in peripentonal copies of the SCP-decorated P hexon, Ta 

triplex, and CATC in Chimera43. We then refined these models as necessary based on our 

density maps using the crystallographic program COOT44 to produce portal vertex-specific 

atomic models. Notably, periportal P1 and P6 MCP demonstrated substantial deviation from 

their peripenton counterparts in the MCP floor and required full re-traces in some regions. 

Periportal Ta triplex also exhibited a different orientation than peripenton Ta triplex, 

requiring manual rebuilding of some loop and interfacing regions. Periportal capsid and 

CATC models were then improved using real space refinement in Phenix45. Subsequent 

iterations of manual refinement in COOT and real space refinement in Phenix were applied 

to optimize the atomic models.

We traced and atomically modeled the pUL6 dodecameric portal ab initio using the C12 

symmetry map and with the aid of secondary structure predictions obtained from Phyre246. 

Homologs of HSV-1 pUL6 from enterobacteria phage P22 (PDBs 5JJ1 and 5JJ3), 

bacteriophage SPP1 (PDB 2JES), and bacteriophage T4 (PDB 3JA7) were also used to help 

determine the correct trace (Extended Data Fig. 5). Side chain densities were consistently 

visible in the C12 map and served as reliable markers during registration; manually built 

models were then refined with real space refinement in Phenix. Final post-refinement 

validation statistics for all atomic models are tabulated in Extended Data Table 1. As we 

were unable to definitively identify the proteins that constituted the tentacle helices observed 

in between the dodecameric portal and portal cap, we were unable to register amino acid 

sequences for these densities. However, we built poly-alanine helices into these densities 

using observable C-alpha bumps through the C-alpha_Baton_Mode and Ca_Zone-
>Mainchain utilities in COOT.

Flexible fitting of terminal DNA.

To model the terminal DNA within the portal channel, we first generated a relaxed, straight 

segment of double-stranded B-form DNA with 90 repeating cytosine base pairs using the 

Ideal_DNA/RNA utility in COOT. After rigid body-fitting our ideal dsDNA into our 

asymmetric reconstruction of terminal DNA, we used Chimera43 to mask out density beyond 

the central cylindrical region of the portal channel. The resulting map and 90 bp ideal 

dsDNA model were then submitted to a Molecular Dynamics Flexible Fitting (MDFF)47 

simulation session to flexibly fit the ideal dsDNA into the density map. Using the resulting 

dsDNA atomic model with improved density map fit, we determined that the length of 

visible dsDNA within the portal channel was approximately 67 bp long. Given that the last-

packaged terminal DNA base pair must be oriented most distal from the capsid interior, we 

assigned this 67 bp long sequence to the last 67 bp of the HSV-1 concatemer and truncated 

and mutated our flexibly-fit dsDNA model accordingly. After manually adding an 

overhanging cytosine at the distal 3’ end (adjacent to the portal cap) as consistent with the 

concatemeric cleavage site, we used Color_Zone in Chimera43 to segment out a more 

accurate DNA density from our asymmetric terminal DNA reconstruction. This improved 
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segmented map and our modified 67 bp model were then submitted for a second round of 

MDFF simulation to obtain our final terminal DNA model.

Data availability.

The five cryoEM maps have been deposited in the Electron Microscopy Data Bank (EMDB) 

under accession numbers EMD-9860 (C5 portal vertex reconstruction), EMD-9861 (C1 

portal vertex reconstruction), EMD-9862 (C12 portal reconstruction), EMD-9863 (C1 

terminal DNA and portal vertex reconstruction), and EMD-9864 (C1 virion reconstruction). 

The atomic models for pUL6 and periportal capsid/CATC proteins have been deposited in 

the Protein Data Bank (PDB) under accession numbers PDB-6OD7 and PDB-6ODM, 

respectively.

Extended Data
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Extended Data Figure 1 |. Sequential localized classification and sub-particle reconstruction.
Flowchart illustrates the identification and resolution of symmetry-mismatched structures of 

the unique portal vertex.
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Extended Data Figure 2 |. Resolution verification.
a, b, Resolution of reconstructions determined by gold-standard FSC at the 0.143 criterion. 

c-g, Density slices colored by local resolution estimated from ResMap41.
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Extended Data Figure 3 |. pUL6 secondary structure and disorder prediction.
a-c, pUL6 monomer colored by domain for reference (a) and key (b) used to annotate a 

secondary structure and disorder prediction of pUL6 amino acid sequence obtained from 

Phyre246.
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Extended Data Figure 4 |. Reconstruction of terminal DNA with surrounding portal.
a, b, C1 reconstruction of terminal DNA with surrounding portal color-zoned by pUL6 

domains and tentacle helices. c, Sequence of terminal DNA mapped onto our fitted terminal 

DNA model. d, Enlarged view of terminal DNA’s trailing end, where concatemeric cleavage 

occurs. e, Enlarged view of terminal DNA’s disordered leading end, which extends down 

through the portal aperture towards the interior of the capsid. f-h, Slab views of C1 density 

showing terminal DNA’s interaction with tentacle helices (f), portal clip (g), and the portal 

aperture (h).
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Extended Data Figure 5 |. pUL6 portal protein homologs.
a-d, HSV-1 pUL6 and pUL6 homologs colored analogously by pUL6 domain. e-h, HSV-1 

pUL6 portal complex and homologs colored in rainbow (red→blue: N-terminus→C-

terminus). Respective insets illustrate the conserved left-handed corkscrew of stem helices in 

the portal channel beneath the clip.
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Extended Data Figure 6 |. Comparison of periportal and peripenton capsid proteins.
a-c, Comparison of periportal and peripenton P1 MCPs (a) reveal conformational 

differences in their dimerization domains (b, c). d-f, Comparison of periportal and 

peripenton P6 MCPs (d) reveal conformational differences in their N-lassos (e, f). g-i, 
Comparison of periportal and peripenton Tri1s (g) reveal differences in a trunk loop where 

periportal Tri1 interfaces with tentacle helices (h) and a visible N-anchor helix in periportal 

Tri1 (i).
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Extended Data Table 1 |
CryoEM parameters and statistics.

Table shows cryoEM data collection, refinement, and validation statistics. Atomic models 

were iteratively refined using real-space refinement in Phenix45.

C5 portal 
vertex 

reconstruction 
(EMDB-9860) 
(PDB-6ODM)

C12 portal 
reconstruction 
(EMDB-9862) 
(PDB-6OD7)

C1 virion 
reconstruction 
(EMDB-9864)

C1 portal 
vertex 

reconstruction 
(EMDB-9861)

C1 terminal 
DNA & portal 

vertex 
reconstruction 
(EMDB-9863)

Data collection and processing

 Magnification 14000 14000 14000 14000 14000

 Voltage (kV) 300 300 300 300 300

 Electron 
exposure (e−/Å2) 25 25 25 25 25

 Defocus range 
(μm) −1 to −3 −1 to −3 −1 to −3 −1 to−3 −1 to−3

 Pixel size (Å) 1.03 1.03 2.06 1.03 1.03

 Symmetry 
imposed C5 C12 C1 C1 C1

 Initial particle 
images (no.) 45,445 45,445 45,445 45,445 45,445

 Final particle 
images (no.) 42,857 39,939 39,939 39,939 34,132

 Map resolution 
(Å) 4.3 5.6 6.2 5.4 10.1

  FSC threshold 0.143 0.143 0.143 0.143 0.143

 Map resolution 
range (Å) 3.5–5.5 4–6 5–30 4–8 8–16

Refinement

 Initial model used 
(PDB code) -- -- -- -- --

 Model resolution 
(Å)

  FSC threshold

 Model resolution 
range (Å)

 Map sharpening 
B factor (Å2) 100 250

 Model 
composition

  Non-hydrogen 
atoms -- --

  Protein 
residues 8,562 4,596

  Ligands -- --

 B factors (Å2)

  Protein 144.05 157.06

  Ligand -- --

 R.m.s. deviations
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C5 portal 
vertex 

reconstruction 
(EMDB-9860) 
(PDB-6ODM)

C12 portal 
reconstruction 
(EMDB-9862) 
(PDB-6OD7)

C1 virion 
reconstruction 
(EMDB-9864)

C1 portal 
vertex 

reconstruction 
(EMDB-9861)

C1 terminal 
DNA & portal 

vertex 
reconstruction 
(EMDB-9863)

  Bond lengths 
(Å) 0.005 0.008

  Bond angles 
(°) 0.921 1.145

 Validation

  Mol Probity 
score 1.69 1.89

  Clashscore 5.66 9.73

  Poor rotamers 
(%) 0.23% 0.92%

 Ramachandran 
plot

  Favored (%) 94.45% 94.46%

  Allowed (%) 5.29% 5.54%

  Disallowed 
(%) 0.26% 0.00%

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1 |. Structures of the portal vertex and dsDNA genome.
a, Composite structure showing capsid (z-clipped), left-handed-spooled dsDNA genome, 

and portal vertex elements. b, Same view as (a), but with dsDNA (radially colored) z-

clipped, revealing concentric shells of dsDNA density around a disordered core. c, Red inset 

from (b) reveals ten layers of near-crystalline, honeycomb-packed dsDNA. d, Magenta inset 

from (b) illustrates portal vertex structures. See Supplementary Video 1
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Figure 2 |. pUL6 portal structure and interactions with dsDNA.
a, b, pUL6 atomic models colored in rainbow (red→blue: N-terminus→C-terminus) (a) and 

by domain (b). Insets show ribbon-and-stick models in mesh density (C12 portal 

reconstruction). c, Terminal DNA threads through a dodecameric portal comprising twelve 

pUL6 monomers. d, Z-clipped portal shown with C1 density (portal vertex reconstruction) 

Gaussian-filtered to 1.5 σ to show clip structure. Terminal DNA contains two right-handed 

toroidal regions each containing a conserved G tract, flanking a spacer T element. e, Green 

inset from (d) shows three-stranded β-sheets in each pUL6 monomer’s clip. f, Twelve three-

stranded β-sheets form a right-handed-twisted turret in the clip, which interacts with 

proximal toroidal DNA. g, Purple inset from (d) shows twelve β-hairpins forming an 

apertured disk through which distal toroidal DNA passes. h, Electrostatic-surface renderings 

of the portal in a DNA environment. See Supplementary Videos 2 and 3.
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Figure 3 |. Tentacle helices and the portal cap.
a, b, Axial view (a) and z-clipped side view (b) of the portal cap, which plugs the DNA 

translocation channel and interacts with terminal DNA. Shades of green emphasize the 

density’s five dual lobes (C1 portal vertex reconstruction, Gaussian 2.2 σ). c, Portal cap with 

surrounding capsid/CATC density (C5 portal vertex reconstruction) and CATC atomic 

models. d, Connecting density between portal cap and CATC’s helix bundles are visible in 

C1 density (portal vertex reconstruction) Gaussian-filtered to 3.2 σ. e, Tentacle helices 

emanate upwards from the portal’s clip region, extending towards the portal cap. f, Poly-

alanine models of tentacle helices. Five helices (α1-α5) constitute one set, and five sets 

encircle the DNA translocation channel. α4 and α5 form a coiled-coil motif. g, Slab view, 

axial perspective of the portal clip region shows emerging α4-portal clip connecting density 

at lower thresholds (C1 portal vertex reconstruction, Gaussian 1.7 σ). α5 also interacts with 

surrounding Tri1. See Supplementary Video 3.
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Figure 4 |. Capsid accommodations at the portal vertex.
a, b, Axial views of penton vertex (a) and portal vertex (b). Pipe-and-plank models are 

colored: pUL17, yellow; pUL36c, red and orange; pUL25, cherry and purple; triplex Ta, 

blue; triplex Tc, teal. Red lines denote CATC helix bundle orientations. c, d, Side views of 

penton vertex (c) and portal vertex (d) structures. Triplexes are colored: Tri1, lime; Tri2A, 

light blue; Tri2B, dark blue. e, f, Axial views of penton vertex with CATC and most of 

penton removed (e) and portal vertex with CATC/portal cap removed (f). Red arrows denote 

triplex orientations. Five penton dimerization domain helices forming “star helix” 

interactions23 with P1 MCPs are retained in (e), exemplifying an alternate domain-level 

conformation. g, Ta Tri1’s capsid-penetrating N-anchor runs into a three-stranded β-sheet 

(dark green), which contacts α5 of the tentacle helices. h, Mesh density (C5 portal vertex 
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reconstruction) shows interactions between α5 and Tri1 through Arg111 (also Val254 and 

Ser261 at lower thresholds). i, j, Side (i) and axial (j) views show the dodecameric portal 

suspended by five sets of β-barrels and spine helices from surrounding P hexons. k, 

Enlarged view of a β-barrel and spine helix motif. l, Flexible elements extend from the β-

barrel and spine helix at the capsid-portal interface. See Supplementary Video 4.
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