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Abstract: Fibrosis is a common final pathway of chronic kidney disease, which is a major incurable
disease. Although fibrosis has an irreversible pathophysiology, the molecular and cellular mech-
anisms responsible remain unclear and no specific treatment is available to halt the progress of
renal fibrosis. Thus, an improved understanding of the cellular mechanism involved and a novel
therapeutic approach are urgently required for end-stage renal disease (ESRD). We investigated the
role played by interleukin-10 (IL-10, a potent anti-inflammatory cytokine) in kidney fibrosis and
the mechanisms involved using IL-10−/− mice and TCMK-1 cells (mouse kidney tubular epithelial
cell line). Endoplasmic reticulum stress (ERS), apoptosis, and fibrosis in IL-10−/− mice were more
severe than in IL-10+/+ mice after unilateral ureteral obstruction (UUO). The 4-Phenylbutyrate (an
ERS inhibitor) treatment induced dramatic reductions in ERS, apoptosis, and fibrosis-associated
factors in the renal tissues of IL-10−/− mice, compared to wild-type controls after UUO. On the
other hand, in cultured TCMK-1 cells, the ERS inducers (tunicamycin, thapsigargin, or brefeldin A)
enhanced the expressions of proapoptotic and profibrotic factors, though these effects were mitigated
by IL-10. These results were supported by the observation that IL-10 siRNA transfection aggravated
tunicamycin-induced CHOP and a-SMA expressions in TCMK-1 cells. We conclude that the anti-
fibrotic effects of IL-10 were attributable to the inhibition of ERS-mediated apoptosis and believe that
the results of this study improve the understanding of the cellular mechanism responsible for fibrosis
and aid in the development of novel therapeutic approaches.

Keywords: endoplasmic reticulum stress; renal fibrosis; interleukin-10; unilateral ureteral obstruction;
apoptosis

1. Introduction

Chronic kidney disease (CKD) has a devastating impact on quality of life. CKD
progresses to end-stage renal disease (ESRD), which requires kidney transplantation or
hemodialysis for survival. CKD develops as a result of chemical injury, metabolic disease,
hemodynamic stress, or urinary track obstruction. Regardless of initial causes, fibrosis,
and inflammation are the common pathways of CKD and ESRD. Although fibrosis is an
irreversible pathophysiology, the molecular and cellular mechanisms involved remain
unclear, and no specific treatment has been developed to stop the progression of renal
fibrosis. Thus, an improved understanding of the cellular mechanism responsible for renal
fibrosis and a novel therapeutic approach are urgently required to prevent ESRD [1].

Endoplasmic reticulum (ER) is responsible for the folding, trafficking, and modification
of proteins. ER stress (ERS) is caused by the accumulation of unfolded or misfolded proteins
in ER, which activates the unfolding protein response (UPR) and promotes cell death or
survival [2,3]. Imbalanced ER homeostasis upregulates several genes related to kidney
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fibrosis, such as transforming growth factor-β (TGF-β), interleukin-10 (IL-10), IL-1β, and
α-smooth muscle actin (α-SMA) [4,5]. Furthermore, chronic stress triggers epithelial cell
apoptosis and the myofibroblastic differentiation of pericytes and resident fibroblasts, which
lead to fibrosis [6] characterized by extracellular matrix accumulation, glomerulosclerosis,
capillary and urinary space reduction, architecture distortion, vascular stability loss, and
angiogenesis [7]. Considering the irreversible nature of CKD, developmental efforts should
focus on the prevention of interstitial fibrosis and tubule cell apoptosis [8,9].

The IL-10 gene is upregulated during ERS [10], and recent studies have demonstrated
that IL-10 alleviates fibrosis in various organs, including kidneys, liver, heart, and lungs, by
inhibiting inflammatory responses [11]. In addition, it has been reported that IL-10 defi-
ciency exacerbates renal inflammation and fibrosis after ureteral obstruction in mice [12,13].
Based on the results of previous studies, it is evident that IL-10 acts as a gatekeeper of the
fibrotic/antifibrotic signalling pathway. Furthermore, ERS and IL-10 interact during the
progression of renal fibrosis, though the mechanism involved has not been elucidated.

In this study, we hypothesized that IL-10 and ERS levels are associated with kidney
fibrosis. Hence, we investigated their relationships with the progression of kidney fibrosis
induced by ureteral obstruction and ERS in IL-10−/− mice and cultured kidney tubular
epithelial cells, respectively.

2. Results
2.1. IL-10 Deficiency Exacerbated Kidney Fibrosis after UUO

Fibrosis is triggered by several factors, but ultimately it induces the proliferation of
tubulointerstitial cells and results in collagen deposition. We evaluated the effect of IL-10
gene deficiency on UUO-induced kidney fibrosis using IL-10−/− mice and IL-10+/+ wild-
type littermates. UUO enhanced the atrophy of parenchyma, tubular injury, inflammatory
cells infiltration (Figure 1A,B), and the interstitial and cellular expressions of collagens
in IL-10+/+ and IL-10−/− mice after UUO, but this effect was much more pronounced in
IL-10−/− mice (Figure 1A,C–E).

2.2. IL-10 Deficiency Accelerated UUO-Induced ER Stress and Apoptosis in Mouse Kidneys

The UPR pathway is composed of three parallel signalling pathways, i.e., the PKR-
like ER kinase (PERK)–eukaryotic translation initiation factor (elF), inositol-requiring
enzyme 1α (IRE1α)–X-box binding protein 1 (XBP1), and activating transcription factor
6α (ATF6α) pathways, via three ER resident proteins, namely PERK, IRE1, and ATF6,
and others such as the caspase-3 (Cas3) activation pathway [2]. Under conditions of ERS,
binding immunoglobulin protein (BiP, an ER chaperone), which is normally bound to three
ER resident transmembrane proteins, dissociates from the cell surface and regulates cell
signalling, proliferation, and apoptosis [14]. Furthermore, it has been reported that when
ERS increases, the C/EBP-homologous protein (CHOP) expression increases and mediates
apoptosis [15]. The transcriptional targets of CHOP, which include death receptor 5 (DR5),
are associated with apoptosis [16]; thus, we investigated whether increased fibrosis caused
by IL-10 gene deficiency is associated with ERS.

We found that UUO increased the protein expressions of IRE1α, PERK, elF2α, BiP,
CHOP, and DR5 (all markers of ERS), and that their expressions were significantly greater
in IL-10−/− mice than in IL-10+/+ mice (Figure 2). Additionally, TUNEL-positive cells and
the protein expressions of poly (ADP-ribose), polymerase (PARP), Cas3, and apoptosis
inducing factor (AIF), were greater in IL-10−/− mice, whereas the expression of Bcl-2
protein (anti-apoptotic) was lower in IL-10−/− mice than in IL-10+/+ mice (Figure 3). These
results indicate that increased apoptosis due to IL-10 gene deficiency might be associated
with increased ERS.
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Figure 1. Representative histological changes and fibrosis-related protein expressions in kidneys 

after UUO. Gross and microscopic findings of kidneys after UUO (A). Structural disturbance was 

evaluated with a Tubular damage score and expressed as a graph (B). Collagen deposition was 

evaluated by quantifying Masson’s trichrome stained areas using Image-Pro Plus software (C). 

Seven days after UUO injury, the expressions of α-SMA and Col-1 were determined with Western 

blotting. β-actin was used as the loading control. Densities of bands were quantified using ImageJ 

software (n = 3 to 4) and bars indicate means ± SEMs (D,E). * p < 0.05 vs. IL-10+/+-sham mice; # p < 

0.05 vs. UUO induced IL-10+/+ mice. PAS and Trichrome stain. Scale bars represent 100 μm. 

Figure 1. Representative histological changes and fibrosis-related protein expressions in kidneys
after UUO. Gross and microscopic findings of kidneys after UUO (A). Structural disturbance was
evaluated with a Tubular damage score and expressed as a graph (B). Collagen deposition was
evaluated by quantifying Masson’s trichrome stained areas using Image-Pro Plus software (C). Seven
days after UUO injury, the expressions of α-SMA and Col-1 were determined with Western blotting.
β-actin was used as the loading control. Densities of bands were quantified using ImageJ software
(n = 3 to 4) and bars indicate means ± SEMs (D,E). * p < 0.05 vs. IL-10+/+-sham mice; # p < 0.05 vs.
UUO induced IL-10+/+ mice. PAS and Trichrome stain. Scale bars represent 100 µm.
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Figure 2. Expressions of ER stress-related proteins in kidneys of the IL-10−/− and control wild mice
7 days after UUO. ERS signalling pathway protein levels (IRE1, PERK, eIF2α, BiP, CHOP, and DR5)
were determined with Western blotting (A). β-actin was used as a loading control. Densities of bands
were quantified using ImageJ software (n = 3 to 4) and bars indicate means ± SEMs (B). * p < 0.05 vs.
IL-10+/+-sham mice, # p < 0.05 vs. UUO induced IL-10+/+.

2.3. 4-PBA Halted UUO-Induced Apoptosis and Fibrosis in IL-10 Deficient Mice

The effects of IL-10 on ERS-induced apoptosis and fibrosis were confirmed by ad-
ministering 4-phenyl butyric acid (4-PBA, an ERS inhibitor) to mice. After administration,
IL-10−/− mice showed dramatic increases in proapoptotic factors (BiP, PARP, and Cas3)
and profibrotic factors (α-SMA and Col-1), but these increases were significantly lower in
4-PBA treated mice (Figure 4). These results indicate that UUO-induced kidney fibrosis is
associated with ERS and higher kidney fibrosis levels in IL-10−/− mice, and that this was
associated with increased ERS and apoptosis.
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Figure 3. IL-10 deficiency aggravated apoptosis in the kidney 7 days after UUO. Apoptotic cells 

after UUO were detected by TUNEL staining (green and arrows pointed in merged figures) kidney 
Figure 3. IL-10 deficiency aggravated apoptosis in the kidney 7 days after UUO. Apoptotic cells after
UUO were detected by TUNEL staining (green and arrows pointed in merged figures) kidney tissues
and were significantly more numerous in IL-10−/− mice than in IL-10+/+. Nuclei were stained with
DAPI (blue) (A). Histogram obtained by counting cells stained with TUNEL and DAPI (B). PARP,
Cas3, AIF, Bcl-2, and Bcl-xL levels were determined with Western blotting. GAPDH was used as the
loading control. Densities of bands were quantified using ImageJ software (n = 3 to 4) and bars indicate
means ± SEMs (C,D). * p < 0.05 vs. IL-10+/+-sham mice; # p < 0.05 vs. UUO induced IL-10+/+ mice.
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Figure 4. 4-PBA treatment inhibited ER stress, fibrosis, and apoptosis 7 days after UUO in IL-10−/−

mice. ERS-related protein (BiP), apoptosis-related protein (PARP and Cas3), and fibrosis-related
protein (α-SMA and Col-1) levels in 4-PBA or control saline treated IL-10−/− mice were determined
with Western blotting (A). GAPDH was used as the loading control. Densities of bands were
quantified using ImageJ software (n = 3 to 4) and bars indicate means ± SEMs (B). Results are
presented as means ± SEMs (n = 3 to 4) * p < 0.05 vs. IL-10−/−-sham mice not administered 4-PBA,
# p < 0.05 vs UUO induced CON mice.

2.4. IL-10 Attenuated ERS-Induced Kidney Tubular Cell Apoptosis and the Expressions of
Profibrotic Factors

Recently, it was reported that epithelial and endothelial injuries activate mesenchymal
transition, inflammation, alter cytokine secretions, and result in the over-deposition of
extracellular matrix in the interstitium [9,17]. We investigated the effects of IL-10 on
ERS in TCMK-1 cells by treating cells with the ERS inducer, namely TG, TM, or BFG
with or without IL-10. The results obtained show that IL-10 reduced the ERS-induced
expressions of BiP, CHOP, and PARP (Figure 5A) and also reduced the number of TM-
induced fibrosis-associated proteins, i.e., α-SMA, type I collagen (Col-1) and FN (Figure 5B).
These results show that the effects of ERS on TCMK-1 damage and mesenchymal transition
were significantly mitigated by IL-10 supplementation.
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Figure 5. IL-10 impeded ER stress and fibrosis in tubular epithelial cells. BiP, CHOP, and PARP
levels in ERS inducers (TG, TM and BFA) treated TCMK-1 cells with or without IL-10 pre-expose
were determined by Western blotting (A). Fibrosis-related protein levels were also determined in TM
treated TCMK-1 cells with or without IL-10 pre-expose (B). CHOP and α-SMA levels in TM treated
TCMK-1 cells were determined by Western blotting after transfected with by IL-10 siRNA or Con
siRNA (C). GAPDH was used as the loading control.

Finally, we confirmed the effect of IL-10 on ERS-induced apoptosis and fibrosis in-
duction by transfecting TCMK-1 cells with IL-10 siRNA. IL-10 knockdown by siRNA
transfection increased CHOP and α-SMA protein levels (Figure 5C). These results support
our in vivo observations that IL-10 reduces ERS-mediated apoptosis and fibrosis.

3. Discussion

IL-10 is an anti-inflammatory cytokine produced by several activated immune cell
types, such as T-helper (Th2) cells, NK cells, dendritic cells, macrophages, and mono-
cytes [18]. In kidneys, IL-10 is secreted primarily by mesangial and endothelial cells [5],
and several studies have reported that elevated IL-10 expression is associated with vari-
ous kidney diseases, such as mesangioproliferative glomerulonephritis, IgA nephropathy,
and diabetic nephropathy [19–21]. Furthermore, IL-10 treatment inhibited spontaneous
systemic lupus erythematosus-induced kidney damage by inhibiting the Th1 response [22].
Moreover, the evidence indicates that IL-10 inhibits renal fibrosis; for example, IL-10 over-
expression reduced the infiltration of inflammatory cells and mRNA in remnant kidneys of
5/6 nephrectomised rats [23], whereas an IL-10 deficiency exacerbated inflammation and
fibrosis in UUO-induced mouse kidneys [24].
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IL-10 knockout mice provide useful disease models; however, to better mimic actual
pathologic conditions, alternative triggers are needed to increase IL-10 deficiency. For
example, dexamethasone feeding is used to induce inflammatory bowel disease [25], and
UUO to induce ERS and finally renal fibrosis [24]. In line with previous studies, we found
that IL-10 deficiency significantly aggravated renal fibrosis after UUO (Figure 1) and that
UUO increased IL-10 expression in the tubulointerstitium and apical regions of tubules
(data not shown), as has been previously reported [26], which probably acts as a protective
response to UUO [27]. Therefore, we believe that aggravated fibrosis in IL-10-deficient
mice was due to the prevention of increases in IL-10 expression following UUO, leading
to greater ERS, apoptosis, and fibrosis progression. However, how UUO stimulates IL-10
expression in kidneys remains a topic for future studies.

The three UPR sensor proteins (IRE1, PERK, and ATF6) in ER determine the fate of
the cells by controlling the levels of misfolded proteins [28]. Under normal conditions,
these three UPR sensors associate with BiP to halt the UPR signalling pathways. However,
the accumulation of misfolded proteins in the ER lumen causes BiP to separate from UPR
sensor proteins and activate it. IRE1 is an ER transmembrane protein of the cytosolic
kinase/endoribonuclease (RNase) domain. In the presence of ERS, activated IRE1 con-
tributes toward life or death cell fates but is gradually inactivated. On the other hand, PERK
continues its action in chronic ERS [29]. PERK kinase recognizes and phosphorylates eIF2α,
and thus attenuates global protein translation and regulates cell fate, but predominantly
induces apoptosis [14,29]. CHOP can induce the transcriptional activations of genes that
contribute to cell death, such as DR5 a caspase-activating cell-surface death receptor that
induces cell death by binding to its ligand [30,31]. We observed that levels of the major ERS
sensor proteins, IRE1 and PERK, were higher in the kidney tissues of IL-10−/− mice than
in those of IL-10+/+ mice after UUO, and that BiP exhibited the same pattern. PERK, eIF2α,
CHOP, and DR5 are components of the PERK-elF signalling pathway, and their expres-
sions were also higher in IL-10−/− mice after UUO (Figure 2). In addition, proapoptotic
PARP, Cas3, and AIF levels and TUNEL-positive cell numbers were significantly higher in
IL-10−/− mice, whereas anti-apoptotic Bcl-2 levels were lower (Figure 3). This result shows
that IL-10 deficiency is closely related with ERS and ERS-induced apoptosis and fibrosis.
4-PBA has been used clinically to treat urea cycle disorders and is a known inhibitor of ER
stress [32,33]. 4-PBA reportedly affected intracellular UPR by directly targeting misfolded
or mutant proteins [34,35]. Furthermore, several molecules, including PERK, BiP, CHOP,
and c-JNK are involved in the underlying mechanisms [36]. We designed a comparable
experiment by administering 4-PBA to IL-10−/− mice. As was expected, we found that the
effects of IL-10 deficiency were significantly diminished by 4-PBA (Figure 4). These results
indicate that excessive ERS acts to induce kidney fibrosis [37,38], and that the anti-fibrotic
effect of IL-10 is associated with ERS reduction.

Previous studies have reported that prolonged or excessive ERS and perturbed ERS
homeostasis aggravates renal fibrosis. For example, CHOP deficiency inhibited fibrosis via
Hmgb1/TLR4/NFκB signalling through a CHOP-related ERS pathway [39]; ERS caused
tubular damage in kidney disease [40,41]; and irreversible ERS caused kidney cell apoptosis
and, consequently, fibrosis [3,42]. Fibrosis is the final result of tissue damage and subsequent
inflammation. Damaged cells induce inflammation by increasing leukocyte infiltration,
and cytokines and oxidative radicals are released with leukocytes [43]. This is followed
by cell proliferation, regeneration, extracellular matrix production, and eventually scar
formation [43]. Inflammation and oxidative stress are common features of many kidney
diseases. Recently, biomarkers for kidney injuries have focused on oxidative stress [44]
and inflammation [45]. In addition, renal fibrosis develops as a result of epithelial-to-
mesenchymal transition induced by cell damage. In particular, tubular epithelial cell death
dramatically induces this cascade [6,46]. Moreover, ERS was recently found to be a factor
of renal fibrosis [17,47]

Several antibiotic or antineoplastic chemicals can induce ERS. BFA induces ERS by
inhibiting protein transport from the ER to the Golgi apparatus [48], TG by blocking
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N-linked glycosylation in ER, and thus disrupting protein maturation [49] and TM by
inhibiting the ER Ca2+ ATPase pump [50,51]. We tested the effects of ERS directly by
treating TCMK-1 cells with the abovementioned ERS inducers. These treatments increased
the expressions of proapoptotic and profibrotic proteins, but these increases were mitigated
by IL-10 supplementation (Figure 5A,B); furthermore, these effects were opposite to those
induced by IL-10 siRNA treatment (Figure 5C).

Our results indicate that the anti-fibrotic effects of IL-10 are due to the inhibition
of ERS-mediated apoptosis. We believe the presented results contribute to an increased
understanding of the topic and encourage further studies on the cellular mechanisms
involved and on the development of novel therapeutic approaches to fibrosis.

4. Materials and Methods
4.1. Animal Preparation

The experiments were performed using 10-week-old male IL-10−/− and IL-10+/+

mice, purchased from the Jackson Lab (Bar Harbor, ME, USA) and the Hana Company
(Busan, Korea), respectively. Mice were provided free access to water and standard mouse
chow. Each animal group consisted of at least three mice. Animals were anesthetized with
0.02 mL/g at a body weight of 1.25% Avertin (Sigma, St. Louis, MO, USA) before surgery.
To induce UUO, the left kidney was exposed through a left-flank incision, and the left
ureter was then completely obstructed near the renal pelvis using a 6/0 nylon tie. Sham
operations were performed using the same surgical procedure without ligation. To assess
the effect of IL-10 on ERS, animals were treated with 4-PBA (100 mg/kg BW; Sigma) 3 times
daily on alternate days for 7 days from the day after surgery. Kidneys were harvested
7 days after surgery and subjected to histologic, biochemical, and Western blot analyses.

Animal studies were approved beforehand by the Institution Animal Care and Use
Committee of Yeungnam University College of Medicine, and all procedures were per-
formed in accordance with the guidelines.

4.2. Cell Culture and Treatment

TCMK-1 cells (a mouse kidney tubular epithelial cell) were provided by Tae Jin Lee,
Yeungnam University, Daegu, Korea and cultured in high glucose-DMEM supplemented
with 10% FBS and antibiotics in a 5% (v/v) CO2-humidified atmosphere at 37 ◦C. Confluent
(70–80%) cells were incubated for 15–18 h in serum-free medium and treated with IL-10
(10 ng/mL; PeproTech Inc., Rocky Hill, NJ, USA), tunicamycin (TM; 0.1 µg/mL; Sigma),
thapsigargin (TG; 0.1 µM; Sigma), or brefeldin A (BFA; 10 µM; Sigma) for 20 h. The cells
were then subjected to IL-10 siRNA transfection and protein expression analyses for ERS or
fibrosis-related proteins.

4.3. Small Interfering RNA (siRNA) Treatment In Vitro

The IL-10 and control siRNA duplexes used in this study to transiently deplete IL-10
in TCMK-1 cells were purchased from the Bioneer Corporation (Daejeon, Korea). TCMK-1
cells were cultured until they were 50–60% confluent and were then transfected with siRNA
oligonucleotides using Lipofectamine 2000 (Invitrogen; Carlsbad, CA, USA), according to
the manufacturer’s recommendations. After 4 h of transfection, cells were maintained in
fresh medium-containing serum for 20 h, and then a Western blot analysis was performed.

4.4. Western Blot Analysis

For the Western blotting experiments, protein electrophoresis was performed as de-
scribed previously [52]. Proteins were transferred to Immobilon-P membranes (Millipore,
Bedford, MA, USA), blocked with 5% skimmed milk in TBST, and incubated overnight
at room temperature using antibodies against the following: IL-10 (1:1000; Abcam, Cam-
bridge, MA, USA), α-SMA (1:10,000; Sigma); Col-1 (1:1000; Abcam); fibronectin (FN; 1:1000;
BD Biosciences, Franklin Lakes, NJ, USA); cleaved Cas3 (1:1000; LS Bio, Seattle, WA, USA);
PARP (1:1000; Cell Signalling, Danvers, MA, USA); Bcl2 (1:1000; Santa Cruz Biotechnology,
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Santa Cruz, CA, USA); Bcl-xL (1:1000; Santa Cruz); DR5 (1:1000; KOMA Biotech, Seoul,
Korea); AIF (1:1000; Cell signalling); BiP (1:1000; Cell Signalling); CHOP (1:1000; Cell
Signalling); IRE1 (1:1000; Cell Signalling); PERK (1:1000; Cell Signalling); and eIF2α (1:1000;
Cell Signalling). After washing, membranes were incubated for 1 h at room temperature
with a horseradish peroxidase conjugated anti-mouse or anti-rabbit antibody (1:5000; Santa
Cruz). Specific proteins were visualized by enhanced chemiluminescence (PerkinElmer,
Waltham, MA, USA). GAPDH (1:5000; Santa Cruz) and β-actin (1:10,000; Santa Cruz) were
used as a loading control and for normalizing immunoblots, respectively, which were
analyzed using NIH Image J.

4.5. Immunohistochemical Analysis

Kidney tissues were fixed in 3.7% paraformaldehyde, embedded in paraffin, and cut
into 4 µm sections using a microtome. Sections were Masson trichrome and periodic acid-
Schiff (PAS) stained using a standard protocol, and five fields (0.1 mm2/field) of kidney
cortices per section were taken using an optical microscope (Leica CTR 6000, Germany) and
analyzed using i-Solution software (IMT i-Solution Inc., Conquitlam, BC, Canada). Damage
was recorded as previously described [52]. Briefly, damage levels were scored as follows:
no damage (0 points); mild damage, defined as a dilated tubular lumen with flattened
epithelial cells (1 point); moderate damage includes congestion of tubule as well as the
factors of mild damage (2 points); and severe damage as indicated by tubule destruction
and flattened epithelial cells without nuclear staining (3 points). Damage score indices
were calculated by dividing the summed cell number score products by the total numbers
of tubules.

4.6. TUNEL Assay Analysis

Sections were deparaffinized, permeabilized with 0.2% Triton X-100 for 10 min, blocked
with 2% BSA/PBS for 30 min, and washed with PBS. TUNEL cell death assays were
conducted according to the manufacturer’s instructions (Roche Molecular Biochemicals,
Mannheim, Germany). Cell nuclei were counterstained with 10 µg/mL 4′,6-diamidino-
2-phenylindole (DAPI, Sigma, USA), and slides were mounted with Vectashield (Vector
Laboratories Inc., Burlingame, CA, USA). Images of cultured cells in dishes were also
captured using an inverted fluorescence microscope.

4.7. Statistical Analysis

The significances of the differences between groups were determined using a one-
way analysis of variance (ANOVA) and Tukey’s post-hoc test utilizing the Prism software.
Results are presented as means ± standard errors, and significance was determined with a
p value < 0.05. In all cases, groups consisted of at least three mice.
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