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Abstract

The BRAFV600E mutation is the most prevalent driver mutation of sporadic papillary thyroid

cancers (PTC). It was previously shown that prenatal or postnatal expression of BRAFV600E

under elevated TSH levels induced thyroid cancers in several genetically engineered

mouse models. In contrast, we found that postnatal expression of BRAFV600E under physio-

logic TSH levels failed to develop thyroid cancers in conditional transgenic Tg(LNL-

BrafV600E) mice injected in the thyroid with adenovirus expressing Cre under control of the

thyroglobulin promoter (Ad-TgP-Cre). In this study, we first demonstrated that BrafCA/+ mice

carrying a Cre-activated allele of BrafV600E exhibited higher transformation efficiency than

Tg(LNL-BrafV600E) mice when crossed with TPO-Cre mice. As a result, most BrafCA/+ mice

injected with Ad-TgP-Cre developed thyroid cancers in 1 year. Histologic examination

showed follicular or cribriform-like structures with positive TG and PAX staining and no col-

loid formation. Some tumors also had papillary structure component with lower TG expres-

sion. Concomitant PTEN haploinsufficiency in injected BrafCA/+;Ptenf/+ mice induced tumors

predominantly exhibiting papillary structures and occasionally undifferentiated solid patterns

with normal to low PAX expression and low to absent TG expression. Typical nuclear fea-

tures of human PTC and extrathyroidal invasion were observed primarily in the latter mice.

The percentages of pERK-, Ki67- and TUNEL-positive cells were all higher in the latter. In

conclusion, we established novel thyroid cancer mouse models in which postnatal expres-

sion of BRAFV600E alone under physiologic TSH levels induces PTC. Simultaneous PTEN

haploinsufficiency tends to promote tumor growth and de-differentiation.
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Introduction

Sporadic thyroid cancers usually develop via abnormal activation of the RAS-RAF-MEK-ERK

signaling pathway (MAPK; which relays signals from cell membrane to nucleus), primarily as

a result of point mutations in the RAS/BRAF genes or chromosomal rearrangements such as

RET/PTC translocations [1]. In the BRAF gene, the T1799A transverse point mutation results

in a mutant BRAF, BRAFV600E, which exhibits constitutive serine/threonine kinase activity.

The carcinogenicity of BRAFV600E in the thyroid glands was first demonstrated in vivo in

Tg-BrafV600E transgenic mice expressing BRAFV600E under control of thyroid-specific thyro-

globulin (Tg) promoter; these mice developed thyroid cancers very early in life [2]. However,

this model had various limitations, including (i) BRAFV600E was expressed in all thyroid cells

from the fetal period, suggesting that this is a model of hereditary rather than sporadic thyroid

cancers; (ii) serum TSH levels were elevated by BRAFV600E-mediated suppression of thyroid

function, which by itself can induce thyroid goiters and sometimes tumors; and (iii)

BRAFV600E expression was controlled by the Tg promotor rather than the original Braf pro-

moter [3]. These limitations remained unsolved in subsequent mouse models of thyroid can-

cer. LSL-BrafV600E;TPO-Cre mice expressed BRAFV600E in all the thyroid cells from the fetal

period, with ~8- to 80-fold increases in TSH, although TSH was expressed at physiologic levels

under the control of the chromosomal promoter [4]. BrafCA;Thyro::CreER mice were generated

to control expression of BRAFV600E by tamoxifen in the postnatal period, but untreated mice

displayed increased thyroid volumes 1 month after birth, presumably due to aberrant nuclear

localization of CreERT2 in the absence of tamoxifen [5]. In that model, BrafCA mice carried a

Cre-activated allele of BrafV600E [6], similar to LSL-BrafV600E mice mentioned above [7]. Leaki-

ness of CreER in the absence of tamoxifen has also been reported [8]. Tg-rtTA/tetO-BrafV600E

mice expressed BRAFV600E in all the thyroid cells, with>100-fold increases in TSH, although

expression began after birth (after administration of doxycycline) [9]. Finally, BrafCA;TPOC-
reER mice were reported to develop thyroid cancers after birth (after administration of tamoxi-

fen), although TSH increased slightly (<10-fold) [10].

To establish an ideal mouse model of sporadic thyroid cancer, we previously generated Tg
(LNL-BrafV600E) mice. Upon injection of adenovirus expressing Cre under control of the Tg
promoter (Ad-TgP-Cre) into their left thyroid lobes at age of ~4 weeks, these mice expressed

BRAFV600E in a fraction of the thyroid cells. As such, serum TSH remained within physiologic

range, and mice did not develop thyroid cancer [3]. From these data, we concluded that post-

natal expression of BRAFV600E alone in a small number of thyroid cells under normal TSH lev-

els is insufficient for thyroid cancer development. However, this model also had a drawback; a

comparison of data from the previous reports [3, 4] suggested that Cre-mediated DNA recom-

bination was less efficient in Tg(LNL-BrafV600E);TPO-Cre mice than LSL-BrafV600E;TPO-Cre
mice, as serum TSH levels increased in the latter not the former.

In the present study, therefore, we first confirmed the higher transformation efficiency

of Cre-mediated DNA recombination in BrafCA;TPO-Cre mice compared with Tg(LNL-
BrafV600E);TPO-Cre mice in our laboratory and then used BrafCA mice rather than Tg(LNL-
BrafV600E) mice to re-evaluate the carcinogenesis of BRAFV600E in the context of our experi-

mental setting with Ad-TgP-Cre. Here, we show that postnatal BRAFV600E expression alone

under physiologic TSH levels is sufficient for thyroid cancer development. In addition, we also

studied the effect of concomitant PTEN haploinsufficiency on BRAFV600E-induced thyroid can-

cers and show that the simultaneous reduction of PTEN expression tends to promote tumor

growth and de-differentiation. Our results also demonstrate development of thyroid hyperpla-

sia/adenoma in PtenΔ/+ mice (but not Ptenf/+ mice) injected with Ad-TgP-Cre, suggesting that

Mouse models of thyroid cancer with BRAFV600E and/or PTEN haploinsufficiency
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the timing of PTEN reduction (i.e., prenatal vs. postnatal) is critical for tumorigenicity of PTEN

in the thyroid.

Materials and methods

Mice used

Conditional transgenic BrafV600E mice (Tg(LNL-BrafV600E)#213MM) and TPO-Cre mice were

previously described [3, 11]. BrafCA (B6.129P2(Cg)-Braftm1Mmcm/J, stock# 017837) mice [6]

were obtained from Jackson Laboratory. PtenΔ/+ mice were obtained from National Cancer

Institute at Frederick, MD, USA) [12, 13]. All mice were of a B6 genetic background, except

TPO-Cre, which were FVB/NCr.

All mice were kept in a specific pathogen-free facility. Animal care and all experimental

procedures were performed in accordance with the Guideline for Animal Experimentation of

Nagasaki University with approval of the Institutional Animal Care and Use Committee (per-

mission number: 1309021089). All surgeries were performed under isoflurane anesthesia, and

every effort was made to minimize suffering.

Adenovirus used

Ad-TgP-Cre was used in this study, as described previously [3].

Experimental designs

Surgery and injection of adenovirus into the left lobe of the thyroid of ~4-week-old mice were

performed as described previously [3]. A total of 3~4 x 109 adenovirus particles/mouse were

injected. The number of mice in each group was shown in Table 1 (n = 5~13). The male to

female ratio was approximately 1:1 in all the experimental groups. No mice died during the

experimental period. After 6 months and 1 year, mice were anesthetized with isoflurane, blood

was collected via cardiac tap for serum preparation, and the animals were euthanized by cervi-

cal dislocation. For histological examinations, thyroid was removed from all the mice, and

lungs were removed when macroscopically visible nodules were observed (2 Brafthyr-V600E and

6 Brafthyr-V600E;Ptenthyr-Δ/+ mice).

H & E staining and immunohistochemistry

Tissues were fixed in 10% neutral-buffered formalin and then embedded in paraffin. Sections

(4-μm-thick) were prepared and stained with hematoxylin eosin (H & E) or immunostained

with primary antibody: rabbit polyclonal anti-surfactant protein A (ab115791, Abcam,

Table 1. Summary of the results.

Mice Adenovirus Observation periods (weeks) Thyroid pathology

Normal Hyperplasia /adenoma Cancer

BrafCA/+ - 52 5/5 0 0

BrafCA/+ Ad-TgP-Cre 26 9/9 0 0

BrafCA/+ Ad-TgP-Cre 52 1/9 0 8/9

BrafCA/+;Ptenf/+ Ad-TgP-Cre 52 0 0 9/9

Ptenf/+ Ad-TgP-Cre 52 7/7 0 0

PtenΔ/+ - 26~33� 2/13 11/13 0

�, PtenΔ/+ mice were sacrificed at 6–8 months old because of tumor development in other organs.

https://doi.org/10.1371/journal.pone.0201365.t001
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Cambridge, UK; dilution of 1:500), rabbit monoclonal anti-PTEN (D4.3, Cell Signaling, Dan-

vers, MA; dilution of 1:25), rabbit polyclonal anti-PAX8 (Pan-PAX, 21383-1-AP, Proteintech,

Japan, Tokyo; dilution of 1:1,500), mouse monoclonal anti-BRAFV600E (VE1, Spring Biosci-

ence, Pleasanton, CA; dilution of 1:100), rabbit monoclonal anti-Ki-67 (ab66155, Abcam; dilu-

tion of 1:100), rabbit monoclonal anti-thyroglobulin (ab156008, Abcam; dilution of 1:250) or

rabbit monoclonal anti-phospho-p44/42 MAPK (ERK1/2) (#4370S, Cell Signaling; dilution of

1:200). It should be noted here that the protein recognized by anti-PAX8 mentioned above is

called "PAX" throughout the paper, because, although the immunogen for this antibody was a

part of human PAX8 (212 amino acids), its specificity to PAX8 has not been confirmed. The

primary antibody was followed by incubation with secondary antibody: swine anti-rabbit IgG/

HRP (P0399, DAKO, Glostrup, Denmark; dilution of 1:50) or rabbit anti-mouse IgG/HGRP

(PO260, DAKO; dilution of 1:100). Color was developed with 3, 3’-diaminobenzidine sub-

strate. Slides were analyzed using an All-in-One BZ-9000 Fluorescence Microscope (Keyence,

Osaka, Japan). A total of 1,500 cells were evaluated to determine the percentage of Ki67-posi-

tive cells.

Evaluation of apoptosis

Terminal deoxynucleotidyl transferase (TdT)-mediated dUTP nick end-labeling (TUNEL)

was performed with the Apop-tag™ Fluorescein Direct in situ apoptosis detection kit (Merck

Millipore, Darmstadt, Germany). Slides were embedded with VECTASHIELD mounting

medium containing DAPI (Vector Laboratories, Burlingame, CA) and analyzed using an All-

in-One BZ-9000 Fluorescence Microscope (Keyence). A total of 1,500 cells were evaluated in

each sample to determine the percentage of TUNEL-positive cells.

Serum TSH measurements

Serum TSH was measured using a specific mouse TSH RIA with mouse TSH/LH reference

(AFP9090D), mouse TSH antiserum (AFP98991) and rat TSH antigen (NIDDK-rTSH-I-9) as

described previously [3, 14]. The normal range was defined as the mean ± 3 S.D. of control

untreated mice.

Statistical analyses

All data were analyzed for significant differences using the Student’s t-test. A p-value of less

than 0.05 was considered statistically significant.

Results

In previous research reported by us [3] and others [4], Tg(LNL-BrafV600E)#213MM (a high

expressor);TPO-Cre mice exhibited a slightly (but not significantly) enlarged thyroid with focal

neoplastic lesions and normal TSH levels, whereas BrafCA/+;TPO-Cre mice exhibited a greatly

enlarged thyroid with diffuse neoplastic lesions and elevated TSH levels (Fig 1), at ages of 12

weeks. BrafCA/+;TPO-Cre mice, Tg(LNL-BrafV600E)#213MM;TPO-Cre mice, and controls exhib-

ited serum TSH levels of 43.1 ± 56.6, 0.9 ± 0.2 and 1.0 ± 0.2 ng/ml, respectively, and thyroid

weights of 122.0 ± 63.6, 8.0 ± 4.3 and 6.7 ± 1.8 mg, respectively. The lower transformation

efficiency in Tg(LNL-BrafV600E)#213MM as compared with BrafCA mice may explain our previ-

ous failure of tumor induction in Tg(LNL-BrafV600E)#213MM mice with intrathyroidal injec-

tion of Ad-TgP-Cre in our previous study [3]. Therefore, we used BrafCA rather than Tg(LNL-
BrafV600E)#213MM mice to re-evaluate the carcinogenesis of BRAFV600E with our thyroid can-

cer model with Ad-TgP-Cre. We also examined the carcinogenesis of PTEN haploinsufficiency

Mouse models of thyroid cancer with BRAFV600E and/or PTEN haploinsufficiency
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using Ptenf/+ mice and BrafCA/+;Ptenf/+ mice, as reduced PTEN expression alone and in combi-

nation with BRAFV600E reportedly plays a significant role in the carcinogenesis of various

organs [15–17].

Ad-TgP-Cre was injected into the left thyroid lobe of 4-week-old BrafCA/+, BrafCA/+;Ptenf/+

and Ptenf/+ mice (designated as Brafthyr-V600E, Brafthyr-V600E;Ptenthyr-Δ/+ and Ptenthyr-Δ/+ mice,

respectively). Because it was totally unknown whether thyroid tumors developed and if so

when, we decided to observe the mice either until some symptoms appeared or for 26 and 52

weeks. Because no symptom developed, the mice were sacrificed at 2 time points, as originally

scheduled. The thyroid lobe was macroscopically normal in all mice at 26 weeks (data not

shown), but at 52 weeks, the left lobe was enlarged in Brafthyr-V600E mice (8/9) and Brafthyr-V600E;
Ptenthyr-Δ/+ mice (9/9), but not Ptenthyr-Δ/+ mice (0/7) (Table 1, Fig 2). The left lobes weighed

24.0 ± 21.0 mg in Brafthyr-V600E;Ptenthyr-Δ/+ mice and 12.1 ± 6.5 mg in Brafthyr-V600E mice vs. ~ 2

mg in the right lobe of these mice (p<0.01) and also each lobe of the controls. The left lobe

tended to be heavier in Brafthyr-V600E;Ptenthyr-Δ/+ mice compared with Brafthyr-V600E mice, but the

difference was not statistically significant (Fig 2).

Fig 1. Gross appearance, histology, thyroid weight, thyroid weight to body weight ratio, and serum TSH concentration in

control, Tg(LNL-BrafV600E)#213MM;TPO-Cre mice and BrafCA/+;TPO-Cre mice. Mice were sacrificed at 12 weeks of age. The

thyroid gland was removed, serum was collected, and thyroid weight and TSH concentration were determined as described in the

Materials and Methods. The thyroid gland and a focus of cell proliferation are indicated by arrows. �, p< 0.01. Scale bars, 50 μm.

https://doi.org/10.1371/journal.pone.0201365.g001
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Microscopically, all of the thyroid glands obtained at 26 weeks were intact, but the tumors

encompassed almost the entire thyroid gland, and almost no normal thyroid architecture was

observed in the periphery of the thyroids in Brafthyr-V600E and Brafthyr-V600E;Ptenthyr-Δ/+ mice (Figs

3 and 4) at 52 weeks. Tumors in the majority of Brafthyr-V600E mice exhibited a follicular or cribri-

form-like structure consisting of atypical epithelial cells with hyperchromatic swollen nuclei and

no colloid formation. They also showed a hobnail pattern (represented by Brafthyr-V600E mouse

No. 1 in Fig 3), suggesting a loss of the tight cell to cell adhesion [18]. A hobnail pattern has not

been reported in other PTC mouse models, with the exception of Rusinek and colleagues [19],

who found this pattern in a small fraction of their transgenic Tg-2HA-BrafV600E mice, which are

similar to Tg-BrafV600E mice [2]. In human PTC, this pattern of pathology is usually associated

with an aggressive phenotype [20, 21]. Immunohistochemical analysis demonstrated clear TG

and PAX staining of tumor cells (represented by Brafthyr-V600E mouse No. 1 in Fig 3). Two

tumors from Brafthyr-V600E mice also contained a component of papillary structures and

expressed the similar levels of PAX but decreased levels of TG (represented by Brafthyr-V600E

mouse No. 3 in Fig 3). In contrast, all of the tumors in Brafthyr-V600E;Ptenthyr-Δ/+ mice showed pre-

dominantly papillary structures with sporadic undifferentiated areas exhibiting solid growth pat-

tern of atypical cells with a number of mitotic figures. The nuclei were hyperchromatic, varying

in size, and oval to spindle-shaped. No necrosis of single cells was observed. PAX expression was

normal to low, and TG expression was low to absent (represented by No. 2 and No. 6 in Fig 4).

Accompanying extrathyroidal invasion was occasionally observed (Fig 5A). Typical nuclear fea-

tures of human PTC, such as intranuclear cytoplasmic inclusion and nuclear groove, were fre-

quently observed in tumors of Brafthyr-V600E;Ptenthyr-Δ/+ mice (Fig 5B and 5C).

Ad-TgP-Cre-mediated BRAFV600E expression and decreased PTEN expression were con-

firmed by immunohistochemistry (Fig 6). Thus, BRAFV600E was expressed in thyroid cancer

Fig 2. Gross appearance, thyroid weight, thyroid:body weight ratio and serum TSH concentration in the control, Brafthyr-V600E;
Ptenthyr-Δ/+, Brafthyr-V600E and Ptenthyr-Δ/+ mice. Adenoviral injection was performed at ~4 weeks of age. The thyroid gland and serum

were collected 1 year later, and the weight and TSH concentration were determined as described in the Materials and Methods. The

thyroid glands are indicated by arrows. Data are means ± S.D. (n = 5~9). �, p< 0.01.

https://doi.org/10.1371/journal.pone.0201365.g002
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but not in the normal thyroid, although the basement membrane-like region stained non-spe-

cifically stained in the normal thyroid glands. Expression of PTEN was clearly observed in the

thyroids of Pten+/+ and Brafthyr-V600E mice, but barely detectable in PtenΔ/+ and Brafthyr-V600E;
Ptenthyr-Δ/+ mice.

Thyroid tumors exhibiting (i) typical nuclear features of human PTC such as intranuclear

cytoplasmic inclusions and nuclear grooves and/or (ii) invasion of the extrathyroidal tissues sur-

rounding the thyroid glands were readily diagnosed as cancers. Some tumors in Brafthyr-V600E

mice not exhibiting these features were also judged as cancers, because they had malignant

Fig 3. Histology of the thyroid glands from the control and Brafthyr-V600E mice. The thyroid gland was removed from each mouse shown in Fig 2 and a 6

month-old Brafthyr-V600E mouse, and subjected to H & E, TG and PAX staining as described in the Materials and Methods. Representative photographs of a

control mouse and Brafthyr-V600E mice No. 1 and No. 3 are shown. Scale bars, 50 μm.

https://doi.org/10.1371/journal.pone.0201365.g003
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characteristics such as structural atypia, including cribriform-like, papillary, and solid growth of

atypical follicular cells with hyperchromatic swollen nuclei, which occasionally showed a hob-

nail pattern.

Fig 4. Histology of the thyroid glands from Brafthyr-V600E;Ptenthyr-Δ/+ mice. The thyroid gland was removed from each mouse shown in Fig 2

and a 6-month-old Brafthyr-V600E;Ptenthyr-Δ/+ mice, and subjected to H & E, TG and PAX staining as described in the Materials and Methods.

Representative photographs of Brafthyr-V600E;Ptenthyr-Δ/+ mice No. 2 and No. 6 are shown. Scale bars, 50 μm.

https://doi.org/10.1371/journal.pone.0201365.g004
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Higher cell proliferation indices determined by Ki67 staining (22.5 ± 10.2 vs. 5.6 ± 4.6) were

compensated by higher cell death rates as determined by TUNEL staining (1.1 ± 0.9 vs. 0.4 ±
0.4) in Brafthyr-V600E;Ptenthyr-Δ/+ mice as compared with Brafthyr-V600E mice (Fig 7), which likely

explains the non-significant difference in tumor sizes between the 2 mouse groups (Fig 2).

Although the staining intensity seemed stronger in Brafthyr-V600E;Ptenthyr-Δ/+ than Brafthyr-V600E

Fig 5. Extrathyroidal invasion and intranuclear features of thyroid cancer cells. (Upper) Invasion of the trachea

(marked by the arrows). (Middle and lower) Intranuclear cytoplasmic inclusions and nuclear grooves (indicated by the

arrows). Scale bars, 50 μm.

https://doi.org/10.1371/journal.pone.0201365.g005
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mice in immunohistochemical analysis of phosphorylated ERK, intra- and inter-tumoral heter-

ogenous staining made quantitative comparison of expression in both groups difficult. Repre-

sentative photographs are shown in Fig 8.

Fig 6. BRAFV600E staining of the thyroid gland and lung tissue in control and Brafthyr-V600E mice, and PTEN

staining of the thyroid gland in Pten+/+, PtenΔ/+, Brafthyr-V600E and Brafthyr-V600E;Ptenthyr-Δ/+ mice. The thyroid

gland and lung were removed in the mice from Fig 2, and subjected to BRAFV600E and PTEN staining as described in

the Materials and Methods. Scale bars, 50 μm.

https://doi.org/10.1371/journal.pone.0201365.g006
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Macroscopic lung nodules were observed in 2 of 9 Brafthyr-V600E and 6 of 9 Brafthyr-V600E;
Ptenthyr-Δ/+ mice. BRAFV600E expression in these nodules (Fig 6) excluded the possibility of the

spontaneously arisen primary lung tumors, but negative staining for TG and PAX (data not

shown) did not provide convincing evidence that these nodules were metastases. Although

Ad-TgP-Cre-mediated BRAFV600E expression was very unlikely even if adenovirus had dis-

seminated systemically, because the Tg promoter we used in this study is exclusively thyroid-

specific and has been widely and successfully used for many genetically engineered mice (e.g.,

Tg-BrafV600E) [2], we found that these nodules were positive for surfactant protein-A (Fig 9),

Fig 7. Ki67 and TUNEL staining of the thyroid gland from the control, Brafthyr-V600E and Brafthyr-V600E;Ptenthyr-Δ/+

mice. The thyroid gland from each mouse in Fig 2 was subjected to Ki67 and TUNEL staining as described in the

Materials and Methods. Data are means ± S.D. (n = 5~9). �, p< 0.01; ��, p< 0.05. Scale bars, 50 μm.

https://doi.org/10.1371/journal.pone.0201365.g007
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which is reportedly expressed in BRAFV600E-induced lung adenomas [6, 16]. A spontaneously

developed rat lung tumor [22] also stained positive.

Finally, despite the absence of tumor development in Ptenthyr-Δ/+ mice, most PtenΔ/+ mice

developed thyroid hyperplasia/adenoma by the age of 6 to 8 months (Table 1, Fig 10). These

mice were sacrificed during this time period because tumor had developed in other organs.

Discussion

Although we previously reported the insufficiency of postnatal expression of BRAFV600E for

thyroid cancer development in mice [3], in the present study, we re-evaluated this issue using

a different genetically engineered mouse model (i.e., BrafCA). As BRAFV600E is frequently

found in sporadic thyroid cancers in euthyroid subjects, BRAFV600E should be expressed in a

small fraction of thyroid cells (ideally in a single cell, but it is currently not possible experimen-

tally) after birth under physiologic TSH levels. In this regard, our experimental design—that is,

intrathyroidal injection of Ad-TgP-Cre into one side of the thyroid lobes of genetically engi-

neered mice harboring the loxP sequences—is likely ideal. The feasibility of adenovirus-medi-

ated Cre gene transfer to temporally and spatially control Cre expression has been well

demonstrated [23, 24]. In the present study, we clearly showed that thyroid cancers did develop

in Ad-TgP-Cre-injected BrafCA mice, indicating that postnatal expression of BRAFV600E alone

Fig 8. Phosphorylated ERK staining of the thyroid gland from control, and BrafCA/w and Brafthyr-V600E;Ptenthyr-Δ/+

mice. The thyroid gland from each mouse in Fig 2 was subjected to pERK staining as described in the Materials and

Methods. Scale bars, 50 μm.

https://doi.org/10.1371/journal.pone.0201365.g008

Fig 9. H & E and surfactant protein-A staining in a spontaneously developed rat lung tumor [22] (as a positive

control) and in a lung nodule developed in Brafthyr-V600E;Ptenthyr-Δ/+ mouse. Scale bars, 50 μm.

https://doi.org/10.1371/journal.pone.0201365.g009
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under physiologic TSH levels is sufficient for thyroid cancer development. Similar preliminary

results were reported by McFadden et al (see Fig. S1H in ref. [10]).

Our previous failure with Tg(LNL-BrafV600E) mice [3] appeared to be attributable to a lower

efficiency of Cre-mediated DNA recombination, although we cannot exclude the other possi-

bilities that the different genetic backgrounds (B6C3 in Tg(LNL-BrafV600E) vs. B6 in BrafCA)

and/or different promoters (CAG promoter vs. the endogenous Braf promoter) could have

affected our previous results. Different recombination frequencies of distinct alleles have been

reported [25]. Presumably, the frequency of transformation of BRAFV600E-expressing normal,

differentiated (i.e., TG-expressing) thyroid cells into malignant cells is extremely low.

The BrafCA;TPOCreER mouse model with tamoxifen reported by McFadden et al. may also

be ideal, although the TSH levels increased slightly (<10 fold) [10]. However, thyroid cancers

developed several weeks after administration of tamoxifen in their model, in a sharp contrast

to the present study, in which thyroid cancers were only detectable 1 year (not 6 months) after

adenovirus injection. It is unclear whether the slight increase in TSH promoted tumorigenesis

in their model. In this regard, fine dose-response experiments may be necessary to find the

Fig 10. Thyroid histology of PtenΔ/+ mice. Mice were sacrificed at ~6~8 months of age due to development of tumors

in other organs. Representative photographs of PtenΔ/+ mice No. 2 and No. 4 are shown. Scale bars, 50 μm.

https://doi.org/10.1371/journal.pone.0201365.g010
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appropriate concentration of tamoxifen to induce thyroid cancer on one hand while maintain-

ing physiologic TSH levels on the other.

Significant increases in TSH levels (up to 500 fold) have been noted in other models [2, 4, 9,

10]. As elevated TSH is known to induce thyroid enlargement and sometimes promote tumor-

igenesis by itself [26], there is no doubt that elevated TSH has substantially affected the results

obtained with the above-mentioned mouse models of thyroid cancer with marked TSH eleva-

tion. However, the significance of low TSH levels for thyroid tumorigenesis is controversial.

On one hand, Tg-BrafV600E;Tshr-/- mice [27] and LSL-BrafV600E;TPO-Cre;Tshr-/- mice [4], both

of which are unresponsive to TSH stimulation due to a lack of TSH receptor expression, can

develop thyroid cancers, albeit less aggressive, but, on the other hand, transplantation of thy-

roid cancers developed in LSL-BrafV600E;TPO-Cre mice (with high TSH levels) into nude or

syngeneic immuno-competent mice (with normal TSH levels) leads to regression and senes-

cence [28].

Regarding the question as to how many mutations are required for full development of dif-

ferentiated thyroid cancer, recent studies using human samples show that number of non-syn-

onymous mutations in exomes is ~0.4/Mb [29–31], and the number of mutations among 341

cancer-related genes in PTC is reportedly 1 ± 1 (median ± interquartile range) [30, 32]. Thus,

similar to pediatric cancer and leukemia, thyroid cancer is associated with a very low number

of mutations, suggesting that a single or perhaps only a few mutations are sufficient for thyroid

cancer to develop. In our model, however, the possibility cannot be excluded that other muta-

tions occurred during the 1-year observation period.

BRAFV600E was first discovered in malignant melanoma, but later also found to be present

in benign nevi, which seldom progress to melanoma unless additional mutations occur [33].

In accordance with this observation, in mouse experiments, BRAFV600E alone cannot induce

melanoma, but it can in combination with PTEN loss or activating PI3KCA mutations [16,

34]. Concurrent mutations in BRAF and diminished PTEN expression are common in human

melanomas [34]. Similar data were also reported in lung adenocarcinoma and prostate cancer

in genetically engineered mice [17, 35]. Of interest, in contrast to thyroid cancer, melanoma

and lung cancer are among cancers with a high number of mutations [29, 31].

The combination of BRAFV600E and reduced PTEN expression tended to induce larger and

more undifferentiated thyroid cancers in our study, and these data were similar to those in

LSL-BrafV600E;Ptenf/f;TPO-Cre mice in which PTC rapidly progressed to poorly differentiated

thyroid cancers as compared with LSL-BrafV600E;TPO-Cre mice [36] and also to those in

Thyro::CreER;BrafCA/+;Pik3calat-1047R/+ mice, which developed anaplastic cancers as compared

with Thyro::CreER;BrafCA/+ mice [37]. Although the mutations in Pten gene are not common

[38], reduced expression of PTEN due to hypermethylation is frequently detected even in dif-

ferentiated thyroid cancers [39].

Tumorigenesis associated with PTEN loss by itself is well known in human Cowden syn-

drome, in which a germline loss-of-function mutation in the PTEN gene induces thyroid mul-

tinodular goiter and adenoma [40]. Experimentally, the tumorigenesis of prenatal PTEN loss

in the mouse thyroid gland was clearly shown by Yeager et al. using PtenL/L;TPO-Cre mice

[15]. Thus, similar to the PtenΔ/+ mice used in our study, the majority of mice in the 129Sv

genetic background developed well-circumscribed follicular adenomas and nodular hyperpla-

sia, often characterized by increased cellularity and mitotic figures at 8 to 10 months of age.

However, no thyroid tumors were observed in Ptenf/+ mice injected with Ad-TgP-Cre in our

study. These data clearly indicate that the tumorigenic potential of reduced PTEN expression

differs between the prenatal and postnatal periods.

We interpret our data on lung tumors as showing that adenovirus injected into the thyroid

lobes leaked, disseminated systemically, and reached the lung, where BRAFV600E was expressed
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aberrantly from the Tg promoter, even when the volume of adenovirus injected was low (1 μl)

and highly thyroid specific Tg promoter was used. Thus, one of the limitations of our study is

the leakiness of locally injected adenovirus as well as leakiness of the Tg promoter. Our model

is therefore not suitable for study of metastasis. Only 2 reports of lung metastasis have been

reported, one by Rusinek et al. using transgenic Tg-2HA-BrafV600E mice [19] and the other by

McFadden using TPOCreER;BrafCA/+;p53LSL-R270H/+ mice [10]. Another limitation is that we

cannot completely exclude the possible effect of adenovirus-induced inflammation and/or dis-

ruption of local tissue architecture on cancer development in our experimental setting.

In conclusion, using our mouse model with Ad-TgP-Cre, we show that postnatal expression

of BRAFV600E alone under physiologic TSH levels is sufficient for development of thyroid can-

cer and that simultaneous reduced expression of PTEN tends to promote tumor growth and

de-differentiation. It will be of interest in the future to compare the differences/similarities of

thyroid cancers associated with postnatal vs. prenatal expression of BRAFV600E. Our data also

indicate that the effects of BRAFV600E expression and reduced PTEN expression differ between

the prenatal vs. postnatal periods. Thus, unlike BRAFV600E, the tumorigenic potential of PTEN

depends on a prenatal reduction in expression.
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