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Background: Prostate cancer (PCa) is an epithelial malignant tumor that occurs in the
urinary system with high incidence and is the second most common cancer among men in
the world. Thus, it is important to screen out potential key biomarkers for the pathogenesis
and prognosis of PCa. The present study aimed to identify potential biomarkers to reveal
the underlying molecular mechanisms.

Methods: Differentially expressed genes (DEGs) between PCa tissues and matched
normal tissues from The Cancer Genome Atlas Prostate Adenocarcinoma (TCGA-PRAD)
dataset were screened out by R software. Weighted gene co-expression network analysis
was performed primarily to identify statistically significant genes for clinical manifestations.
Protein–protein interaction (PPI) network analysis and network screening were performed
based on the STRING database in conjunction with Cytoscape software. Hub genes were
then screened out by Cytoscape in conjunction with stepwise algorithm and multivariate
Cox regression analysis to construct a risk model. Gene expression in different clinical
manifestations and survival analysis correlated with the expression of hub genes were
performed. Moreover, the protein expression of hub genes was validated by the Human
Protein Atlas database.

Results: A total of 1,621 DEGs (870 downregulated genes and 751 upregulated genes)
were identified from the TCGA-PRAD dataset. Eight prognostic genes [BUB1, KIF2C,
CCNA2, CDC20, CCNB2, PBK, RRM2, and CDC45] and four hub genes (BUB1, KIF2C,
CDC20, and PBK) potentially correlated with the pathogenesis of PCa were identified. A
prognostic model with good predictive power for survival was constructed and was
validated by the dataset in GSE21032. The survival analysis demonstrated that the
expression of RRM2 was statistically significant to the prognosis of PCa, indicating
that RRM2 may potentially play an important role in the PCa progression.

Conclusion: The present study implied that RRM2 was associated with prognosis and
could be used as a potential therapeutic target for PCa clinical treatment.
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INTRODUCTION

Prostate cancer (PCa), one of the most common neoplasms
worldwide, is ranked fourth among all cancer types with an
incidence of 7.1% (Bray et al., 2018) and has been reported to
be the second leading cause of cancer death among men (Siegel
et al., 2018). With the increasing diagnosis of PCa in China and
the aging of the population, several urologists have performed
abundant research on PCa and prostatic diseases (Ye and Zhu,
2019; Li J. et al., 2020).

Nowadays, the detection of serum prostate-specific antigen
(PSA) has been considered a common method to screen prostate
cancer in the clinic. Nevertheless, due to its low specificity and
significant limitations, it is difficult to make an early diagnosis
with PSA. Furthermore, it is painful for patients to undergo
traditional prostate biopsy, which is regarded as the golden
standard of PCa. Moreover, the traditional treatment methods
for prostate cancer were endocrine therapy, radiotherapy,
surgery, and chemotherapy (Sia et al., 2008; Moore et al.,
2009). However, the prognosis differs among various patients,
and it is difficult to predict the prognosis simply by clinical
information. Therefore, novel biomarkers are needed for the
pathogenesis and prognosis of prostate cancer.

Weighted gene co-expression network analysis (WGCNA) has
been widely used to identify co-expressed modules and hub genes
(Langfelder and Horvath, 2008). In this study, we aimed to screen
potential key genes correlated with the pathogenesis and
prognostic biomarkers through bioinformatics analysis. First,
differentially expressed genes (DEGs) in TCGA-PRAD RNA-
seq data were screened. Then, the DEGs of key modules clustered
by WGCNA were selected for further analysis. Gene Ontology
(GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG)
pathway analysis for the overlapping differentially expressed
genes were annotated by R software PPI network and
Cytoscape. Finally, a risk model and survival analysis were
performed based on the candidate key genes.

MATERIALS AND METHODS

Data Acquisition and Processing
The TCGA database is a public funded project that aims to
catalog and discover major cancer-causing genomic alterations to
create a comprehensive “atlas” of cancer genomic profiles
(Tomczak et al., 2015). The TCGA-PRAD dataset was
screened out from UCSC Xena (https://xena.ucsc.edu/). The
raw data were preprocessed with the following criteria: 1)
samples without related clinical data (age, Gleason grade, N
stage, and T stage) or survival data were removed; 2) genes
with missing expression values in more than half of the
samples were excluded; 3) genes were excluded if the FPKM
value (fragments per kilobase million) was 0 in more than half of
the samples; and 4) genes were screened out if the FPKM value
was more than 1 in more than 10% of the samples. GSE21032
containing the normalized log2 mRNA expression data and
clinical characteristics (131 primary prostate cancer samples
and 50 normal samples) was downloaded from c-BioPortal

(http://cbioportal.org). R software (version 4.0.2) and SPSS
software (version 23.0) were used in the subsequent analysis.

Identification of Differentially Expressed
Genes
DEGs between tumor samples and matched normal samples were
screened out usingWilcoxon rank sum tests in R software (version
4.0.2) with p < 0.05 and log2|FC|> 1. The volcano plot of DEGswas
plotted by the R package “ggplot2” (version 3.3.5).

Construction of Weighted Gene
Co-Expression Network Analysis for Key
Module Mining
A weighted co-expression network of DEGs screened out from the
dataset was constructed to explore the biological function by the R
package “WGCNA” (version 1.70–3). The best soft-thresholding
was determined automatically by the R package “WGCNA.”
Interaction of different co-expression modules was assessed, and
the heatmap was constructed. Based on the heatmap, genes in the
key modules were screened out for further analysis.

Pathway Enrichment Analysis of
Differentially Expressed Genes
Gene ontology (GO) enrichment analysis plays an important role
in describing the biological processes (BPs), cellular components
(CCs), and molecular functions (MFs) correlated with DEGs
(Chen et al., 2017). KEGG pathway analysis plays an
important role in describing biological pathways correlated
with DEGs (Kanehisa and Goto, 2000; Chen et al., 2017). Our
analysis was performed based on the DEGs screened out from key
modules by the R package “clusterProfiler” (version 3.16.1), p <
0.05 and q < 0.05 (Yu et al., 2012).

Construction of Protein–Protein Interaction
Network and Module Mining
The STRING database (http://string-db.org, version 11.5) was
widely used for protein–protein interaction (PPI) network
construction (Szklarczyk et al., 2021). Interactions among the
DEGs in the key modules were calculated based on the
STRING database. The interaction with a confidence >0.7 was
considered a significant interaction and retained. To identify the
hub regulatory genes, the PPI network data were imported into
Cytoscape software for further analysis. We found an important
cluster module based on MCODE (version 2.0.0) plugin in
Cytoscape. Parameter settings were as follows: degree cutoff = 2,
node score cutoff = 0.2, K-core = 2, and depth cutoff = 100.

Pathway Enrichment Analysis of
Differentially Expressed Genes in the Key
Module and Network Screening
Using R software, GO enrichment analysis and KEGG pathway
analysis were performed based on all the genes in the key module.
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Then, we screened the functionally grouped gene ontology and
pathway annotation networks by ClueGO (version 2.5.8) and
CluePedia (version 1.5.8) in Cytoscape (Bindea et al., 2009;
Bindea et al., 2013). Parameter was limited to simplify the
figure and only illustrate the key pathway.

Hub Gene Mining and Construction of a
Prognostic Risk Model
According to the counts of each gene calculated byMCODE, the top
25 candidate hub genes in the key module were screened out by
cytoHubba (version 0.1) (Chin et al., 2014). The Cox proportional
hazard regression model has achieved widespread use in the analysis
of time-to-event data with censoring and covariates (Fisher and Lin,
1999). In our study, the key genes associated with overall survival
(OS) were screened out from the top 25 candidate hub genes by Cox
proportional hazard regression analysis based on the TCGA dataset.
The hazard ratio (HR), 95% confidence interval (CI), Globe p value
(log rank), and concodence index were calculated to identify
potential oncogenes and antioncogenes via R function “coxph.”
The risk score of each sample was predicted by R software, and the
samples were divided into high-risk and low-risk groups by the score
cutoff. GSE21032 was used as a test set for validating the risk model
constructed based on the TCGA dataset. The forest plot and
Kaplan–Meier (KM) survival curve were plotted by the R
packages “survival” (version 3.2-11) and “survminer” (version
0.4.9). The risk distribution was plotted by the R package
“pROC” (version 1.17.0.1).

Analysis of Hub Gene Expression and
Validation
After construction of the prognostic risk model based on the
TCGA dataset and validation based on GSE21032, the expression
of candidate genes eventually screened out in different hierarchies
of clinical information was screened by the R packages “ggplot2”
and “pheatmap” (version 1.0.12), using Wilcoxon rank sum tests
in R software. Protein expression correlated with eight hub genes
was validated in the Human Protein Atlas (HPA) database
(https://www.proteinatlas.org) (Uhlen et al., 2015; Uhlen et al.,
2017).

RESULTS

Differentially Expressed Gene Identification
and Co-Expression Network Construction
Our study was conducted according to the flow chart shown in
Figure 1. In total, 468 samples (47 normal samples and 421 tumor
samples) from the GSE21032 dataset were eventually selected and
analyzed. All clinical information were arranged in the chart and
also shown in Table 1. A total of 1,621 DEGs (870 downregulated
and 751 upregulated genes) under the threshold p < 0.05 and log2|
FC| > 1 were screened from the GSE21032 dataset and shown in a
volcano plot (Figure 2A, Supplementary Table S1). The
obtained 1,621 DEGs were further analyzed and screened
with WGCNA to construct a co-expression network. Since

FIGURE 1 | Flowchart presenting the process of establishing the gene signature and prognostic nomogram of prostate cancer in this study.
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the scale-free topology fit index was 0.9 (Figure 2B left) and
the lower the mean connectivity number, the better (Figure 2B
right), the soft-thresholding (power) = 4 was selected. The best
soft-clustered genes were confirmed using a topological
overlap matrix (TOM)-based dissimilarity measure by using
the dynamic tree cut algorithm, and five gene modules were
obtained (Figure 2C). To correlate the resulting modules with
the clinic traits, the first principal components of the module
matrix were calculated and defined as eigengenes (Langfelder
and Horvath, 2008). As shown in Figure 2D, the network
heatmap was plotted to indicate the relationship between each
module.

Clinically Significant Module Selection
After relating modules to traits, it was found that the genes in
MEturquoise and MEblue exhibited higher correlations with
sample types than other modules (Figure 2E, Supplementary
Tables S2, S3), indicating that they were significantly (p < 0.05)
associated with the occurrence of PCa and could be considered as
cancer-suppressing genes. Therefore, the genes in MEyellow and
MEbrown were selected as the clinically significant modules for
further analysis to find hub genes related with PCa, which
exhibited high correlations with the sample types, Gleason
stage, N stage, and T stage (Figures 2E,2G–I, Supplementary
Tables S4, S5), revealing that they were correlated with the
occurrence of PCa and the progression of PCa. Since the
Pearson correlation coefficients between the two modules
(MEyellow and MEbrown) and age were relatively low (0.13
and 0.094, respectively, Figure 2F), genes in these modules might
not play important roles in aging.

Functional Enrichment Annotation and
Protein–Protein Interaction Network
Construction
To uncover the hub genes from the candidate genes obtained
from MEyellow and MEbrown, functional enrichment analysis
and protein–protein interaction (PPI) network construction were
performed. The results of GO term enrichment analysis and
KEGG pathway enrichment analysis based on DEGs in the two
key modules are shown in Figures 3A,B. Notably, GO term
enrichment analysis demonstrated that the DEGs were mainly

enriched in chromosome segregation, mitotic nuclear division,
nuclear division, and so forth. From KEGG pathway enrichment
analysis, the DEGs were mainly associated with cell cycle, oocyte
meiosis, progesterone-mediated oocyte maturation, and the p53
signaling pathway. The PPI network of DEGs was built by using
STRING, which includes 159 nodes and 1,407 edges (Figure 3C).
The aforementioned results revealed that the abundant signal
pathways in which the DEGs were enrichedmay play pivotal roles
in the pathological processes of PCa.

Network Visualization of Differentially
Expressed Genes in Key Pathways
To find genes more significantly related with PCa and key
relationship network, protein interaction data analyzed by
STRING were imported into Cytoscape for further analysis.
We found a key module containing 50 nodes and 1,130 edges,
which was considered to be significantly associated with PCa
and valuable for further analysis (Figure 4A). The gene names
and scores of nodes are shown in Supplementary Table S6. To
explore the functions and relationships of the potential hub
genes, GO term enrichment analysis and KEGG pathway
enrichment analysis based on DEGs in the key module were
performed (Figures 4B,C). For GO term enrichment analysis,
we found that the DEGs were associated with mitotic nuclear
division, chromosome segregation, nuclear division, and so
forth. In KEGG pathway enrichment analysis, DEGs were
enriched in cell cycle, oocyte meiosis, progesterone-mediated
oocyte maturation, and the p53 signaling pathway. GlueGO
and GluePedia were used in Cytoscape to visualize the
enrichment results and found certain genes related to
multiple pathways, which may be potential genes playing an
important role in regulating the function of the module
(Figures 5A,B).

Identification of Hub Genes and a Risk
Model Predicting the Prognosis of PCa
Twenty-five DEGs with the highest scores in the key module were
screened out using cytoHubba plugin in Cytoscape (Figure 6A,
Supplementary Table S7). Subsequently, to construct a Cox
proportional hazard regression model, eight genes (BUB1,
KIF2C, CCNA2, CDC20, CCNB2, PBK, RRM2, and CDC45)
were eventually screened out by the using stepwise algorithm
in the R package “stats.” HR and 95% CI of each gene are shown
in Table 2. The forest plot was utilized to visualize the
multivariate Cox proportional hazard regression model
constructed based on the candidate hub genes. As shown in
Figure 6B, the concordance (C-index value) was 0.821 (se =
0.062) and the p value of the score (log rank) test was 0.004
(Global p value). We found that the hazard ratio (HR) value of
BUB1, CCNA2, CDC20, and RRM2 had statistical significance
(p < 0.05). BUB1, CDC20, PBK, and CDC45 were potential risk
genes with HR < 1, while KIF2C, CCNA2, CCNB2, and RRM2 are
potential protective genes with HR > 1.

Based on the risk scores predicted for each sample in the train
set, a total of 421 patients were divided into high-risk and low-risk

TABLE 1 | TCGA-PRAD patients’ characters.

Clinical character Total (n = 468) %

Sample type Normal 47 10.0
Primary 421 90.0

Age group ≥62 243 51.9
<62 225 48.1

Gleason stage 6–7 271 57.9
8–10 197 42.1

N stage N0 389 83.1
N1 79 16.9

T stage T2 170 36.3
T3 286 61.1
T4 12 2.6
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FIGURE 2 | Screening for differentially expressed genes in prostate cancer (PCa) and weighted co-expression network analysis (WGCNA) based on differentially
expressed genes. (A) Volcano plot of DEGs in TCGA-PRAD cohort. The blue dot represents the downregulated gene, while the red dot represents the upregulated gene.
(B) Determining soft-thresholding power in WGCNA: the scale-free fit index and the mean connectivity for various soft-thresholding powers. (C) Clustering dendrogram
and color display of co-expression network modules in the samples. (D) The eigengene adjacency heatmap was constructed. (E) Heatmap of the correlation
between module eigengenes and the sample type of prostate cancer. (F) Heatmap of the correlation between module eigengenes and the age group (cutoff: 62) of
prostate cancer. (G)Heatmap of the correlation between module eigengenes and the Gleason stage of prostate cancer. (H)Heatmap of the correlation between module
eigengenes and the N stage of prostate cancer. (I) Heatmap of the correlation between module eigengenes and the T stage of prostate cancer.
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groups by the median cutoff of risk score 0.27. Distribution of risk
scores, survival status, and the candidate hub gene expression
heatmap based on the TCGA dataset were plotted (Figure 7A).

We compared the OS of the two groups using the Kaplan–Meier
(KM) curve with the risk table (p < 0.05) (Figure 7B). The
prognosis prediction efficiency was analyzed by the ROC curve.

FIGURE 3 | Enrichment analysis and protein–protein interaction (PPI) network based on genes from the yellow and brown module from WGCNA. (A) GO term
enrichment analysis of DEGs obtained from two modules. The main GO terms (p value< 0.05) are shown for the biological process (BP), cellular component (CC), and
molecular function (MF). For BP and CC, only results with the top 10 lowest p value are shown. (B) KEGG pathway enrichment analysis of DEGs obtained from two
modules. (C) PPI network of the overlapping DEGs constructed based on the STRING online database.
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The model had a relatively high value of area under the curve
(AUC) with a value of 0.825 (AUC >0.8, Figure 7C). The
robustness of the risk model was validated on the GEO dataset
GSE21032. Distribution of risk scores, survival status, and the

eight genes’ expression heatmap in the GEO dataset are shown in
Figure 8A. The KM curve with the risk table (p < 0.05) and the
ROC curve (AUC >0.7) are shown in Figures 8B,C. The results in
the train set and test set indicated that it may be possible to

FIGURE 4 | Module analysis based on DEGs from two selected WGCNA modules. (A) Molecular Complex Detection (MCODE) plugin in Cytoscape was used to
detect cluster modules. One module was screened by using MCODE. The module score is 46.122, with 50 nodes and 1,130 edges. (B)GO term enrichment analysis of
DEGs obtained from themodule. Themain GO terms (p value< 0.05) are shown for the biological process (BP), cellular component (CC), andmolecular function (MF). For
BP and CC, only results with the top 10 lowest p value are shown. (C) KEGG pathway enrichment analysis of DEGs obtained from the module.
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FIGURE 5 | Network relationship screened by using the ClueGO (v2.5.8) and CluePedia plugins (v1.5.8) in Cytoscape, based on DEGs obtained from the module
picked out by MCODE. (A) Network relationship of GO term enrichment analysis. (B) Network relationship of KEGG pathway enrichment analysis. Pathways with the
same color indicate that they have similar functions.
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predict the prognosis of prostate cancer patients based on the risk
score in our model. The eight selected candidate hub genes could
be considered the prognostic biomarkers for PCa.

Expression of the Eight Hub Genes
Significantly Differed in Clinical
Manifestations
To further verify the relationship between these eight hub genes
and PCa occurrence and progress, the mRNA expression of the

eight hub genes correlated with sample types and clinical
characters based on the TCGA-PRAD dataset were analyzed.
BUB1, KIF2C, CDC20, and PBK were significantly highly
expressed in tumor tissues, the older age group, and advanced
stages of PCa (p < 0.05, Figure 9), which is in accordance with the
results displayed in Figure 2, indicating that BUB1, KIF2C,
CDC20, and PBK might promote the occurrence and progress
of PCa. Subsequently, we investigated the protein expression of
hub genes (BUB1 and KIF2C were unavailable) based on the

FIGURE 6 |Hub gene identification based on DEGs from the module picked out by MCODE. (A)Cytohubba plugin in Cytoscape was used to determine the top 25
hub genes in protein–protein interaction. (B) Forest plot of risk factors affecting the survival in PCa patients. Hazard ratio (95% CI) and p value of each hub genes
are shown.
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immunohistochemistry results downloaded from the HPA
database. All six hub genes were upregulated in PCa tissues
(Figure 10). These results revealed that the expression of these

genes was indeed upregulated at both transcript and translation
levels in PCa. The eight hub genes were the candidate biomarkers
for PCa.

TABLE 2 | Results of multivariate Cox proportional hazard regression analysis.

Gene symbol Coefficient Hazard ratio
(95% CI)

se (coef) z p value

BUB1 −5.509 4.049e-03 (0.0001–1.127e-01) 1.697 −3.246 0.001
KIF2C 4.884 1.322e + 02 (0.647–2.702e + 04) 2.714 1.799 0.072
CCNA2 3.129 2.285e + 01 (1.718–3.039e + 02) 1.320 2.370 0.018
CDC20 −3.842 2.144e-02 (0.001–4.669e-01) 1.572 −2.445 0.015
CCNB2 1.484 4.411e + 00 (0.947–2.053e + 01) 0.785 1.891 0.059
PBK −2.156 1.158e-01 (0.009–1.539e + 00) 1.320 −1.633 0.102
RRM2 3.542 3.455e + 01 (2.818–4.235e + 02) 1.279 2.770 0.006
CDC45 −2.967 5.145e-02 (0.002–1.275e + 00) 1.638 −1.812 0.070

Note: p < 0.05 written with bold number represents the gene may be potentially correlated with the prognosis of prostate cancer.

FIGURE 7 | Analysis of the risk model in the train set. (A) Distribution of risk scores, survival status, and the eight genes’ expression heat map. (B) Kaplan–Meier
(KM) curves of the OS in the train set. (C) ROC curves and area under the curve (AUC = 0.825) of the risk model.

FIGURE 8 | Analysis of the risk model in the test set. (A)Distribution of risk scores, survival status, and the eight genes’ expression heatmap. (B)Kaplan–Meier (KM)
curves of the OS in the test set. (C) ROC curves and area under the curve (AUC = 0.795) of the risk model.
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FIGURE 9 | Expression of the eight hub DEGs in different types of tissues, age groups (cutoff = 62), T stages, N stages, and Gleason stages in the TCGA-PRAD
dataset. Expression values of the ten hub DEGs are log2-transformed (*: p < 0.05; **: p < 0.01; ***: p < 0.001; ****: p < 0.0001; and ns: p > 0.05).
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RRM2 Might Be a Potential Biomarker for
PCa Prognosis
Prognosis is an important aspect in cancer treatment.
Unfortunately, the survival analysis of age, Gleason stage, T
stage, and N stage of PCa patients showed no statistical
significance with the overall survival of prostate cancer
patients (p > 0.05, Figure 11), indicating that it may be
difficult to predict the prognosis of prostate cancer patients
merely based on clinical manifestations. For the eight hub
genes, a survival analysis was performed, which provided a
value of a cut point that corresponds to the most significant
relation with the outcome. The KM curve with the risk table is
shown in Figure 12. We found that RRM2 was statistically
significant to the prognosis of prostate cancer patients (p <
0.05) (Figure 12A). The expression of RRM2 between normal
tissues and tumor tissues was also validated in the GEPIA
database (Figure 12B). All results revealed that the high
expression of RRM2 led to poor prognosis, indicating that
RRM2 may be an independent potential biomarker of PCa
prognosis.

DISCUSSION

The prediction for the prognosis of PCa patients is relatively
difficult compared with other tumors. Consequently, it is urgent
to detect biomarkers for the early diagnosis and treatment of
prostate cancer. Through the KEGG pathway analysis, we found
that the pathways associated with DEGs in the keymodule are cell
cycle, oocyte meiosis, progesterone-mediated oocyte maturation,
and the p53 signaling pathway. Oocyte meiosis and progesterone-
mediated oocyte maturation were reported to be related with
reproductive inheritance, which were widely studied in women
(Jaffe and Egbert, 2017; Lin T. et al., 2019). However, our study
revealed that the genes associated with PCa were numerously
enriched in these two pathways, indicating that there may be
potential new features related with men, and further research was
expected to be performed for more explorations. Furthermore,
numerous studies with reliable experiments have demonstrated
that the activation of the p53 signaling pathway is correlated with
the development of various types of cancer, including prostate
cancer (Gao et al., 2014; Gao et al., 2020; Zheng et al., 2020; Dong
et al., 2021). In addition, p53 has been identified to be associated

FIGURE 10 | Validation of the expression of hub genes available in prostate cancer (PCa) and normal tissues in the Human Protein Atlas (HPA) database. (A)
CCNA2, (B) CDC20, (C) CCNB2, (D) PBK, (E) RRM2, and (F) CDC45.

FIGURE 11 | Survival analysis by clinical data stratification of prostate cancer. (A) Age of PCa patients (cutoff: 62). (B)Gleason stage of tumor. (C)N stage of tumor.
(D) T stage of tumor.
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with cell cycle and apoptosis, and activation of the p53 tumor
suppressor can lead to cell cycle arrest (Wang et al., 2015;
Engeland, 2018). In our study, as the network relationship of
KEGG pathway enrichment analysis showed, CDK1, RRM2,
CCNB2, and GTSE1 were screened out to be associated with
the p53 signaling pathway. Furthermore, GTSE1 has been
experimentally validated to play an important role in the p53
signaling pathway. Lin et al. revealed that GTSE1 could regulate
the p53 function to alter the cell cycle distribution dependent on
the mutation state of p53 in breast cancer (Lin F. et al., 2019).
CDK1, RRM2, and CCNB2were reported to be correlated with the
p53 signaling pathway, which may be urgent to be validated with
reliable experiments for further analysis (Fischer et al., 2016; Yang
et al., 2019; Jin et al., 2020). Furthermore, the network
relationship of GO enrichment analysis was screened to
visualize enrichment results, which may provide more
possibility for the research of key genes in prostate cancer.

Through the application of Cox proportional hazard
regression analysis, we identified eight genes for the prognostic
prediction of prostate cancer, including BUB1, KIF2C, CCNA2,
CDC20, CCNB2, PBK, RRM2, and CDC45. The accuracy of our
model based on these genes was relatively high. The results of the
KM curves (p < 0.05), C-index (0.82), AUC of the train set
(0.825), and AUC of the test set (0.795) revealed that the signature
may count for categorizing patients into high-risk and low-risk
groups and act as an effective indicator of prognosis. Based on
WGCNA module selecting and gene expression analysis, BUB1,
KIF2C, CDC20, and PBK were eventually detected to be
potentially associated with the clinical pathological features of
prostate cancer. However, experimental validation of BUB1 and
KIF2C in prostate cancer was unavailable in the HPA database,
which were valuable to be verified based on more experiments.

In our study, BUB1, CDC20, PBK, and CDC45were considered
as potential tumor suppressor genes. Budding uninhibited by

benzimidazoles 1 (BUB1), a mitotic checkpoint serine/threonine
kinase, has been reported in numerous cancer studies. BUB1 was
highly expressed in gastric cancer, and the overall survival time
was prolonged in gastric cancer patients with a high expression of
BUB1 (Li X. et al., 2020). However, it was verified that the high
expression of BUB1 was correlated with poor prognosis in
hepatocellular carcinoma (HCC) (Yang et al., 2019). In
contrast, BUB1 was considered a protective prognosis gene in
our study and enriched in the p53 signaling pathway, indicating
that the complexity of the gene requires a lot of validation. Also,
the mechanism of BUB1 in regulating the development of
prostate cancer remains to be explored. Cell division cycle 20
(CDC20) is an anaphase-promoting complex activator that plays
a key role in cell division and tumorigenesis. Recent studies
indicated that CDC20 may serve an oncogenic role in various
types of human cancer. CDC20 has been reported to serve as an
independent predictor for biochemical recurrence (BCR) in
prostate cancer (Li et al., 2016; Mao et al., 2016). Furthermore,
it was reported that CDC20 overexpression facilitates the
docetaxel resistance of the castration-resistant prostate cancer
(CRPC) cell lines in a Bim-dependent manner, indicating that the
drugs targeting CDC20 were urgent to be developed for the
treatment of the CRPC with docetaxel resistance (Wu et al.,
2018). PDZ binding kinase (PBK) is a serine/threonine kinase.
PBKwas reported to regulate the expression of androgen receptor
(AR) protein, and the overexpression of PBK in aggressive
prostate cancer was reported to be associated with early
biochemical relapse and poor clinical manifestations (Warren
et al., 2019). However, the mechanism has not been revealed.
Moreover, PBK was a downstream target of RORγ that exerted
the cellular effects, indicating that PBK, RORγ, and AR were all
associated with the growth and survival of aggressive prostate
cancer (Zhang et al., 2021). However, possible mechanisms in
non-aggressive prostate cancer have not been researched. Cell

FIGURE 12 | Survival analysis and expression analysis of RRM2. (A) Association between RRM2 expression and survival outcomes of TCGA-PRAD cohort. (B)
mRNA expression levels of RRM2 in the GEPIA database.
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division cycle 45 (CDC45) plays a critical role in DNA replication.
CDC45 was reported to be a potential prognostic and diagnostic
biomarker in colorectal cancer (CRC) and HCC, but few
mechanisms have been found (Hu et al., 2019; Lu et al., 2021).
In addition, CDC45 was only detected to be potentially correlated
with prostate cancer based on co-expression network analysis and
functional enrichment analysis, indicating that more empirical
evidence was expected to validate the functions of CDC45 in
prostate cancer (Cai J. et al., 2020; Wei J. et al., 2020; Wang and
Yang, 2020).

Furthermore , KIF2C, CCNA2, CCNB2, and RRM2 were found
to be potential risk genes in our study. Kinesin Family Member
2C (KIF2C) is a modulator in microtubule depolymerization,
bipolar spindle formation, and chromosome segregation. It has
been reported to be associated with the prognosis of numerous
cancers. It was reported that KIF2C expression was significantly
upregulated in HCC and breast cancer, and that KIF2C up-
regulation was associated with a poor prognosis (Wei S. et al.,
2020; Li T. et al., 2020). However, there was also evidence that
MCAK/KIF2C played an important role in the regulation of
cellular senescence through a p53-dependent pathway and
might contribute to tissue/organism aging and protection of
cellular transformation (Gwon et al., 2012). In our study,
KIF2C performed as a risk prognostic factor, but no
prognostic value of KIF2C in prostate cancer has been verified.
Cyclin A2 (CCNA2) belongs to the highly conserved cyclin family
and is significantly overexpressed in various cancer types. CCNA2
mRNA was reported to be distinctly upregulated in non-small-
cell lung cancer (NSCLC) specimens and cell lines, but no
prognostic value of CCNA2 in NSCLC has been found (Liu
et al., 2019; Du et al., 2020). In our study, CCNCA2 was
associated with the prognosis of prostate cancer and was
statistically significant in Cox regression analysis (p < 0.05).
Our result has been validated from the research conducted by
Yang et al. (2020), indicating that CCNA2 is probably a key gene
of prostate cancer. Cyclin B2 (CCNB2) performs as a member of
cyclin family proteins, serving a key role in the progression of G2/
M transition. It was proved that the knockdown of circ_CCNB2
increased the radiosensitivity of PCa through repressing
autophagy by the miR-30b-5p/KIF18A axis, but no biological
function of CCNB2 in prostate cancer has been found (Cai F.
et al., 2020). CCNB2 was highly expressed in human triple-
negative breast cancer (TNBC) tissues and correlated with the
prognosis and clinical pathological features (Wu et al., 2021).
However, the key targets of CCNB2 in TNBC and its biological
functions remain to be found. Ribonucleotide reductase
regulatory subunit M2 (RRM2) is a rate-limiting enzyme
involved in DNA repair and synthesis. RRM2 has been
reported in various types of cancer and has been implicated in
tumor progression. In lung adenocarcinoma (LUAD), the
overexpression of RRM2 was an independent predictive factor
of poor prognosis, which increased the activation of Bcl-2 and
E-cadherin signaling pathways and reduced the activation of the
p53 signaling pathway (Jin et al., 2020). In prostate cancer, it has
been reported that the increased expression of RRM2 was

associated with poor prognosis, which was also validated in
our study (Mazzu et al., 2019). In addition, we found that
RRM2 was enriched in the p53 signaling pathway, indicating
that the mechanism of RRM2 in the development of prostate
cancer was potentially correlated with the p53 signaling pathway,
which remained unclear due to lack of experimental validation.

CONCLUSION

In summary, we found a key DEG module associated with
prostate cancer. Then, the network relationship of GO
enrichment and KEGG enrichment was screened. Next, we
found eight hub genes and constructed a risk model to predict
the prognosis of prostate cancer, providing a clue for risk
stratification and prognosis prediction in prostate cancer.
Finally, RRM2 was enriched in the p53 signal pathway and
its expression was statistically significant to the prognosis of
prostate cancer, indicating that RRM2 may play a key role in
the progression of PCa. Nevertheless, our research was based
on bioinformatic analysis, and further experimental
exploration is needed to illustrate the mechanism of RRM2
in PCa.
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