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Abstract

Statistical learning is the ability to learn based on transitional probability (TP) in sequential

information, which has been considered to contribute to creativity in music. The interdisci-

plinary theory of statistical learning examines statistical learning as a mechanism of human

learning. This study investigated how TP distribution and conditional entropy in TP of the

melody and bass line in music interact with each other, using the highest and lowest pitches

in Beethoven’s piano sonatas and Johann Sebastian Bach’s Well-Tempered Clavier.

Results for the two composers were similar. First, the results detected specific statistical

characteristics that are unique to each melody and bass line as well as general statistical

characteristics that are shared between the melody and bass line. Additionally, a correlation

of the conditional entropies sampled from the TP distribution could be detected between the

melody and bass line. This suggests that the variability of entropies interacts between the

melody and bass line. In summary, this study suggested that TP distributions and the entro-

pies of the melody and bass line interact with but are partly independent of each other.

1. Introduction

1.1. Statistical learning in humans and computers

Statistical learning (SL) has been considered a domain-general and implicit learning system

that encodes probabilistic distribution of sequential phenomena such as music and language

[1–3]. For example, the brain’s SL machinery automatically computes transitional probability

(TP) distributions of sequences, calculates uncertainty/entropy of the distribution, and pre-

dicts a future state based on an internalized statistical model in order to minimize sensory

reaction and uncertainty and optimize the efficiency of the prediction. SL is an interdisciplin-

ary field that embraces both the brain’s SL system and artificial intelligence in the framework

of predictions. When a brain or a computer encodes the TP distribution of a sequence, it

expects a probable future stimulus with a high TP and inhibits the processing loads that will

arise in response to predictable states [4][5]. SL has been considered to contribute to creativity

in music [6,7], decision-making [8–10], and motor activities [11,12][13] as well as perception

[14,15][16,17]. The TP is a conditional probability of an event B given that the latest event A

has occurred, written as P(B|A). The TP distributions sampled from sequential information
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can be expressed by nth-order Markov models or n-gram models [18]. The Markov model has

frequently been applied to develop artificial intelligence that gives computers learning abilities

similar to those of the human brain, thus generating systems for data mining, automatic music

composition [19], and automatic text classification in natural language processing [20].

Psychologists agree that computational and corpus studies on music can highlight some of

the statistical properties available to musical learners by SL and implicit learning [21–24]. Par-

ticularly, the Competitive Chunker [25], PARSER [26], Information Dynamics of Music

(IDyOM) [27], and n-gram models [28] underlie the hypothesis that music is acquired by

concatenating chunks. Computational studies calculate statistical distributions in music and

devise corresponding models, then evaluate the validities of these models through neurological

and behavioural experiments [27,29,30]. Particularly, SL in Markov models, which correspond

to n-gram models based on conditional probability [31], overlaps with SL in many other fields

of study, such as neuroscience, behavioural science, and computational science. Entropy,

which is calculated from the probability distribution and has been interpreted as the average

degree of surprise associated with an outcome [32,33], has also been used to verify the validity

of computational models including SL in music [34–37]. Thus, information-theoretical

approaches including information content and entropy (i.e., transitional probability and

uncertainty, respectively) based on n-order Markov models are candidates for understanding

musical SL on an interdisciplinary scale.

1.2. Uncertainty, probability, and order

To precisely predict individual events in a sequence, the brain encodes the degree of uncer-

tainty of the statistical distributions in the sequence as well as the TP value itself [34,38]. This

uncertainty can be evaluated using “entropy” as Shannon has done [31]. Particularly, condi-

tional entropy can be calculated from TP distribution, interpreted as the average degree of sur-

prise or uncertainty of an outcome. From a psychological perspective in music, a musical

sequence with higher conditional entropy is considered to have information that makes its

distributional structure more difficult to grasp. Therefore, in terms of information efficiency,

an SL model sampled from a sequence with higher conditional entropy will be less optimized.

Several studies have shown that the degree of conditional entropy modulates the precision of

predictability in a sequence [30,39–41]. In addition, the uncertainty in musical sequences may

account for the characteristics of musical SL ability in persons with developmental learning

disorders such as amusia [42–44]. The literature on this topic indicates that persons with

developmental learning disorders are impaired only with regard to higher- rather than lower-

order SL [45]. Computational modelling has also suggested that individual differences in statis-

tical knowledge gradually emerge from the lower- to higher-order SL models [46][47], and

that statistical knowledge may shift from a lower- to higher-order (deeper) hierarchy through

experience. Thus, distinct stages of SL strategies may be explained based on the information-

theoretical concept of “order”. The order of SL is not independent of but rather interdependent

on the degree of uncertainty[48]. In the framework of information theory, higher-order statis-

tical models represent lower conditional entropy (i.e., uncertainty) (see Fig 3B in [18]). In

other words, when the brain can construct a higher-, but not a lower-, order statistical model

from music, it can internalize the music as having less uncertainty. Thus, the order of the SL

model in music could modulate the uncertainty.

1.3. Creativity and uncertainty

Recent literature has suggested that specific developmental processes modulate SL ability in

the brain. For example, both Western-classical and jazz musicians are better statistical learners
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in general than nonmusicians [49–53]. Furthermore, through long-term musical training,

musicians optimize their brains’ probabilistic modelling ability for SL and decrease the degree

of uncertainty [52]. In the end, the optimized SL models in musicians’ brains allow them to

precisely and efficiently predict tones during SL of auditory sequences. This precision and effi-

ciency of prediction may also enhance neural-processing efficiency. For example, neurophysi-

ological studies have demonstrated the existence of individual differences in SL ability in the

framework of prediction [54]. This may indicate that auditory training modulates neural pro-

cessing that may reflect prediction based on SL. Although the brain tries to realize valuable

behaviours at the lowest uncertainty, it also seeks a slightly suboptimal solution if such a solu-

tion can be afforded at a significantly low uncertainty [55]. This fluctuation of uncertainty

could contribute to maximizing the rewards of curiosity, encouraging human creativity and

creating new information regularities [56]. Recent computational studies on music have sug-

gested that, from the early stage to the late stage of a composer’s lifetime, the transitional prob-

abilities of familiar phrases in that composer’s music gradually decrease [46], whereas the

conditional entropy (i.e., uncertainty) gradually increase. These findings were more prominent

in higher- than in lower-order SL models. These studies suggest that higher- rather than

lower-order statistical knowledge [46][38] may be more susceptible to long-term experience

that modulates uncertainty in the brain’s probabilistic model [52]. Furthermore, computa-

tional studies on improvisation in music have suggested that lower-order SL models represent

general characteristics shared among musicians, whereas higher-order SL models detect spe-

cific characteristics unique to each musician [57][58]. Thus, a growing body of literature indi-

cates that SL affects musical structure and its statistical distributions. It is unknown, however,

how the TP distributions of the melody and bass line interact with each other, and how tonal

mode and key govern the statistical distributions and the interactions between the melody and

bass line.

Western tonal classical music has a number of specific features such as isochronic metrical

grids, tonal pitch spaces, hierarchical tension, and attraction contours based on the structure

of the melody and chord progression [59,60]. The musical melody and bass line can interact

with each other within the constraints of these features. In music, the highest and lowest

pitches play an important role in establishing the frames of the melody and bass line, respec-

tively. To form musical structures such as phrase and harmony, they are partly dependent and

partly independent of each other. According to neurophysiological and behavioural studies, SL

of dyad sequences with distinct regularities in each high and low voice can be performed in

parallel and independently [61,62]. In other words, distinct statistical knowledge of high- and

low-pitch sequences can be acquired simultaneously. Another neurophysiological study sug-

gested that SL is also possible for harmony sequences in which the highest and lowest pitches

are randomly distributed without regularity [29]. Together, neural studies support the hypoth-

esis that SL of the melody and SL of the bass line interact with and are partly independent of

each other in the framework of the Gestalt principle in music [60]. To understand musical SL

in humans and to refine the computational models, it is important to examine how the melody

and bass line interact with each other based on statistical and music-specific features.

1.4. The aim of the present studies

The purpose of the present studies is to investigate how TP distributions of the melody and

bass line interact with each other, and how tonal mode and keys govern the statistical distribu-

tions and the interaction between the melody and bass line. The information content of TPs in

the sequences containing the highest and lowest pitches in all of the movements in Beethoven’s

piano sonatas (No.1, Op.2-1 to No.32, Op.111) (Study 1) and Johann Sebastian Bach’s Well-
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Tempered Clavier (Study 2) were calculated based on six different order Markov stochastic

models (i.e., zeroth- to fifth-order Markov chains). First, to investigate the statistical character-

istics of the melody and bass line in each piece of music, the TP distribution was analysed

using principal component analysis, based on the hypothesis that there are fundamental statis-

tical characteristics shared between the melody and bass line, and specific statistical character-

istics that are unique to each. Additionally, the detectability of these characteristics may

depend on the tonal mode and the keys [63] and/or on the order of TP distributions (first to

sixth orders). If so, the interaction of statistical characteristics between the melody and bass

line may depend on the tonality (tonal mode and keys) and/or order of the TP distribution

[64]. Second, to investigate the relationships between entropy in the melody and entropy in

the bass line in each tonality and each order of TP distribution, the conditional entropy of the

TP distribution was compared by correlation analysis between the melody and bass line, and

between music in a major key and music in a minor key. It was hypothesized that the variabil-

ity of entropy in each piece of music depends on the tonality and order of TP distribution. In

the present studies it was expected that the statistical distribution of music would correspond

with models of predictive function in the brain, and we first investigated how information-the-

oretical notions including information content and entropy are related to SL theory regarding

human predictions.

2. Methods

All of the movements in Ludwig van Beethoven’s piano sonatas (No.1 in F minor, Op.2-1 to

No.32 in C minor, Op.111, composed 1795–1822) and Johann Sebastian Bach’s Well-Tem-

pered Clavier, BWV 846–893, which is a collection of two series (No.1 and No.2) of preludes

and fugues in all 24 major and minor keys, were used in the present studies. Using a scorewri-

ter software program (Finale version 25, MI Seven Japan, Inc.), electronic scoring data of the

sequences of highest pitch were extracted from the XML files. The highest and lowest pitches

were defined as the highest and lowest pitches that can be played at a given point in time; in

identifying these pitches, equivalent pitches were counted as one, and grace notes were

excluded. Using all the pitch sequences in each piece of music, the TPs distributions were cal-

culated based on zeroth- to fifth-order Markov models. In Beethoven’s piano sonatas, the

weighted averages of TPs of all the movements were calculated. In Bach’s Well-Tempered Cla-

vier, the weighted averages of TPs of the prelude and fugue in No.1 and No.2 in each key were

calculated. As described in detail previously [57], the nth-order Markov models are based on

the conditional probability of an element en+1, given the preceding n elements:

P enþ1jen
� �

¼
Pðenþ1 \ enÞ

PðenÞ
ð1Þ

Then, for each type of pitch-interval transition, all of the intervals were numbered so that an

increase or decrease in a semitone was 1 or -1, respectively, based on the first pitch. Represen-

tative examples are shown in Fig 1. This revealed interval patterns but not pitch patterns. This

procedure was employed to eliminate the effects of key changes on transitional patterns. The

interpretation of a key change depends on the musician and is difficult to define in an objective

manner. Thus, the results of the present studies may represent a variation of statistics associ-

ated with relative pitch rather than absolute pitch. Then, the information content (I[en +1|en])
in each TP was calculated based on information theory [31] as:

I enþ1jen
� �

¼ log2

1

Pðenþ1jenÞ
bitsð Þ ð2Þ
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The SL mechanism can be explained using well-defined principles of information theory [31].

Information, also referred to as information content, is measured in binary integers or bits.

The key insight is that information, i.e., the sum of the bits required to transmit a message, has

entropy, i.e., “uncertainty” of statistical distribution. Thus, using the distributions of TPs

(information content) in each melody and bass line of each piece of music, the distributional

characteristics of each piece of music were analysed by principal component analysis (PCA).

Fig 1. Representative phrases of transition patterns in the melody and bass line from zeroth- to fifth-order Markov

models (Beethoven’s piano sonata).

https://doi.org/10.1371/journal.pone.0226734.g001
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The present study hypothesized that a component shared within the melodies or bass lines and

within major or minor keys represents a specific characteristic of TP distribution depending

on voice part (i.e., melody and bass) and tonal mode (i.e., major and minor). Based on our pre-

vious papers [57], the criteria of the eigenvalue were set over 1. The first two components that

contribute to each piece of music (i.e., the first and second highest cumulative contribution

ratios), were adopted in Study 1. In Study 2, on the other hand, the first three components

were adopted in order to verify the components of major and minor keys as well as those of

the melody and bass lines. Furthermore, the conditional entropy (H(AB)) in the nth-order was

calculated from the information content as follows:

HðBjAÞ ¼ �
P

i

P
jPðaiÞPðbjjaiÞ log2 PðbjjaiÞ ðbitsÞ ð3Þ

where P(bj|ai) is a conditional probability of the sequence “ai bj”. P(ai) is the probability of

event ai occurring, and P(bj|ai) is the probability of bj occurring given that ai occurs previously

(i.e., transitional probability). The conditional entropy is the sum of the bits and is regarded as

the “uncertainty” of the transitional-probability distribution. The conditional entropy of each

TP distribution was compared by correlation analysis. Statistical significance levels were set at

p = 0.05 for all analyses.

3. Study 1: Ludwig van Beethoven

3.1. Results

3.1.1. Retrieval of characteristics in the melody and the bass line in major and minor

keys. The transitional-probability matrices and the entropies in each piece of music are

shown in Supporting Information 1 and 2, respectively. All of the results are shown in Table 1,

Table 2, and Fig 2. In the zeroth-order model, the two components accounted for 51.18% of

the total variance. All of the pieces of music except for No.20 scored higher than .37 on compo-

nent 1. This score represents the general component that is shared between the melody and

the bass line. Component 2, in contrast, was unable to detect any shared characteristics

between the melody and bass line. In the first-, second-, and third-order models, the two com-

ponents accounted for 42.64%, 25.91%, and 18.56% of the total variance, respectively. All of

the pieces of music scored higher than .44, .25, and .17 on component 1 in the first-, second-,

and third-order models, respectively. These results represent the general component that is

shared between the melody and the bass line. In component 2, on the other hand, the eigenvec-

tors in the melody were generally higher than those in the bass lines. This represents the dis-

tinct components of the melody and bass lines. In the fourth- and fifth-order models, the two

components accounted for 14.23% and 13.12% of the total variance, respectively. All of the

pieces of music scored higher than .14 and .03 on component 1 in the fourth- and fifth-order

models, respectively. These results represent the general component that is shared between the

melody and the bass line. In component 2, the eigenvectors were generally lower in the melody

than in the bass lines. This represents the distinct components of the melody and the bass line.

3.1.2. Correlation analysis. All of the results in the correlation analysis are shown in Fig

3. In first- to fifth-order TP distributions, the conditional entropies of the melody were signifi-

cantly related to those of the bass line (1st: r = .60, p< 0.001; 2nd: r = .82, p< 0.001; 3rd: r =

.80, p< 0.001; 4th: r = .55, p = 0.001; 5th: r = .50, p = 0.004).

3.2. Discussion

This study examined how zeroth- to fifth-order TP distributions (Markov models) and the

conditional entropies in the melody and bass line correlate and interact with each other in all

Statistical learning and the uncertainty in music
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movements of the piano sonatas by Ludwig van Beethoven (No.1 in F minor, Op.2-1 to No.32

in C minor, Op.111, composed 1795–1822). First, we investigated how the statistical character-

istics of the melody and bass line can be extracted in each order Markov model using principal

component analysis. It was hypothesized that there were general statistical characteristics

shared between the melody and bass line as well as specific statistical characteristics that were

unique to each melody and bass line based on each order model. Thus, TP distribution in the

zeroth-order Markov model detected a general component that is shared between the melody

and bass line, whereas those in the first- to fifth-order Markov models detected specific com-

ponents that are unique to each melody and bass line (Fig 2). These results suggest that specific

statistical characteristics in each melody and bass line can be disclosed in higher-order but not

in zeroth-order statistical models. From the psychological and neurophysiological viewpoints

of SL in the brain, higher-order but not lower-order statistical knowledge of the melody and

bass line are partially independent of each other.

Second, we investigated the relationships of conditional entropies between the melody and

bass line in each order Markov model using correlation analysis. It was hypothesized that the

correlation of the variability in the entropy between the melody and bass line depends on the

order of TP distribution. The results suggest that the correlation of conditional entropies

between the melody and bass line could be detected in the first- to fifth- but not zeroth-order

Markov models. They may suggest a correlation in the variability of entropies between the

melody and bass line in higher-order TP distributions. This may suggest that the correlation

between the melody and bass line depends on the length of the sequence. Compared to the

zeroth-order model, the higher models could essentially construct a musical phrase. Thus it is

possible that the analysis of an entire musical phrase may strengthen the perceived connection

between the melody and bass line. In psychological and computational studies related to SL,

predictive coding, and information theory, entropy has been interpreted as the average degree

of surprise associated with an outcome [33]. Entropy has also been used to verify the validity

of statistical models in music [34–37]. The present study detected that the entropy of the mel-

ody is correlated with that of the bass line in higher-order statistical models. This may suggest

that higher-order but not lower-order statistical knowledge of the melody and the bass line are

partially dependent on each other. This hypothesis seems plausible given what we know about

Table 1. The eigenvalue and percentages of variance and cumulative variance in Study 1 (Beethoven’s piano sonata).

Order PC Total Variance � Cumulative �

0th 1 30.030 46.922 46.922

2 2.723 4.254 51.176

1st 1 25.357 39.620 39.620

2 1.932 3.019 42.639

2nd 1 14.488 22.637 22.637

2 2.095 3.274 25.911

3rd 1 9.852 15.394 15.394

2 2.025 3.165 18.559

4th 1 7.044 11.006 11.006

2 2.061 3.220 14.226

5th 1 6.575 10.273 10.273

2 1.819 2.842 13.115

� percentage

PC = principal component

https://doi.org/10.1371/journal.pone.0226734.t001
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Table 2. The eigenvectors for the principal components in Study 1 (Beethoven’s piano sonata).

Order 0th 1st 2nd 3rd 4th 5th

Component PC 1 PC 2 PC 1 PC 2 PC 1 PC 2 PC 1 PC 2 PC 1 PC 2 PC 1 PC 2

Melody No1 .688 -.088 .670 -.220 .525 -.291 .525 -.529 .383 .273 .180 .013

No2 .664 .040 .657 -.204 .572 -.212 .486 -.124 .386 .320 .184 .178

No3 .764 -.269 .658 -.134 .497 -.208 .406 -.173 .301 .244 .216 .124

No4 .795 -.189 .665 -.124 .534 -.185 .442 -.178 .364 .214 .287 .149

No5 .644 .088 .634 -.187 .522 -.132 .371 -.106 .297 .245 .270 .235

No6 .669 .106 .671 -.124 .488 -.117 .439 -.030 .353 -.089 .331 .189

No7 .375 .051 .621 -.226 .509 -.177 .472 -.164 .427 .145 .301 .067

No8 .692 .048 .664 -.222 .529 -.212 .429 -.172 .340 .265 .318 .025

No9 .682 .306 .685 -.173 .480 -.220 .420 -.052 .355 .195 .340 .129

No10 .775 .120 .630 -.238 .487 -.132 .466 -.086 .391 .099 .285 .073

No11 .730 .148 .711 -.212 .537 -.228 .525 -.529 .342 .260 .201 .132

No12 .789 -.055 .660 -.105 .526 -.005 .440 .143 .272 -.094 .302 .165

No13 .746 .142 .603 -.199 .510 -.099 .473 .018 .404 .017 .448 .203

No14 .654 -.092 .628 .030 .442 .082 .218 .000 .146 -.014 .190 .082

No15 .733 -.299 .670 -.146 .503 -.177 .441 -.203 .322 .236 .310 .211

No16 .699 .059 .671 -.138 .541 -.172 .461 -.083 .375 .121 .459 .206

No17 .532 -.174 .617 -.143 .385 -.070 .206 .014 .152 .058 .100 .033

No18 .713 -.095 .634 -.060 .478 -.149 .370 -.020 .307 .124 .277 .269

No19 .667 .405 .658 -.181 .551 -.217 .446 -.288 .340 .216 .067 .069

No20 .088 .366 .445 -.105 .414 -.070 .349 -.045 .246 .124 .040 -.038

No21 .621 -.013 .637 -.086 .492 -.058 .423 .005 .409 .072 .331 .193

No22 .624 .379 .640 -.002 .404 .001 .364 .079 .350 -.103 .418 .291

No23 .631 -.280 .634 -.175 .487 -.085 .371 -.025 .320 .033 .333 .067

No24 .558 .229 .625 -.116 .417 -.121 .255 -.097 .172 .102 .058 .068

No25 .664 .192 .628 -.004 .389 -.056 .284 -.087 .215 .160 .150 .087

No26 .728 .020 .649 -.138 .520 -.208 .408 -.092 .333 .097 .390 .202

No27 .639 .155 .689 -.097 .448 -.054 .336 -.063 .216 .106 .348 .186

No28 .779 -.074 .708 -.134 .493 -.201 .379 -.153 .257 .139 .208 .028

No29 .688 -.088 .619 -.148 .512 -.199 .449 -.168 .403 .174 .389 .155

No30 .806 .215 .691 -.164 .516 -.194 .407 -.052 .346 .142 .270 .209

No31 .753 .264 .711 -.107 .530 -.107 .424 -.111 .273 .031 .198 .230

No32 .578 .029 .704 -.137 .558 -.157 .461 -.139 .334 .085 .350 .163

Bass lines No1 .791 .187 .634 .251 .479 .193 .331 .072 .164 -.081 .152 -.103

No2 .783 -.023 .621 .212 .497 .220 .406 .054 .349 .051 .204 -.130

No3 .631 -.038 .646 -.018 .524 .045 .420 .024 .334 .072 .183 -.085

No4 .828 -.103 .647 .116 .501 .073 .403 .110 .349 -.167 .330 -.220

No5 .742 .117 .644 .121 .475 .230 .304 .152 .163 .024 .077 -.171

No6 .753 -.024 .638 .240 .509 .148 .418 .149 .357 -.126 .268 -.086

No7 .679 -.297 .631 .064 .509 .157 .393 .054 .396 -.041 .307 -.076

No8 .763 -.184 .594 .269 .377 .295 .289 .236 .259 -.242 .307 -.241

No9 .671 .229 .552 .308 .351 .207 .360 .329 .387 -.384 .485 -.113

No10 .690 -.051 .555 .111 .395 .198 .306 .120 .257 .092 .114 .016

No11 .708 .160 .639 .058 .518 .047 .501 .120 .508 -.147 .524 -.212

No12 .738 -.235 .568 .267 .389 .349 .333 .333 .293 -.240 .340 -.305

No13 .801 .013 .653 .169 .470 .171 .433 .319 .400 -.339 .506 -.231

No14 .765 -.039 .531 .362 .272 .261 .199 .256 .195 -.320 .274 -.242

(Continued)
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musical properties. In general, musical constraints such as harmony and musical key control

phrasing of each melody and bass line. For example, if a five-tone melody is made up of C

sharp, F sharp, and D (Fig 1, fourth-order), it controls a harmony or key (e.g., the A major, F-

sharp minor, D major, or B minor keys), and the concurrent bass line also follows the same key

or harmony. In contrast, a two-tone sequence with a semi- or whole-tone interval, which can be

coded in a first-order model, is insufficient to establish a harmony, musical key, and phrase,

unlike longer sequences. It is worth noting, however, that a pianist often picks up his or her

hands as a phrase ends and restarts a new phrase, resulting in unpredictable jumps in pitch

interval. Thus, we cannot exclude the possibility that the findings of the present study could

simply be associated with texture and phrasing in music rather than melody and bass patterning

itself. Further study will be needed to verify the relationships between musicological texture and

statistical pattern with regard to entropy in several orders of TP distributions. In summary, this

study may suggest that the SL of the melody and bass line correlate with and are partly indepen-

dent of each other in terms of TP distribution. These findings may also be in agreement with

the hypothesis in neural studies that the SL of the melody and bass line interact with and are

partly independent of each other [29,61,65]. In the present studies, it was expected that this

would occur based on some very specific findings in the neuroscience literature, but a previous

neural study also suggested that SL could be modulated by music-specific features such as tonal

mode and key [29]. Therefore, our next study will investigate how the tonalities of keys govern

statistical distributions and the interaction between the melody and bass line.

4. Study 2: Johann Sebastian Bach

4.1. Results

4.1.1. Retrieval of characteristics in the melody and bass lines in major and minor

keys. All of the results are shown in Table 3, Table 4, and Fig 4. In the zeroth- to fifth-order

Table 2. (Continued)

Order 0th 1st 2nd 3rd 4th 5th

Component PC 1 PC 2 PC 1 PC 2 PC 1 PC 2 PC 1 PC 2 PC 1 PC 2 PC 1 PC 2

No15 .782 -.219 .585 .138 .477 .210 .352 .151 .308 -.183 .299 -.162

No16 .772 -.111 .592 .207 .464 .178 .435 .189 .422 -.198 .499 -.190

No17 .640 -.220 .545 .213 .360 .313 .210 .251 .133 -.196 .141 -.289

No18 .642 -.360 .574 .203 .393 .166 .307 .156 .326 -.158 .370 .074

No19 .655 .279 .625 .039 .473 .037 .245 -.188 .181 .181 .035 -.023

No20 .535 .452 .499 .438 .258 .414 .172 .228 .198 -.206 .333 -.214

No21 .672 -.232 .643 .152 .488 .210 .407 .195 .377 -.102 .412 -.225

No22 .606 .256 .539 .231 .355 .186 .306 .070 .236 -.053 .193 -.294

No23 .505 -.374 .647 .078 .502 .228 .434 .222 .448 -.251 .561 -.015

No24 .732 -.230 .569 .192 .429 .117 .394 .046 .338 .205 .172 -.030

No25 .504 .379 .584 .310 .391 .293 .243 .140 .201 -.007 .204 -.157

No26 .768 -.038 .618 .082 .444 .179 .389 .282 .451 -.321 .533 -.159

No27 .722 .101 .646 .033 .419 .213 .336 .201 .307 -.360 .417 .094

No28 .674 -.066 .633 -.057 .506 -.026 .393 -.033 .255 .105 .103 -.091

No29 .447 -.414 .574 -.006 .518 .005 .459 .007 .451 .006 .483 -.101

No30 .609 -.003 .653 .010 .513 .024 .466 .085 .440 -.120 .368 -.251

No31 .807 .043 .682 .062 .592 .010 .483 .070 .433 -.101 .545 .158

No32 .608 -.194 .605 .083 .504 .106 .459 .118 .417 -.149 .372 -.248

https://doi.org/10.1371/journal.pone.0226734.t002
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models, the three components accounted for 58.71%, 50.03%, 37.41%, 31.31%, 24.14%, and

15.94% of the total variance, respectively. All of the pieces of music scored higher than 0 on

component 1, which represents the general component that is shared among all of the pieces

of music. In component 2, in the first-, second-, and third-order models, the eigenvectors of

the bass line were generally higher than those of the melody, representing the distinct compo-

nents of the melody and the bass line. In component 3, in the second-order model, the eigen-

vectors of major keys were generally higher than those of minor keys, representing the various

components of major and minor keys.

4.1.2. Correlation analysis. All of the results in the correlation analysis are shown in Fig

5. In the zeroth-, second-, and third-order TP distributions, the conditional entropies of the

melody were strongly (0.7≦|r|<1.0) related to those of the bass line (zeroth: major: r = .77,

p = 0.003; minor: r = .85, p< 0.001, second: major: r = .93, p< 0.001; minor: r = .78, p = 0.003,

third: major: r = .75, p = 0.005; minor: r = .91, p< 0.001; Fig 5A). In first-order TP distribu-

tions, the conditional entropies of the melody in major keys were strongly related while those

in minor keys were moderately (0.4≦|r|<0.7) related to those of the bass line (major: r = .82,

p = 0.001; minor: r = .62, p = 0.063). In fourth-order TP distributions, the conditional entro-

pies of the melody in major keys were moderately related while those in minor keys were

strongly related to those of the bass line (major: r = .59, p = 0.045; minor: r = .93, p< 0.001). In

fifth-order TP distributions, the conditional entropies of the melody were strongly related to

those of the bass line in minor keys (r = .81, p = 0.001), whereas no significant correlation was

Fig 2. Principal component analysis scatter plots in melody (black) and bass line (grey) from zeroth- to fifth-order

Markov models in Study 1 (Beethoven’ piano sonata). The horizontal axes and vertical axes represent principal

components (PC) 1 and 2, respectively. Each dot represents a piece of music.

https://doi.org/10.1371/journal.pone.0226734.g002
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detected in major keys. No significant correlation was detected between major and minor keys

(Fig 5B).

4.2. Discussion

In Study 2, using Johann Sebastian Bach’s Well-Tempered Clavier, BWV 846–893, which has

preludes and fugues in all 24 major and minor keys, we investigated the interaction between

the zeroth- to fifth-order TP distributions (Markov models) and the conditional entropies in

the melody and bass line. First, the manner in which the statistical characteristics of the mel-

ody and bass line in each of the major and minor keys could be extracted in each order Markov

model was investigated using principal component analysis. It was hypothesized that there

were general statistical characteristics shared between the melody and the bass line and

between the major and minor keys, as well as specific statistical characteristics that were

unique to each melody and bass line and to each major or minor key. Additionally, it was

hypothesized that the detectability of these characteristics depends on the tonalities of the keys

and the order of TPs [63]. Thus, TP distribution in each order Markov model detected general

components that are shared between the melody and bass line and between major and minor

Fig 3. The correlation analysis of conditional entropy between the melody and bass line based on zeroth- to fifth-order Markov models in Study 1 (Beethoven’s

piano sonata).

https://doi.org/10.1371/journal.pone.0226734.g003
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keys (Fig 4). The first- to third-order Markov models detected specific components that are

unique to each melody and bass line. The second-order Markov models detected specific com-

ponents that are unique to each major and minor key��1��. These results suggest that statistical

characteristics specific to each melody and bass line can be disclosed in first- to third-order

models. Second, we investigated the relationships of conditional entropies between the melody

and bass line and between major and minor keys in each order Markov model using correla-

tion analysis. It was hypothesized that the correlation of variability in the entropies between

the melody and bass line depends on the order of TP distribution and tonal mode. The results

suggested that the correlation of conditional entropies between the melody and bass line could

be detected in the first- to fifth- but not zeroth-order Markov models. These results suggest

that the variability of entropies is correlated with the melody and bass line in each order TP

distribution. Considering the psychological and computational viewpoints on entropy [34],

the present findings that the entropies of the melody are correlated with those of the bass line

suggest that statistical knowledge of the melody and bass line, but not of major and minor keys

(Fig 5B), are partially dependent on each other. In summary, this study suggested that SL of

the melody and SL of the bass line correlate with and are partly independent of each other.

Thus, humans’ statistical knowledge of melodies and bass lines may be derived from their pair-

ing with some noise in compositional systems.

5. General discussion

5.1. Statistical characteristics of melodies and bass lines

The present studies investigated how TP distributions and the conditional entropy of the mel-

ody and bass line interact with each other, using the highest and lowest pitches in Beethoven’s

Table 3. The eigenvalue and percentages of variance and cumulative variance in Study 2 (Bach’s Well-Tempered

Clavier).

Order PC Total Variance � Cumulative �

0th 1 23.78 49.53 49.53

2 2.28 4.74 54.27

3 2.13 4.44 58.71

1st 1 21.26 44.28 44.28

2 1.58 3.29 47.57

3 1.18 2.46 50.03

2nd 1 15.14 31.54 31.54

2 1.53 3.18 34.72

3 1.30 2.70 37.41

3rd 1 12.51 26.06 26.06

2 1.35 2.81 28.87

3 1.17 2.44 31.31

4th 1 8.91 18.56 18.56

2 1.41 2.93 21.49

3 1.27 2.65 24.14

5th 1 4.89 10.18 10.18

2 1.40 2.92 13.10

3 1.36 2.83 15.94

� percentage

PC = principal component

https://doi.org/10.1371/journal.pone.0226734.t003
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Table 4. The eigenvectors for the principal components in Study 2 (Bach’s Well-Tempered Clavier).

Order 0th 1st 2nd 3rd 4th 5th

Component PC 1 PC 2 PC 3 PC 1 PC 2 PC 3 PC 1 PC 2 PC 3 PC 1 PC 2 PC 3 PC 1 PC 2 PC 3 PC 1 PC 2 PC 3

Melody Major C 0.72 -0.29 0.24 0.64 0.08 0.15 0.56 -0.08 0.19 0.47 -0.08 -0.01 0.34 -0.22 -0.03 0.14 -0.03 0.17

Db 0.60 0.13 0.47 0.59 -0.07 0.44 0.46 0.15 0.28 0.50 0.16 0.43 0.45 0.21 -0.20 0.33 0.32 0.12

D 0.65 0.10 -0.11 0.63 -0.03 -0.01 0.56 -0.06 0.00 0.48 -0.09 0.01 0.41 0.18 0.21 0.34 0.12 -0.10

Eb 0.65 -0.06 -0.03 0.69 -0.15 0.00 0.59 -0.07 0.22 0.48 -0.21 0.09 0.48 0.01 0.15 0.42 -0.11 -0.15

E 0.74 -0.21 -0.12 0.65 -0.16 -0.03 0.59 -0.13 0.24 0.57 -0.04 0.06 0.50 -0.05 -0.09 0.40 0.18 0.16

F 0.67 -0.27 0.21 0.70 -0.13 -0.03 0.59 -0.23 0.15 0.53 -0.26 -0.13 0.45 -0.09 0.14 0.35 -0.09 0.02

Gb 0.75 -0.25 0.33 0.69 -0.22 0.19 0.53 -0.01 0.28 0.51 0.00 0.09 0.37 0.12 -0.02 0.07 -0.02 0.00

G 0.71 -0.22 0.00 0.61 -0.32 0.23 0.48 0.10 0.42 0.47 0.24 0.08 0.49 0.25 0.11 0.38 0.20 -0.07

Ab 0.66 0.15 0.52 0.72 -0.22 0.05 0.62 -0.08 0.15 0.53 0.00 0.06 0.45 0.01 -0.08 0.35 0.02 -0.14

A 0.69 -0.32 -0.03 0.71 0.00 -0.21 0.57 -0.14 0.07 0.53 0.00 0.10 0.38 -0.03 -0.05 0.25 0.17 0.01

Bb 0.61 -0.03 -0.35 0.61 -0.14 0.14 0.52 -0.15 0.13 0.51 0.04 -0.21 0.46 0.01 -0.32 0.44 -0.02 -0.14

B 0.73 -0.18 -0.10 0.69 -0.21 -0.06 0.59 -0.19 0.20 0.60 -0.08 0.12 0.51 0.01 -0.07 0.39 -0.21 0.09

minor C 0.72 0.14 0.22 0.71 -0.25 0.03 0.56 -0.23 0.03 0.45 -0.26 0.29 0.32 -0.01 0.14 0.14 0.00 0.03

Db 0.75 -0.14 -0.08 0.71 -0.03 -0.09 0.61 -0.16 -0.11 0.51 -0.26 0.11 0.46 -0.11 0.15 0.27 0.17 -0.10

D 0.63 0.19 -0.16 0.63 -0.15 0.05 0.49 -0.12 0.03 0.47 0.04 -0.08 0.33 -0.11 -0.02 0.17 -0.11 0.07

Eb 0.78 0.01 0.16 0.69 -0.08 -0.12 0.62 -0.22 -0.03 0.60 -0.18 -0.07 0.52 -0.18 0.01 0.44 -0.06 -0.03

E 0.78 0.21 -0.15 0.69 -0.28 -0.16 0.56 -0.16 -0.06 0.53 -0.09 -0.08 0.52 -0.14 -0.12 0.40 -0.31 -0.04

F 0.68 -0.17 0.32 0.68 -0.27 0.08 0.56 -0.26 0.10 0.50 -0.25 -0.10 0.41 -0.12 0.26 0.39 -0.05 0.06

Gb 0.75 -0.03 0.15 0.74 -0.12 -0.14 0.56 -0.23 -0.03 0.53 -0.17 0.03 0.44 -0.15 -0.06 0.35 -0.24 -0.02

G 0.75 -0.21 -0.01 0.72 -0.07 0.02 0.54 -0.19 0.03 0.48 -0.34 -0.01 0.37 -0.37 0.16 0.20 -0.06 0.67

Ab 0.82 -0.32 0.16 0.70 -0.16 -0.16 0.61 -0.20 -0.12 0.57 -0.15 0.16 0.43 -0.19 0.15 0.22 -0.16 0.16

A 0.78 -0.17 -0.16 0.72 -0.07 -0.14 0.64 -0.15 -0.11 0.58 -0.08 -0.15 0.50 -0.24 -0.08 0.42 -0.22 -0.02

Bb 0.74 -0.26 -0.03 0.68 -0.08 -0.16 0.64 -0.14 0.02 0.59 -0.12 0.06 0.47 -0.32 -0.04 0.35 -0.33 0.10

B 0.76 -0.05 -0.22 0.70 -0.20 -0.16 0.60 -0.30 -0.11 0.54 -0.20 -0.15 0.44 -0.10 0.07 0.38 -0.05 -0.02

Bass Major C 0.80 -0.19 -0.01 0.58 0.25 0.17 0.54 0.22 -0.07 0.52 0.24 -0.04 0.41 0.02 -0.28 0.22 0.11 0.20

lines Db 0.65 0.34 0.04 0.57 0.17 0.48 0.46 0.36 0.12 0.52 0.23 0.37 0.40 0.20 -0.28 0.24 0.31 0.18

D 0.63 0.36 0.12 0.58 0.36 0.17 0.55 0.28 -0.19 0.45 0.19 -0.05 0.39 0.28 0.24 0.25 0.17 -0.08

Eb 0.76 0.05 -0.17 0.63 0.16 0.01 0.53 0.08 -0.09 0.46 0.02 -0.04 0.41 0.13 0.28 0.28 -0.05 -0.17

E 0.58 -0.16 0.17 0.68 0.30 -0.13 0.63 0.25 0.06 0.58 0.19 -0.01 0.47 0.28 0.18 0.29 0.44 -0.03

F 0.54 -0.07 -0.03 0.64 0.16 -0.21 0.57 0.05 -0.21 0.51 -0.09 -0.14 0.44 0.11 -0.07 0.32 -0.01 -0.05

Gb 0.62 0.33 -0.22 0.63 -0.01 0.29 0.51 0.30 0.14 0.44 0.25 0.05 0.29 0.16 0.11 0.15 0.09 -0.04

G 0.63 0.33 0.12 0.62 0.01 0.32 0.42 0.41 0.36 0.39 0.42 0.10 0.39 0.36 0.00 0.21 0.20 -0.03

Ab 0.75 0.07 -0.30 0.68 -0.03 0.07 0.57 0.16 0.10 0.53 0.18 -0.09 0.47 0.11 -0.16 0.40 -0.04 -0.24

A 0.79 0.11 0.17 0.66 0.25 -0.07 0.50 0.27 0.03 0.50 0.24 0.11 0.45 0.20 -0.15 0.33 0.26 -0.12

Bb 0.56 0.37 -0.10 0.62 0.08 -0.04 0.52 0.04 0.05 0.50 0.03 -0.27 0.38 0.08 -0.27 0.35 -0.07 -0.17

B 0.83 -0.09 -0.02 0.71 0.20 -0.02 0.60 0.17 0.04 0.57 0.23 -0.07 0.50 0.25 -0.09 0.49 0.20 -0.05

minor C 0.73 -0.12 -0.19 0.62 0.13 0.03 0.52 0.12 -0.07 0.35 -0.03 0.42 0.24 0.17 0.37 0.19 0.24 0.03

Db 0.67 0.10 -0.23 0.72 0.21 -0.06 0.61 0.02 -0.22 0.51 -0.01 -0.08 0.47 -0.01 0.10 0.26 0.07 0.09

D 0.70 0.13 0.09 0.63 0.10 0.05 0.55 0.16 -0.11 0.49 0.13 -0.22 0.35 0.01 -0.14 0.19 -0.04 -0.04

Eb 0.79 -0.20 0.09 0.70 0.06 0.02 0.57 0.00 -0.16 0.56 0.09 -0.22 0.55 0.01 0.02 0.46 0.07 -0.01

E 0.71 0.40 -0.07 0.66 -0.10 -0.16 0.52 0.00 -0.08 0.55 0.06 -0.08 0.47 -0.15 -0.13 0.33 -0.32 -0.07

F 0.54 0.46 0.20 0.62 0.16 -0.01 0.60 0.10 -0.25 0.51 0.02 -0.08 0.45 0.13 0.31 0.39 0.01 -0.03

Gb 0.78 -0.16 -0.27 0.68 0.31 -0.01 0.59 0.12 -0.18 0.53 0.12 -0.08 0.46 0.01 -0.15 0.36 -0.20 -0.12

G 0.71 -0.04 0.04 0.69 0.21 -0.08 0.55 0.16 -0.19 0.41 0.04 -0.12 0.32 -0.31 0.20 0.14 0.00 0.64

Ab 0.58 0.40 0.40 0.62 0.10 -0.04 0.54 0.10 -0.21 0.47 -0.15 0.20 0.35 -0.13 0.07 0.11 -0.16 0.08

A 0.67 0.12 -0.40 0.67 0.07 -0.12 0.60 0.04 -0.22 0.53 0.08 -0.05 0.46 -0.21 -0.03 0.37 -0.02 0.05

(Continued)
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piano sonatas (Study 1) and Johann Sebastian Bach’s Well-Tempered Clavier (Study 2). Our

findings were similar for the two composers. First, TP distribution in each model showed a

general component (component 1) that is shared between the melody and bass line. Second,

TP distribution in the first- and second- but not zeroth-order models detected specific compo-

nents (component 2) that were unique to each melody and bass line. These results suggest that

statistical characteristics specific to each melody and bass line can be disclosed in higher-order

but not in zeroth-order statistical models. From the psychological and neurophysiological

viewpoints of SL in the brain, higher-order but not lower-order statistical knowledge of the

melody and bass line are partially independent of each other. Additionally, Study 2 also

detected specific components (component 3) that are unique to each major and minor key as

well as to the melody and bass line (Fig 4). Thus, the results suggest that a second-order Mar-

kov model (i.e., trigram model) may have the advantage of being able to extract statistical char-

acteristics based on the tonalities of keys and voice parts. From a psychological viewpoint, a

composer’s specific statistical knowledge of the melody and bass lines in music may be

expressed in higher-order rather than zeroth-order TP distributions. It is of note, however,

that the present studies investigated statistical characteristics in music belonging to only two

corpora without taking any psychological or neurological measurements and did not directly

Table 4. (Continued)

Order 0th 1st 2nd 3rd 4th 5th

Component PC 1 PC 2 PC 3 PC 1 PC 2 PC 3 PC 1 PC 2 PC 3 PC 1 PC 2 PC 3 PC 1 PC 2 PC 3 PC 1 PC 2 PC 3

Bb 0.76 0.12 -0.20 0.69 0.39 -0.13 0.63 0.12 -0.17 0.58 -0.05 0.02 0.49 -0.11 -0.07 0.37 -0.07 0.21

B 0.70 0.17 -0.27 0.70 -0.04 -0.11 0.58 0.07 -0.14 0.44 0.16 -0.20 0.40 0.08 -0.06 0.23 0.06 -0.01

https://doi.org/10.1371/journal.pone.0226734.t004

Fig 4. The correlation analysis of conditional entropy between the melody (black) and bass line (grey) in major and minor keys based on zeroth- to fifth-order Markov

models in Study 2 (Bach’s Well-Tempered Clavier).

https://doi.org/10.1371/journal.pone.0226734.g004
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demonstrate statistical knowledge of music in the composers. A previous study reported

computational validation against a ground truth of human cognition by examining whether

the output of computational modelling aligned with human assessments or behaviour [21].

Thus, it may be doubtful to claim that neurodynamics can be represented by TP distribution

and entropy. Furthermore, the present studies might not prove the existence of a general musi-

cal phenomenon because of the small corpora, and there might be other possible explanations

for our results. For instance, it might have been an intentional plan on the part of the compos-

ers to compose music based on the statistics of melodies and bass lines. Furthermore, it has

been suggested that humans’ ability to generate random sequences of numbers [66] is associ-

ated with creativity [67]. The possibility that the findings in the present studies do not neces-

sarily reflect the composers’ statistical learning cannot be excluded. Thus, it remains possible

that the findings of these studies showed compositional tendencies that are present in the

Fig 5. The correlation analysis of conditional entropy between the melody and bass line (a), and between major and minor keys (b), based on zeroth- to fifth-order

Markov models in Study 2 (Bach’s Well-Tempered Clavier).

https://doi.org/10.1371/journal.pone.0226734.g005
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examined corpus but may not be inherent to cognitive function in the human brain. Future

studies are required to investigate the phenomenon of music learning through experimenta-

tion and direct comparison of computational and neurophysiological results.

5.2. Relationships of entropy between the melody and the bass line

In the fields of computational and informatics studies, entropy has been used to verify the

validity of computational models including SL in music (e.g., [34]). A computational model

with lower entropy indicates greater predictability. Additionally, in the fields of neuroscience

and psychology, entropy has been interpreted as the average degree of surprise associated with

outcomes based on predictions in the brain [32]. Thus, both computational researchers and

psychologists agree that entropy in the framework of statistical learning can highlight some of

the statistical information that is available to music learners. Based on these studies, the present

studies expected the variation of entropy in music to partially reflect typical patterns in musical

expression associated with statistical knowledge. The results suggested that the correlation of

conditional entropies between the melody and the bass line could be detected in some Markov

models for both composers. This suggests that the variability in entropy is correlated between

the melody and the bass line in TP distributions. In psychological and computational studies

related to SL, predictive coding, and information theory, entropy has been interpreted as the

average degree of surprise associated with an outcome [33]. Based on neurophysiological theo-

ries, when the brain encodes TP distributions in musical sequences, a next tone can be

expected. Based on this processing, a neurophysiological response to predictable external sti-

muli can be inhibited to ensure efficiency and low entropy of neural processing[68][69] [70].

Thus, the correlation between the melody and the bass line suggests that statistical knowledge

of the melody and that of the bass line interact with each other. However, the results of Study 2

also suggest that the correlations of TP distributions and the entropies between the melody

and the bass line partly depend on tonalities (i.e., major and minor keys). In the second-order

model, the specific characteristics of TP distributions could be detected in major and minor

keys of each melody and bass line. Additionally, the correlation of entropy between the melody

and the bass line in the fifth-order model could be detected in minor keys but not in major

keys. This may be because there is more variation in minor keys than in major ones, as the

sixth and seventh scale degrees are more variable in minor keys than in major keys [71].

Another possibility is that, as previous studies have reported, SL of the melody and SL of the

bass line interact with and are partly independent of each other [61,65], and SL can be modu-

lated by music-specific features such as tonal mode and key [29]. The present studies may be

in agreement with these previous neurophysiological findings. Thus, neurophysiological and

computational findings may partially share SL. On the other hand, the computational

approaches in the present study did not consider pitch intervals between the melody and the

bass line, although this is important information in the establishment of harmony and in the

prediction of when the melodies and bass lines will act similarly and when they will act differ-

ently. In this study, the two lines were analysed as independent information and compared in

order to explore whether the entropy levels of these lines are correlated with each other. Our

studies suggest that statistical knowledge, which has been demonstrated by several neurophysi-

ological studies, is mentally expressed in music composition. Future studies are required to

investigate the neural basis underlying the mental expression of acquired statistical knowledge

by directly comparing computational and neurophysiological results in an experiment. The

present studies may propose novel methodologies that can be used to evaluate the statistical

knowledge of a composer via interdisciplinary approaches that include informatics, musicol-

ogy, and psychology.
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