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The regional brain networks and the underlying neurophysiological mechanisms
subserving the cognition of visual narrative in humans have largely been studied
with non-invasive brain recording. In this study, we specifically investigated how
regional and cross-regional cortical activities support visual narrative interpretation
using intracranial stereotactic electroencephalograms recordings from thirteen human
subjects (6 females, and 7 males). Widely distributed recording sites across the
brain were sampled while subjects were explicitly instructed to observe images from
fables presented in “sequential” order, and a set of images drawn from multiple
fables presented in “scrambled” order. Broadband activity mainly within the frontal and
temporal lobes were found to encode if a presented image is part of a visual narrative
(sequential) or random image set (scrambled). Moreover, the temporal lobe exhibits
strong activation in response to visual narratives while the frontal lobe is more engaged
when contextually novel stimuli are presented. We also investigated the dynamics of
interregional interactions between visual narratives and contextually novel series of
images. Interestingly, the interregional connectivity is also altered between sequential
and scrambled sequences. Together, these results suggest that both changes in
regional neuronal activity and cross-regional interactions subserve visual narrative and
contextual novelty processing.

Keywords: visual narrative, brain connectivity, Spectral representation, SEEG, contextual novelty

HIGHLIGHTS

Our results demonstrate that while multiple cortical regions including the frontal, parietal and
temporal lobe respond to visual narrative stimuli, they do so differently. Our main significant
finding is that in the human brain, there is a concerted but inverse response at the frontal
and temporal lobe to semantic relationship and contextual novelty. While the temporal lobe
exhibits strong activation in response to visual narratives, the frontal lobe is more engaged when
stimuli is contextually novel. The interregional connectivity between these cortical regions is also
modulated between these two stimuli conditions. Consequently, these findings are relevant in
further understanding neurological conditions where visual semantic processing or contextual
novelty detection is impaired.
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INTRODUCTION

Pictorial storytelling is a critical aspect of human cultural
development, spanning from the earliest prehistoric cave art
examples (Callaway, 2019) to the “visual narratives” widely
seen in today’s advertisements and digital animations. Visual
narratives consist of a sequence of static visual images
linked semantically through event-related chronology, contextual
consistency, and content interaction across scenes (Cohn, 2014;
Loschky et al., 2020). As human beings, we can readily
recognize visual narratives as being inherently different from a
set of random images. Yet, this seemingly effortless cognitive
distinction requires the complex integration of multiple neural
processes for object detection, attentional selection, and memory.

The cognitive processing of visual narratives involves
detecting “contextual novelty” where an image with familiar
features is encountered in an unexpected manner (Ranganath
and Rainer, 2003; Schomaker and Meeter, 2015). Contextual
novelty detection requires awareness of both visual and semantic
serial dependencies among previously seen images (Huffman
et al., 2017) within a time-window associated with the narrative
(Worthen, 2006; Kiyonaga et al., 2017). Some studies have used
intracranial electrocorticography (ECoG) to study novel object
recognition to clarify the roles of selected brain regions. For
instance, using movies as stimuli, neural activity in the occipital
and temporal lobes have been shown to encode whether a movie
frame belongs to the same movie, as early as 100–200 ms after
presentation (Isik et al., 2018). Investigation of novel object
detection using ECoG recordings from human subjects (Miller
et al., 2015) showed that visual category-selective subregions
within the ventral temporal lobe, including face-selective
fusiform gyrus loci and place-selective parahippocampal/lingual
gyrus loci, exhibited differential response to contextual novelty.
Novel stimuli resulted in increased broadband spectral power,
which indexes the underlying population spiking activity
(Manning et al., 2009; Whittingstall and Logothetis, 2009; Miller,
2010; Crone et al., 2011), in both object category-selective sites.
These prior studies have predominantly focused on investigating
a specific brain region, mainly temporal or occipital lobes.

While novelty processing has been implicated in specific brain
regions (Rolls et al., 2005; Kishiyama et al., 2009; Kumaran and
Maguire, 2009; Axmacher et al., 2010; Davachi and DuBrow,
2015; Isik et al., 2018), the coordinated interactions among
several interconnected brain regions/networks are thought to
be involved in novel visual information processing (Knight and
Nakada, 1998; Ranganath and Rainer, 2003; Kafkas and Montaldi,
2018). Prior work in humans and primates have implicated a
spatially distributed network of brain regions including both
the anterior and posterior multimodal association cortices in
detecting novel stimuli or contextual novelty. The frontal lobe is
well known to be heavily involved in detecting novel, mismatched
or unexpected stimuli (Courchesne et al., 1975; Rolls et al.,
2005; Kishiyama et al., 2009; Cohn and Kutas, 2017). Medial
temporal lobe structures also exhibit differential engagement
when processing novelty and contextual information (Axmacher
et al., 2010; Kafkas and Montaldi, 2018; Fonken et al., 2020). Also
involved are the brain areas comprising the ventral visual stream,

spanning from the occipital lobe to the temporal lobe (Kafkas
and Montaldi, 2018). As with visual receptive fields increasing
in size and feature complexity along the visual system hierarchy
(Hubel and Wiesel, 1962; Desimone et al., 1984; Goodale
and Milner, 1992; Grill-Spector and Malach, 2004), fMRI and
electrophysiological studies in human subjects (Hasson et al.,
2008; Lerner et al., 2011; Himberger et al., 2018) have similarly
found that higher brain regions along the visual hierarchy
employ a wider temporal window to integrate visual information,
termed temporal receptive window (TRW; Yeshurun et al., 2021).
Whereas cortical neuronal circuits involved in the early stages
of sensory processing are both sensitive and responsive to the
fast-changing low-level stimuli features, the TRW widens along
the sensory processing pathway where higher-level cortical areas
are increasingly able to integrate information accumulated over
a much longer timespan. The reliability of human neuronal
population responses along the visual cortical hierarchy for
tracking shifting visual stimuli information at different timescales
was examined by Honey et al. using ECoG signals in human
subjects while watching intact and scrambled movies (Honey
et al., 2012). They demonstrated that in early visual areas, high-
frequency gamma power (64–200 Hz) power was informative
about movie stimuli type (intact vs. scrambled) whereas in
higher order regions, power fluctuations were more reliable
for unscrambled rather than scrambled movies. The processing
of scrambled and intact auditory stimuli (Lerner et al., 2011;
Davidesco et al., 2018) similarly involves population neuronal
operations at differing time-scales along the sensory processing
hierarchy and memory system (Hasson et al., 2015).

Theoretical models are also useful frameworks for studying
how distinct neural processes jointly participate in the cognition
of visual narrative (Cohn, 2020c; Loschky et al., 2020). The
Parallel Interfacing Narrative-Semantics (PINS) model proposed
by Cohn (2020c) describes concurrent narrative and semantic
representational levels for processing visual narratives. Semantic
processing involves object recognition and selection of salient
features in images. Narrative processing involves organizing
seen images according to context in working memory. Seminal
work by Cohn (2014), Cohn and Kutas (2017) using surface
electroencephalograms (EEG) recordings have described three
features of event-related potentials (ERPs) that are associated
with components of the visual narrative based on the PINS
model (Cohn, 2020c). These include the N400 peak in the
midline central leads elicited by semantic incongruency, anterior
negativity in the midline prefrontal leads elicited by narrative
structure, and a P600 peak in the midline parietal leads that
is sensitive to concurrent narrative and semantic processing
(Cohn et al., 2012; Cohn and Kutas, 2017; Cohn, 2020c). Loschky
et al. proposed a model based on the Scene Perception & Event
Comprehension Theory (SPECT) with iterative crosstalk between
front-end and back-end processes. The front-end processes
involve information extraction from seen images and attentional
selection of salient features within the visual story. Back-end
processing, occurring simultaneously, uses input from the front-
end processes as well as semantic memories to develop a cognitive
model and updates this model as new information arrives
(Loschky et al., 2020).
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Common to both models are the multifaceted processing
mechanisms for concurrent comprehension of the visual
narrative and detection of contextual novelty. As novelty
processing has been implicated in several brain regions (Rolls
et al., 2005; Kishiyama et al., 2009; Kumaran and Maguire,
2009; Axmacher et al., 2010; Davachi and DuBrow, 2015; Isik
et al., 2018), it remains fuzzy if cognition of visual narrative
in the human brain also engages nodes that constitutes the
novelty-detection neural network. This work will specifically
investigate how regional cortical activity and cross-regional
interactions between the frontal and temporal lobes support
visual narrative interpretation using intracranial stereotactic EEG
(sEEG) recordings from human subjects. Our task requires study
subjects to distinguish between “sequential” images presented
from the same story/fable or “scrambled” images drawn from
multiple fables. The manipulation of sequential vs. scrambled
visual sequences has been employed in previous work to study
the comprehension of visual narrative (Gernsbacher et al., 1990;
Robertson, 2000; Cohn et al., 2012) and movie stimuli (Honey
et al., 2012). We specifically examined if regional neural activity
exhibits spectral features specific to processing of sequential vs.
scrambled image patterns and whether interregional connectivity
changes in response to scrambled or sequential images. Our
results demonstrate that broadband spectral activity spanning
sub-gamma (<30 Hz) along with gamma frequency range (Miller
et al., 2014; Sabra et al., 2020), mainly within the temporal and
frontal lobes, encodes whether presented images are part of a
visual narrative or random set with high accuracy. The temporal
lobe is highly engaged when the stimuli have predictable semantic
structure while the frontal lobe exhibits stronger activation in
response to novelty. Furthermore, the dynamics of interregional
connectivity is also modulated between sequential and scrambled
sequences suggesting that alterations to both regional neural
activity and cross-regional interactions between the frontal and
temporal lobes subserve visual narrative processing.

MATERIALS AND METHODS

Participants
Thirteen patients with epilepsy (7 males, 6 females) with ages
between 14 and 66 years old (mean age 35) participated in
these experiments. All subjects underwent surgical implantation
of intracranial sEEG electrodes for clinically indicated invasive
neurodiagnostic for evaluation of seizure source. One subject
(S2) also underwent subdural grid electrode implantation over
the lateral surface of the right hemisphere in addition to
depth electrodes. The location of the implanted electrodes was
determined by both epilepsy neurologists and neurosurgeons,
based solely on clinical considerations. All subjects provided
written informed consent as approved by the Institutional Review
Board at the Medical University of South Carolina.

For the duration of the experiments, subjects sat in an upright
position and viewed a laptop screen placed at eye-level at an
approximate distance of 40 cm. Subjects were able to take breaks
and can stop participating at any time during the experiment.

Recording Sites Specifications and
Locations
Intracranial electrode locations differed between subjects
according to their respective clinical indications (Supplementary
Table 1). Each depth electrode (Ad-Tech, Oak Creek, WI) has
10 recording contacts, with a diameter of 2.29 mm and a 5 mm
distance between adjacent recording contacts. All participants
underwent depth electrode placement only except for participant
S2 who had an additional subdural grid placed also. (Ad-Tech,
Oak Creek, WI, United States; 6 × 6 recording contacts with
10 mm spacing between contacts).

Post-implantation T1-weighted structural magnetic resonance
(MR) images were used to determine the anatomical location
of each electrode’s recording site. We masked the electrodes
in the structural images using “cost function masking” (Brett
et al., 2001) in MRIcron (MRIcron, RRID:SCR_002403).
The Clinical Toolbox (Rorden et al., 2012) within SPM8
(SPM, RRID:SCR_007037; Clinical Toolbox for SPM,
RRID:SCR_014096) was used to normalize the masked structural
images of each subject into Montreal Neurological Institute
(MNI) space. The recording sites in MNI space were visualized
using BrainNet Viewer (BrainNet Viewer, RRID:SCR_009446)
with surface template ICBM152. Recording sites reported to
be source of seizures were excluded from the analysis (refer to
Supplementary Table 1 for epileptic zones), and the anatomical
locations of the remaining 970 recording sites across all subjects
were distributed as follows: frontal (ten subjects, 176 in left
hemisphere, 179 in right hemisphere), temporal lobe including
medial temporal lobe (thirteen subjects, 201 in left hemisphere,
195 in right hemisphere), insula (seven subjects, 15 in left
hemisphere, 28 in right hemisphere), occipital lobe (two subjects,
8 in left hemisphere, 15 in right hemisphere), parietal lobe
(twelve subjects, 41 in left hemisphere, 78 in right hemisphere),
and basal ganglia (seven subjects, 21 in left hemisphere, 13 in
right hemisphere).

Data Recording
Local field potential (LFP) recordings were recorded using
a clinical XLTEK EEG system (Natus Medical, Inc.). For all
subjects, the sampling frequency was 2 KHz except for subject S2
where it was 500 Hz. Data recorded at 2 KHz sampling rate were
resampled to 1 KHz for offline analysis.

To synchronize the onset of the image stimulus on the
screen with the intracranial recordings, a photodiode was
used to detect color changes within a small area on the
laptop screen at the onset of each new stimulus. The
photodiode was placed at the bottom right corner of the
screen and was obscured to avoid distracting the subjects
during the experiment. Each presented image stimulus is
transduced by the photodiode as a voltage pulse that is
recorded along with the intracranial signals. The time series
of triggered pulses from stimuli onsets of an experiment
were used to perform offline synchronization between the
timing of image onset on the screen and the corresponding
neuronal activity recorded across the electrodes’ contacts
(Rorden and Hanayik, 2014).
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FIGURE 1 | Visual experiment design. Subjects viewed a series of cartoon images that are part of five fables under two experimental conditions. Displayed is a
subset of the image sequences. Within each row, the chronological order of image presentation is from left to right as indicated by the arrow. (A,B) A total of seven
image series were presented where each series consisted of five images presented for 2 s each, followed by a gray screen for 6 s duration before the start of the
next image series. The full set of images are provided in Supplementary Figures 1, 2. (A) Subjects were first instructed to fixate at the center of the screen while a
series of images are presented in scrambled order. (B) Then, subjects were instructed to fixate at the center of the screen while the same images are presented in a
sequential order.

Design of Visual Narrative Experiment
A total of 35 cartoon images belonging to seven different fables
were used in these experiments. Each fable was represented by
five images. Subjects were given instructions to view images
as they were presented on the laptop screen. An experiment
has two parts consisting of a “scrambled” and a “sequential”
experimental condition (Figure 1). Subjects were explicitly
instructed to view the images as they appear. In the first part
of the experiment (Figure 1A), images were presented to the
subjects in “scrambled” order where images from multiple fables
were intermixed and displayed in sets of five images. In the
second part of the experiment (Figure 1B), the same images
that were presented during the scrambled phase were presented
in their “sequential” or correct chronological order according
to each fable’s narrative context. Each set of five images was
shown in sequential order corresponding to the semantic and
structural coherence of the original story plot of events (Cohn,
2020c; Loschky et al., 2020). During both parts of the experiment,
each image was displayed for 2 s. A gray screen of 6 s duration
was used to separate each set of five images. In each part of
the experiment (scrambled and sequential), a total of 35 images
were displayed one time without repetition. Analysis was carried
out in a time window inclusive of the transition between two
consecutive images, spanning from 100 ms during the previous
image, before the onset of the next image, to 500 ms following
image transition. This analysis window was chosen to study the
LFP associated with the transition between two images rather
than the processing of fixed image stimuli per se. Block design
was used in this experiment since it is easier and less challenging
for the participating subjects to understand. All 13 subjects were
debriefed at the end of the experiment and they all confirmed
familiarity with the presented fables and confirmed the ability
to notice that the images in the first and second parts of the

experiment were presented, respectively, in a scrambled and
sequential order.

Experimental Design and Statistical
Analysis
Signal Preparation
Recording sites identified by the patient’s neurologists to have
ictal or high interictal epileptiform activity were excluded from
the analysis. Additionally, we also excluded recording sites found
on post-implantation structural MR images to be outside of
the brain’s cortical surface and also those whose anatomical
location is not clearly identifiable. Based on these criteria, 300
recording sites were excluded while analysis was carried out on
970 recording sites across subjects.

For each subject, each electrode signal was re-referenced to the
global mean signals over all included electrodes by subtracting
the average amplitude at each time point from the individual
recorded time series signal at each site.

Power Spectra Calculation
Trial-based analysis for each recording site was carried out
using 600 ms time windows, starting 100 ms before each image
stimulus onset to 500 ms following the image transition. Analysis
was confined to the resulting single trial-power spectral density
(PSD) in the frequency range from 2 to 100 Hz using the
PWelch method (Welch, 1967) at 1 Hz increments. The default
Hamming window in MATLAB (Mathworks, MA, United States)
was used to obtain eight segments of the time series data, with
50% overlap between the segments. Frequencies between 56 and
63 Hz were excluded to eliminate 60 Hz line-noise artifacts. For
each recording site, the calculated PSD was normalized to the
average power spectra across all experimental conditions for that

Frontiers in Human Neuroscience | www.frontiersin.org 4 October 2022 | Volume 16 | Article 886938

https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/human-neuroscience#articles


fnhum-16-886938 October 1, 2022 Time: 17:0 # 5

Sabra et al. Visual Narrative in the Human Brain

recording site (i.e., taking the power values of the trial-PSD at
each frequency and dividing it by the average power value at that
frequency across all experimental conditions). Trial-PSDs were
separated into two groups based on the experimental condition
(i.e., scrambled or sequential) Average power spectra for each
experimental condition were calculated for each recording site for
each subject and across subjects, resulting in 1940 PSDs derived
from 970 recording sites across all 13 subjects. All the analysis
was carried out over a 2–100 Hz frequency range, as the usage
of a wider range (2–200 Hz) did not reveal any difference in the
results (data not shown).

Dimensionality Reduction
Dimensionality reduction was performed using principal
component analysis (PCA; Pearson, 1901). Principal components
(PC) were calculated for the 1940 PSDs. The first and the second
principal component accounted for 76% and 7% variance
respectively across the PSDs.

Principal Components-Projection Encoding Model
The spectral features of recorded neural activity related to the
observation of scrambled (Scr) and sequential (Seq) images was
further explored using a PC-projection encoding model. Analysis
was carried out separately for each recording site and each
subject. For a given subject s, we applied PCA to all PSDs derived
from the other 12 subjects and calculated the projection onto
the resultant first principal component (PC1) for each single-
trial PSD of subject s. Since we are interested in the response
during the transition between two consecutive images, analysis
of each recording site’s response was examined during transition
between two sequential images of the same visual narrative vs.
two scrambled images from different stories with no expected
narrative context. Responses to the first presented image of the
experiment and to the gray screen (Figure 1) were omitted.
For each recording site, the accuracy of spectral features for
encoding Seq vs. Scr transitions was tested using an encoding
model derived from PC1 projections. Encoding models were
generated using 80% of the trials to train and validate using
Monte Carlo cross-validation (Dubitzky et al., 2007; Kuhn and
Johnson, 2013). The remaining 20% of the trials were used as a
test data set to assess the decoding performance of the derived
model. The Pearson’s Correlation between predicted projections
derived from the training set and measured projections in
the validation set was calculated to assess encoding accuracy.
Formally, for a given recording site, let qi be the ith single-trial
PSD, and p the PC1 component. Thus yi = qi · p corresponds
to the projection of the ith single-trial PSD onto PC1. A linear
regression was then applied using the training projection values
to calculate the predictive weights of the two experimental
conditions Scr and Se:

y = Xβ+ ε

where y is the vector of projections (Ntrain × 1) along PC1, X
is the binary design matrix of the experiment (Ntrain × 3) with
three columns where two columns indicate the experimental
conditions (Sc or Se), β is the vector of the weights and
intercept constant (3× 1), and ε is Gaussian noise with zero

mean and unit variance. Regressions were performed for each
recording site using 10-fold leave-27-out by random sampling
(Ntrain = 17 trials from the 44 trials leaving out 27) to
generate a linear encoding model. At each iteration of the 10-
fold linear regression, the prediction value of the encoding
model generated for each recording site was assessed using
the 27 (left-out) trials by calculating the Pearson’s correlation
between the predicted and observed projections. We define
the prediction accuracy of a recording site to be the average
Pearson correlation across the ten regressions. A recording
site ascribed to be of high-encoding performance along PC1
is a recording site with a Pearson’s correlation significantly
higher than random distribution (P < 0.05, permutation
test), generated through conditions swapping repeated over
10,000 iterations.

Decoding Performance
Decoding performance was analyzed using groups of recording
sites of varying sizes. The groups of recording sites were formed
as follows: we first rank-ordered all recording sites based on
their encoding performance (i.e., Pearson’s correlation values
from highest to lowest). Groups with sizes ranging from 4 to
970 in increments of 2 were formed. For each group being
analyzed, we created a subgroup by randomly splitting the
studied group in half. The decoding model was then applied
to this new sub-group yielding a value of percent-accuracy
corresponding to the percentage of successfully decoded trials
among the trials in the test data set. This was accomplished in
the following manner:

For each trial acquired during sequential stimuli presentation
(Seq), the vector ySeq was formed where each element is the
calculated trial data PC1-projection across the studied subgroup

ySeq = (y1
Seq, y

2
Seq, . . . , y

N
Seq)

where N is the total number of recording sites in a decoding
subgroup. Equivalent vectors yScr was formed using trials
from scrambled stimuli conditions. Two additional vectors
y
′

Seq and y
′

Scr were generated using linear regression on all the
dataset except the tested trial. The purpose here is to calculate for
each recording site in the studied subgroup a predicted weight
(predicted PC1-projection) for both Seq and Scr experimental
conditions. Thus, for a given trial in the test set, the Pearson’s
correlation value was computed between either vectors of
calculated weights (ySeq or yScr) and the vectors of predicted
weights (y

′

Seq and y
′

Scr) of the same subgroup sites.
A successful decoding is achieved if the Pearson’s correlation

between the calculated weights and predicted weights are higher
for trials of the matching experimental condition as opposed
to mismatched trial type. This process was repeated for all
trials in the test set (12 trials). The decoding performance is
measured by the percentage accuracy of decoding corresponding
to the percentage of successfully decoded trials among the tested
trials. Random decoding performance is 50% due to an equal
likelihood of selecting between Seq and Scr condition through
random chance. This subgroup analysis was performed 10 times
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and the average percent-accuracy value was calculated for all
thirteen subjects.

Cross-Regional Connectivity Analysis
Connectivity between brain regions in response to Seq vs.
Scr experimental conditions was examined using granger
causality (GC) analysis (Granger, 1969) calculated using an
autoregressive (AR) model (Geweke, 1982) provided as part
of the Brainstorm software toolbox (Tadel et al., 2011). For
each test condition (Se or Sc), GC was calculated for all
possible pairs of recording sites. To accomplish this, the
recorded time series for each pair was first preprocessed by
subtracting the DC offset (the offset is calculated as the mean
amplitude from -100 to 100 ms around stimulus onset). The
GC metric was calculated for the 100–500 ms response period
after the onset of image presentation. For each subject, the
GC metric was calculated between each pair of recording
sites along with the parametric p-value of the mean estimate.
For a pair (x, y), where x and y represent two studied
recording sites, x “granger causes” y if the GC metric of
(x, y) is higher than (y, x) with P < 0.05 using two Wald
statistics according to (Geweke, 1982; Hafner and Hafner,
2008).

The bst_granger function in Brainstorm software toolbox
was used to calculate the pairwise GC and associated p-value
between every electrode site within the same subject. We
generated a contingency table by counting the number of
electrode pairs that had GC with p-value < 0.05 as having
significantly high connectivity between brain regions across all
subjects, obtaining the tables in Figures 7A,B. Comparison
of the distribution of high connectivity regions between
Sc and Se groups was performed using the single Chi-
Square test in SPSS v. 28 (IBM Inc.). Individual source-
sink pair comparisons were independently performed using
individual Chi-Square tests that were subsequently corrected
for multiple comparisons by computing the adjusted residuals
from the Chi-Square test, comparing all possible combinations
of pairs. This was performed by computing the adjusted
Chi-Square statistics for each combination followed by the
adjusted P-value. The resulting adjusted p-value are plotted
in Figure 7C.

Statistical Analysis
Statistical analysis was performed using MATLAB 2019a
(Mathworks, MA, United States) and Graphpad Prism 8
(GraphPad Software, CA, United States). The Fisher’s exact test
(Fisher, 1935; Pitman, 1937) was used to determine recording
sites with high encoding performance by comparing the value
of Pearson’s correlation to that of a random distribution.
Unless otherwise stated, statistical significance was set at
α < 0.05.

Materials Availability
Datasets and analysis code are available from the corresponding
author upon reasonable request. Further information and
requests for resources will be fulfilled by the corresponding
author, Nicholas AuYong (nicholas.au.yong@emory.edu).

RESULTS

Subjects Cohort and Visual Task
Thirteen adult subjects (6/13 females, mean age 35 years)
undergoing intracranial electrode monitoring for clinically
indicated evaluation of epilepsy participated in these
experiments. In total, 114 electrodes were implanted for all
13 subjects, providing 970 recording sites. 300 recording sites
were excluded as described in the section “Materials and
Methods.” All subjects participated in the same visual task that
involves viewing colored cartoon images from seven common
fables (with five images per story). Images were presented in a
scrambled pattern (Scr) during the first part of the experiment
and then in sequential order (Seq) during the second part.
Example image sequences as viewed by subjects is shown in
Figure 1 (see Supplementary Figures 1, 2 for full sets of Scr
and Seq images). Each image was presented without repetition
for 2 s. For the Seq experimental condition, the last image from
one story and the first image of the next was separated by a gray
screen, displayed for 6 s.

Scrambled and Sequential Patterns Are
Associated With Broadband Spectral
Power Variations
Prior human surface EEG studies described the “N400 Effect,”
consisting of a negative-going deflection that peaks in the frontal
LFP around 400 ms, evoking a larger amplitude in response
to scrambled sequence of images than to coherent narrative
sequences (Cohn et al., 2012). Based on these findings, we carried
out our post-stimulus response analysis up to 500 ms following
image presentation (Figure 2A). Time domain LFP analysis was
performed after baseline signal correction by subtracting the
average amplitude between -100 and 50 ms around stimulus
onset. An illustrative example from the left inferior temporal
gyrus (ITG) of subject three (S3) is shown in Figure 2B
demonstrating a clear distinction of Scr and Seq responses
between 300 and 500 ms from stimulus onset (at 0 s). This result
is analogous to the source localization of N400 reported by Kutas
and Federmeier (2000) to be originating in the left ITG. The
z-scored normalized time domain signals of the individual trials
were then used to construct the peri-stimulus PSDs for studying
the distinction between the two experimental conditions in the
frequency domain. Figure 2C shows a single subject example of
the average PSDs from all trials within the ITG of S3 for each
condition (Scr vs. Seq), demonstrating a clear broadband power
shift between Scr and Seq subsets. This broadband modulation is
distinct after normalization of all PSDs (Figure 2D, see section
“Materials and Methods”).

The spectral features associated with cerebral processing
can exhibit “narrowband patterns,” reflecting an underlying
synchronized neuronal population activity resulting in power
modulation over a narrow frequency range (Eckhorn et al.,
1988; Fries et al., 2008; Akam and Kullmann, 2014; Hermes
et al., 2015) and/or a “broadband pattern” as a result of
asynchronous neuronal firing yielding an increase in spectral
power across a broad range of frequencies (Winawer et al., 2013;
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FIGURE 2 | Computation of power spectra in response to scrambled vs. sequential images. For each recording site, the normalized power spectra were calculated
as shown in (A–D). (A) For each experimental condition (Scr in pink and Seq in blue), the time window around the onset of the image (100 ms before onset to
500 ms after onset of stimulus) was used to calculate the average normalized power spectra. (B) An example using a recording site from the left inferior temporal
gyrus (ITG) from subject three (S3) is illustrated on a brain surface reconstruction in MNI space. The average variation of the amplitude of local field potentials over
time in response to scrambled (pink), and sequential (blue) peri-stimulus onset is shown. Onset of the stimulus is defined as time zero, and all single trials were
preprocessed by subtracting a baseline offset calculated by averaging the amplitude of signal for each trial between −0.1 and 0.05 s. (C) Peri-stimulus PSDs from
the single left ITG recording site are shown in (B). For each trial of the experimental conditions (Scr and Seq), power spectra were derived after z-scoring the
corresponding time domain signals. The average power spectral density (PSD) for each condition is log-transformed and shows a clear broadband increase over a
wide range of frequencies in the power response to Scr vs. Seq. (D) Single-trial PSDs are then normalized by dividing by the average of all trials PSDs for the studied
recording site, and the average of each condition-specific normalized PSDs is derived.

Hermes et al., 2015; Fasoli et al., 2018; Sabra et al., 2020). To
further investigate if either narrowband or broadband spectral
features predominate during Scr/Seq stimuli presentation, PCA
was applied to determine the frequency bands at which the most
variance in spectral power between Scr and Seq experimental
conditions occur. Normalized PSDs were grouped according to
the stimulus condition associated with each trial (Seq vs. Scr),
and then averaged within-group. This resulted in two normalized
mean PSDs (one for Seq and one for Scr) for each recording site
as illustrated in Figure 2D. PC analysis was then performed on
pooled data from all subjects and recording sites (Figure 3). We
found that the first PC (PC1) accounted for 76% of variance in

spectral power (Figure 3B) while the second PC (PC2) accounted
for 7% of the variance. When examined in the frequency domain,
the variation of PC1 exhibited a distinct broadband profile with
elevation in power across a wide range of frequencies (>10 Hz;
Figure 3C). The observed PC1 pattern (Figure 3C) closely
mimics the pattern of power variation observed in Figure 2D.
PCA results demonstrate that the difference in neuronal response
to Seq vs. Scr sequences across all recording sites/subjects is
better explained by a broadband shift in power rather than
a narrowband oscillation pattern. To further determine the
robustness of this finding, we performed a similar PCA over
individual subjects showing conserved broadband motif of
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FIGURE 3 | Spectral pattern explaining the variation in power between Scr
and Seq images. (A) Recording sites from 13 subjects are illustrated on a
standard brain surface based on their MNI space coordinates. Each black dot
indicates the location of one recording site. L, left hemisphere; R, right
hemisphere. Supplementary Table 1 shows the full list of recording sites per
subject. By calculating the averaged PSDs for every single recording site
illustrated here (N = 970 recording sites) using the approach described in
Figure 2, a total of 1940 PSDs were used to reveal the spectral variation in
response to Scr vs. Seq image sequences. (B) Dimensionality reduction using
principal component analysis (PCA) on all PSDs yielded the major principal
components (PCs) that explain the variance among PSDs. A pie chart shows
the distribution of percentage of variance explained by each PC. The primary
PC (PC1) explained the majority of variance (76%). (C) The top two principal
components (PCs) are plotted: PC1 exhibits a broadband variation in spectral
power whereas PC2 showed a relative higher power in low frequency range
and lower power at higher frequency bands. PCA was also applied to
individual subjects and shows consistent patterns for the top PCs
(Supplementary Figure 3).

the highest performing PC (i.e., PC1; Figure 3-A). However,
PCA applied to single-subject data revealed some inter-subject
variation in the pattern of PC2 across subjects (Figure 3-B).
Since the majority of variance was explained by PC1, we focused
our subsequent analyses on the first PC. The conservation of
broadband motif when the analysis is applied to each subject
separately rules out the possibility that the broadband is driven
by one or few brain regions or subjects.

Broadband Spectral Features Encode
Information About the Visual Sequences
The degree in which broadband spectral features encode
information about the visual stimuli (Seq vs. Scr) was
independently estimated using a PC-projection encoding model,
applied to each recording site. For each recording site, an
encoding model was derived and used to predict the experimental
condition (Seq vs. Scr) based on the calculated PC1 weight. We
calculated the predictive weight for each of the two experimental
conditions as described in the section “Materials and Methods”.

Then we calculated the Pearson correlation between the model’s
predictions and the observed spectral power along PC1 across a
held-out validation dataset (Figure 4A).

A recording site is considered to be of high encoding
performance if the correlation exceeds a predefined threshold
(Pearson correlation > 0.34 based on P < 0.05 on permutation
test). Recording sites with high encoding performance over the
broadband PC1 were distributed widely across the brain and
were identified in the temporal, prefrontal, occipital, insular
and parietal cortices (Figures 4B,C). Recording sites with high
broadband encoding performance models were present in twelve
of the thirteen subjects (Supplementary Figures 4A,B). The
predicted broadband weight values of Scr and Seq experimental
conditions are plotted for the recording sites with high encoding
performance (Figure 4D). The results show that the Scr
experimental condition has significantly higher weights than the
Seq experimental condition [P = 0.01; Kolmogorov–Smirnov
test (Marsaglia et al., 2003)]. When assessing recording sites
for different brain regions, we observed a distinct pattern of
weight values for Scr and Seq experiments conditions. We found
significantly higher PC1 weights in Seq vs. Scr among temporal
sites compared to significantly lower weights in Seq vs. Scr among
frontal sites (Figures 4E,F). Most of the encoding recording sites
in the temporal lobe are localized in the ventral temporal pathway
(2 in the fusiform, 15 in the inferior temporal gyrus and 2 in
the middle temporal gyrus). The results shown in Figure 4D
were significantly different from the broadband projections of the
response to gray screens or inter-stimulus interval (ISIs) between
the stories (Supplementary Figure 5).

Regional Specialization of Broadband
Spectral Encoding for Novelty Effect
Within the Frontal Lobe and for Narrative
Coherence Within the Temporal Lobe
We evaluated single trial projections comparing the first
transition in an image series to the subsequent transitions to
determine how the brain regional spectral features are altered
during sequential vs. scrambled test conditions within the frontal
and temporal lobes (Figure 5). In the frontal lobe (Figure 5B),
we observed a dramatic reduction in broadband power with
subsequent trials when they are part of a sequential visual
narrative. In contrast, images displayed in a scrambled pattern
resulted in an increase in broadband power. The PC1 weights
were similar between Seq and Scr on the first transition, but
these weights were significantly lower in Seq vs. Scr with
subsequent transitions within the same image series. Taken
together, these findings indicate that frontal lobe broadband
spectral response habituates to sequentially presented images
but not to scrambled patterns reflecting the persistent novelty
effect in the scrambled pattern. However, in the temporal lobe
(Figure 5C), we observed a dramatic reduction in broadband
spectral power with subsequent trials if they are part of
a scrambled pattern but no change in power when images
are displayed in a sequential visual narrative sequence. In
the frontal lobe, we observed that PC1 weights were similar
between Seq and Scr on the first transition. However, these
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FIGURE 4 | Encoding model for examining regional broadband spectral differences in response to Seq and Scr experimental conditions. (A) Histogram of encoding
prediction accuracy across all recording sites for PC1 which captures broadband spectral features. High encoding performance recording sites were defined as
those with P < 0.05 on permutation test (dashed line, Pearson correlation > 0.34). (B) Distribution of high encoding performance recording sites (red dots) across all
brain regions based on (A; N = 48 recording sites). L, Left hemisphere; R, Right hemisphere. (C) Distribution of high encoding performance recording sites relative to
the total recording sites from each brain region. (D) Predicted weights (PC1 projections) for Seq and Scr experimental conditions across the 48 encoding recording
sites. Weights from Scr experimental conditions are significantly higher than those of Seq across all sites (∗∗P < 0.01, Mann–Whitney test). (E, F) Predicted weights
in (D) were grouped according to temporal vs. frontal locations and also by Seq vs. Scr experimental conditions. There is a significant decrease in temporal
broadband power in response to Scr relative to Seq whereas there is a significant increase in frontal broadband power in response to Scr relative to Seq (∗P < 0.05
∗∗∗P < 0.001, Mann–Whitney test). Refer to Supplementary Figure 4 for additional details of the encoding recording sites across subjects, and to Supplementary
Figure 5A for further comparison of (D) with ISI.

weights were significantly higher in Seq vs. Scr in subsequent
transitions within the same image series. This indicates that
the broadband response adapts to the Scr sequence of images
but not to Seq. The first Seq and Scr transitions represent

the transition from ISI (i.e., gray screen) to image. For each
of the two conditions, the transition from ISI to image
was significantly different from the transition from image to
ISI (Figure 5D).

Frontiers in Human Neuroscience | www.frontiersin.org 9 October 2022 | Volume 16 | Article 886938

https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/human-neuroscience#articles


fnhum-16-886938 October 1, 2022 Time: 17:0 # 10

Sabra et al. Visual Narrative in the Human Brain

FIGURE 5 | Novelty effect in frontal lobe. (A) Trials from both experimental conditions (Seq and Scr) were grouped into two categories based on the location of the
image in the story. “First” denotes the first transition in each image series (or story) whereas “Rest” denotes subsequent transitions. (A, B) In both temporal and
frontal lobes, we observe that the first transition response is not different between the two experimental conditions; there was no significant difference in predicted
weights between Scr and Seq in the first transition subset (P > 0.8, Kruskal–Wallis test). However, in the frontal lobe (B), the subsequent Seq “Rest” group has a
significant decrease in the overall weight compared to the first Seq response, Scr Rest group has a significant increase in the overall weight compared to the first Scr
response, and Scr Rest group has a significant increase in the overall weight compared to Seq Rest group (**P < 0.01, ****P < 0.0001, Kruskal–Wallis test). (C) In
the temporal lobe, the subsequent Seq “Rest” group has an increased overall weights in Seq vs. Scr (****P < 0.0001, Kruskal–Wallis test). (D) Mean and SEM of the
weight values calculated from the transition between ISI to image presentation during Scr and Seq experimental conditions are significantly different from the
transition between image to ISI. There is no difference in the weight values calculated from ISI to Scr or Seq transitions. The responses when transitioning to and
from ISI in both Scr and Seq experimental conditions are consistent. (one-way ANOVA with Bonferroni’s multiple comparison test. **P < 0.01 and ***P < 0.001).

Visual Narrative Stimuli Are Accurately
Decoded Using Broadband Spectral
Features
To test the accuracy of broadband spectral features in classifying
the type of visual narrative stimuli, we applied a model-
based decoding analysis (described in the section “Materials
and Methods” and in Figure 6) using PC1 weights (or
projections) that captures broadband spectral features. The
accuracy of this model in distinguishing between scrambled

patterns and sequential visual narrative stimuli compared to
random chance (50%; since we are classifying between two
experimental conditions) was tested. Multiple iterations of the
decoding scheme were constructed from data recorded using
a growing subset of recording sites in the order of decreasing
encoding accuracy. An overall decoding accuracy of 86–90%
was attained in distinguishing Seq vs. Scr patterns using 20–70
recording sites in the order of decreasing encoding accuracy.
These recording sites include random combinations from the
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FIGURE 6 | Decoding model for scrambled and sequential patterns. (A) Distribution of recording sites ordered by encoding accuracy as shown in Figure 4 used by
the decoding model. (B) High encoding performance recording sites (red squares) are sorted based on their accuracy from the highest encoding performance to the
lowest, then assigned to groups of increasing sizes n (dashed circles), containing the n highest encoding performance sites. Then, a random subset of half the size
of the selected group of sites is used in every iteration of the decoding model. (C) illustrates how the decoding model works. To decode the type of narrative from
the measured projections, the encoding model for each recording site in the studied group was used to generate “predicted patterns” (right) corresponding to each
of the two types of experimental conditions. The set of measured projections from a subset of 10 recording sites from both Scr (red) and Seq (blue) is compared to
the predicted projections for each stimulus from the same sites. Each of the two predicted patterns was then correlated with the measured pattern. If the predicted
pattern corresponding to the correct stimulus type had the highest correlation with the measured pattern, decoding is considered successful for that single trial.
(D) Decoding accuracy of Scr vs. Seq conditions using broadband spectral pattern of various sizes and subsets of sites. The accuracy (mean ± SEM) for varying
size of groups of sites is shown. The dashed black line represents random chance (50%). (E) Distribution of sites with the highest decoding accuracy across brain
regions.
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top 140 encoding sites (see section “Materials and Methods”)
and were predominantly located in the temporal (40%) and
frontal (39%) regions like the pattern observed in the encoding
model (Figure 6E). As a result, this finding suggests that
information about the visual narrative can be accurately decoded
by the broadband spectral features, largely from these two brain
regions (Figure 6D).

Visual Narrative Stimuli Modulate
Temporal-Parietal-Insular-Frontal
Connectivity
Granger causality as described in (Granger, 1969; Geweke, 1982
#20) was employed to examine if interregional connectivity
between all studied brain regions changes in response to
Seq and Scr experimental conditions. A source-sink couplet
between each site was identified as described in the section
“Materials and Methods”, and the number of source-sink
couplets between different regions is shown in Figures 7A,B.
When comparing Seq vs. Scr, we observed a significantly
higher proportion of source-sink couplets within the frontal
lobe, and also in the couplets connecting temporal to frontal,
temporal to insular, and temporal to parietal cortices in the
listed direction. A significantly lower proportion of source-sink
couplets connecting parietal to temporal cortices was found
(Figure 7C). These findings along with those of Figures 4, 5
indicate that a sequential visual narrative involves increased
temporal input to the frontal, insular and parietal cortices
leading to suppression of a broadband spectral response in
the frontal lobe.

To further determine if differences in the number of source-
sink couplets between Seq vs. Scr (Figure 7D) is also associated
with modulation in connectivity coefficient, we examined the
distribution of connectivity coefficient for each source-sink
regional couplets (Supplementary Figure 6). For all couplets
that showed significant increase or decrease in the number
of connectivity pairs between Seq and Scr, we observed an
overall respective increase or decrease in the number of pairs
without a change in average connectivity coefficients. For each
pair showing significant difference between Seq and Scr, we
compared the amount of connectivity in Seq and Scr to the
connectivity during ISI of the corresponding conditions and for
all pairs the connectivity during Seq and Scr were significantly
higher than ISI.

Lateralization in the Connectivity
Modulation
Interregional connectivity between cortical areas was found to be
differentially modulated during Seq and Scr conditions. There
is significantly higher connectivity between the left temporal
and the left frontal lobe during Seq image viewing compared
to Scr conditions (Fisher’s exact test P < 0.001). In contrast,
viewing Scr images resulted in increased connectivity between the
right parietal and right temporal lobes compared to Seq testing
conditions (Fisher’s exact test P = 0.0083). Lateralization was
absent for the other brain regions.

DISCUSSION

Broadband Spectral Power Has High
Prediction Value for Deciphering Seq and
Scr Conditions
Decoding of Seq and Scr patterns using broadband spectral
pattern was achieved with increased accuracy in sites with
highest encoding value from the temporal, frontal, parietal,
and insular cortices. Temporal, frontal, and parietal lobes were
previously shown to exhibit different responses to Seq vs. Scr
equivalent conditions in the time domain (Cohn, 2014; Cohn
and Kutas, 2017; Isik et al., 2018). Our results show that the
broadband component in the spectral domain contains the
requisite information to accurately decode what type of image
patterns are being observed. While an encoding-decoding model
approach does not precisely reveal how the brain processes
visual narrative information, the high-performance based on
broadband spectral features alone suggests that broadband
activity is highly informative about image sequence type and
perhaps the underlying cognitive process as well.

Encoding of Visual Sequence Is Mainly
Explained by a Broadband Modulation of
Spectral Power
Cognitive processing of visual narrative provides insight into how
the brain interprets the continuous barrage of visual information,
and other types of sensory information, encountered moment to
moment. Comprehension of visual narrative is highly dependent
on the structural and semantic coherence between images (Cohn
et al., 2012). The greater the semantic discontinuity between
images, the harder it is to make connections between them
(i.e., bridging inference; Saraceni, 2000, 2001; Magliano et al.,
2016). In the cognition of visual narrative stimuli, the perception
of the continuity across scenes may rely on a “the continuity
constraint” as proposed by Cohn (Cohn, 2020c); where the
link is made for the representation of objects in each frame to
refer to the same thing (e.g., the picture of a rabbit in each
frame is commonly recognized as Bugs Bunny across all the
frames). This is similar to the concept of “mapping” proposed by
Loschky et al. (2020) that links upcoming frames to the preceding
ones. Accordingly, a viewer maps incoming information in
working memory if the flow of information is coherent, and
builds upon this foundation. Mapping requires the monitoring
of factors affecting the continuity of events such as time, space,
and causality. On the other hand, in scrambled conditions, this
continuity is interrupted between the adjacent frames and the
characters and scenes are continuously changing between them.
This creates a perception that they are contextually novel despite
familiarity with the content of the images themselves.

Our present study further clarifies how distinct brain areas
participate in this cognitive process using sequential and
scrambled visual sequences. We first demonstrate that variation
in broadband spectral power can distinguish between Scr and Seq
conditions. Broadband encoding in the human brain has been
previously implicated in encoding different sensory modalities

Frontiers in Human Neuroscience | www.frontiersin.org 12 October 2022 | Volume 16 | Article 886938

https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/human-neuroscience#articles


fnhum-16-886938 October 1, 2022 Time: 17:0 # 13

Sabra et al. Visual Narrative in the Human Brain

FIGURE 7 | Connectivity between brain regions in response to sequential and scrambled patterns. For each combination of possible pairs of recording sites per
subject, granger causality was applied to calculate the connectivity between the studied pairs along the first 100–500 ms after the onset of the images
corresponding to sequential and scrambled patterns independently (see section “Materials and Methods”). (A, B) Heatmap of the number of pairs with high
connectivity between sources (each row represents one source brain region), and sinks (each column represents one sink brain region) for scrambled (A), and
sequential (B) patterns. Chi-Square test for comparing the distribution of high connectivity regions between Scr vs. Seq shows a significant difference in the
distribution. Pearson’s Chi-Square: 193.1, P < 0.001. (C) Heatmap of p-values after applying the Chi-Square test to determine which source-sink brain regions
exhibit significant differences in the number of connections between sequential and scrambled patterns. In pink are the source-sink cells that has Seq < Scr
whereas in blue are source-sink cells with Seq > Scr for P < 0.05. The nonsignificant differences are colored black. (D) Re-demonstration of findings from (C)
showing that sequential patterns has a significantly higher percentage of connectivity pairs compared to scrambled patterns when the (source, sink) combinations
are: (Frontal, Frontal), (Temporal, Frontal), (Temporal, Insula), (Temporal, Parietal), and scrambled patterns has a higher percentage of connectivity pairs compared to
sequential patterns when the (source, sink) combination is (Parietal, Temporal). Chi-Square test. P-value adjusted for multiple comparisons based on adjusted
residuals: *P < 0.05, **P < 0.01. See also Supplementary Figure 6.

and is thought to reflect the local de-synchronous neural response
of underlying neuronal circuitry to varying stimulus conditions
(Manning et al., 2009; Hermes et al., 2015). Sites encoding
sequential and scrambled conditions represented 3% of the

studied sites, but were preferentially spanning the frontal and
temporal lobes. The distribution and percentage of the encoding
sites are consistent with what was previously reported when using
a comparable design (Isik et al., 2018).
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Saccadic effect was previously reported to be executed at the
level of the cortex by the frontal eye field and supplementary eye
filed regions of the prefrontal cortex (Petit et al., 1995; Lobel et al.,
2001; Lachaux et al., 2006), and are believed to drive broadband
spectral effect in the anterior temporal lobe (Katz et al., 2020),
and in early visual areas including V1 and V2 (Kern et al., 2021).
In our study, these brain regions were largely not recorded from.
Thus they were not primary to our analysis and did not contribute
much to the PCA.

Regional Specialization of Responses to
Seq and Scr Images
A closer look at the Seq and Scr responses in the frontal and
temporal lobes revealed regional specialization of responses. The
sites in the frontal lobe responded with increase in broadband
power in response to novel or unexpected (Scr) scenes and
decrease in power in response to expected (Seq) images within a
coherent narrative. The temporal lobe sites, however, responded
with broadband power increase to expected chronological flow
of Seq images and decrease in power to the unexpected sequence
of Scr scenes. These contrasting frontal and temporal responses
reinforce our current understanding of their distinct roles in
detecting novel events vs encoding episodic memory, respectively
(Ranganath and Rainer, 2003; Petrides, 2007; Schomaker et al.,
2020).

Our findings show that sites within the temporal lobe
exhibit broadband spectral power increase while encoding Seq
experimental conditions where panel-panel transitions have
high semantic and structural coherence. The engagement of
the temporal lobe, and more specifically the ventral temporal
pathway, in the encoding of Seq images is consistent with
its specialized role in object recognition (Penfield and Perot,
1963; Goodale and Milner, 1992; Allison et al., 1999; Kreiman
et al., 2000; Joseph, 2001) and encoding episodic memories that

involves recognition of seen objects and integration of sequential
events (Ranganath and D’Esposito, 2005; Sederberg et al., 2007).
Novelty detection is a cognitive process that involves temporal
sensory integration that assesses the expectedness of a stimuli
in the perceived setting. In other words, it is the brain’s derived
likelihood of perceiving a stimulus given the preceding flow of
events (Berns et al., 1997) to determine if a stimulus is either
salient, new, and/or unexpected.

Novel visual stimuli processing has been reported in the
orbitofrontal cortex of macaque where neurons responded to
novel never seen before visual images but not to familiar images
(Rolls et al., 2005). In humans with frontal lobe injuries (Daffner
et al., 2000), EEG response to novel stimuli in the frontal
lobe at the level of P3 was reduced and attributed to the
disruption of directed attention to novel objects after frontal
lobe damage. Our results confirmed the same effect in frontal
intracranial electrodes where broadband response to scrambled
images was higher than that observed for sequential images.
Furthermore, we investigated if an initially encountered image
produces a response similar to that of a random image in
the frontal lobe, as they are both equally surprising, and both
represent the phase of “laying the foundation,” where the first
node is built as a basis for the expectations regarding the
upcoming events (the spatiotemporal framework and context
of events; Cohn, 2020c; Loschky et al., 2020). Our results
confirm the response to scrambled presentation of images and
that to the first image of a sequential pattern is no different.
Our results are analogous to those reported by Cohn et al.
(2012) regarding the similarity of the response to the first
images in sequential and scrambled conditions using ERP for
N400 collapsed across the frontal, central frontal, and central
temporal electrodes.

Together, our findings suggest that the cognition of
visual narrative may involve both novelty and temporal
processing via an intricate network of frontal-temporal signaling

FIGURE 8 | Comparison of brain connectivity dynamics between Seq and Scr stimulus. Based on the connectivity results presented in Figure 7, the directionality of
the connectivity between brain regions is affected by the type of stimulus presented. Blue arrows represent the connectivity with significantly higher number of
connections between source and sink during Seq, whereas the pink arrow represents the connectivity with significantly higher number of connections between
source and sink during Scr. Connectivity from the temporal lobe to destinations: insular, parietal, and frontal lobes is higher during Seq vs. Scr (blue arrows). The
parietal lobe has higher connectivity to the temporal lobe during Scr vs. Seq (pink arrow).
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(Tiitinen et al., 1994; Petrides, 2007; Cohn, 2014; Miller et al.,
2015; Schomaker et al., 2020).

Alteration of Interregional Connectivity in
Response to Image Sequences
A further look at the dynamics of interregional connectivity
(Figure 8) revealed that during sequential presentation of
images, the temporal lobe leads the flow of information of
the frontal, insular, and parietal lobes. However, during the
presentation of scrambled images, the parietal lobe response
leads that of the temporal lobe. These results show that
in addition to the regional specialization in the neural
response to the type of visual patterns, there are also
temporal alterations to interregional connectivity according
to the narrative coherence between visual images. As such,
the network dynamics of visual coherence processing both
within and across brain regions changes with respect to
the sequence type.

Our method of assessing connectivity was based on studying
how much two recording sites are temporally related; the ability
to predict a time domain response to a stimulus of a site
(sink) based on a precedent response observed in another site
(source). This connectivity metric calculated using GC evaluates
the directionality of the flow of information between two brain
regions at the network level but it doesn’t clarify if the dynamic
of neuronal activity is driven by excitatory or inhibitory neurons.

Pertinence of Narrative Processing in
Non-visual Sensory Modalities
The study of visual narratives is an important emerging field in
cognitive neuroscience (Cohn, 2020c) as the underlying semantic
processing network may support semantic processing across
multiple sensory modalities (Kutas and Federmeier, 2000; Ralph
et al., 2017; Manfredi et al., 2018; Cohn, 2020a). On surface EEG,
an anterior “N400” engagement ERPs response is a characteristic
feature during processing scrambled sequence of static (Cohn,
2014; Cohn et al., 2014; Cohn and Kutas, 2017) and dynamic
visual scenes (Sitnikova et al., 2008). Interestingly, the N400 effect
is comparable with findings during language comprehension
paradigms when comparing brain response of unrelated/related
consecutive words (Bentin et al., 1985), incongruent/congruent
sentences and true/false sentences (Kutas and Hillyard, 1980).
Thus, the N400 response seems to be modality-independent and
closely associated with semantic processing. In this work, we
add a new dimension to our understanding of the cognitive
processing of visual narrative by demonstrating the underlying
broadband nature of sensory signal processing that involves
temporally distinct temporo-frontal connectivity. These findings
provide the needed evidence from in-vivo intracranial human
data that will guide single-neuron recording studies to further
clarify the cellular mechanism subserving visual narrative
processing. Future testing with different sensory modalities
may further elucidate the potentially shared mechanisms across
sensory modalities. Moreover, future analysis could investigate
study if narrative processing mechanisms are affected in certain

brain conditions including dementia, autism spectrum disorder,
ADHD, and schizophrenia (Coderre, 2020; Cohn, 2020b).

Lateralization of Interregional
Connectivity
The left-hemispheric lateralization in the modulation of fronto-
temporal connectivity during Seq vs. Scr conditions is analogous
to the reported EEG lateralization of the response to scrambled
sequences (Cohn et al., 2012), and to the fronto-temporal left
lateralization of the connected speech (Neville et al., 1991;
Tyler and Marslen-Wilson, 2008; Peelle, 2012). This result
further supports the argument that narrative processing in the
brain could be modality independent. The right-hemispheric
lateralization of the increase in parieto-temporal connectivity
during Scr vs. Seq image presentations is in agreement with the
involvement of the right parietal in spatio-visual perception of
objects (Goodale and Milner, 1992). To our knowledge this is
the first intracranial study that demonstrates lateralization in the
processing of visual narrative in the human brain.

Potential Confounding Factors
A potential confounding factor is that images as part of a visual
narrative have higher spatial coherence (Malcolm et al., 2016)
and may contribute to the differing brain responses between Seq
and Scr conditions. Spatial coherence is an important feature
in narrative congruency. Yet, when images are presented in
the narrative’s chronological order, they exhibit abrupt content
changes including location, clothing, and characters while
preserving the semantic and structural coherence.

Moreover, it could be argued that the observed difference
between Scr and Seq responses could be the result of reduced
attention or cognitive disengagement when images are presented
in Scr order. To address this issue, we compared the responses
during ISIs (i.e., first 4 s of gray screen presentation) during Scr
and Seq conditions at different time windows. Responses during
ISI during Scr and Seq testing conditions were not significantly
different for 99% of the sites. Furthermore, the handful sites
that had significantly different Scr vs. Seq ISIs were not among
the encoding sites.

Another factor that may explain the difference in response
between Scr and Seq stimuli is the common characters across
sequential as compared to scrambled image patterns containing
different characters. Although the same argument for spatial
coherence factor can be applied here, we want to emphasize an
additional point; our encoding model uses the average of the
broadband response to Seq vs. Scr conditions to calculate the
encoding accuracy of a site, which levels out the effect attributed
to the difference between image components and focuses
the analysis on the differences attributed to the articulation
between the images.

Finally, it could be argued that the observed responses are a
product of the luminance and chromatic differences (i.e., colors
and brightness) between image panels. Our experiment doesn’t
eliminate the possible integration of these parameters and others
during the processing of visual narrative. However, the analyzed
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recording sites are mainly distributed across brain regions in
high cognitive areas and not in primary visual areas that encode
luminance and chrominance.

Brain Network Spectral Analysis
Limitations
In this study, we chose to focus on spectral analysis to identify key
differences in brain regional responses when viewing sequential
or scrambled images. We selected our time window according
to previously reported time-to-peak responses to visual stimuli,
which on average is within 200–400 ms range post image onset
(Rolls et al., 2005; Kishiyama et al., 2009; Kumaran and Maguire,
2009; Axmacher et al., 2010; Davachi and DuBrow, 2015; Isik
et al., 2018; Miller et al., 2015). While time domain analysis,
including time-to-peak investigations at the brain network level
can be a powerful technique (Kucyi et al., 2020), we opted
to forgo such analysis in this study due to variation in the
implanted location and number of electrodes in each subject and
across subjects.

The use of a common average reference over a small number
of electrodes is unlikely to be fully inert. However, we have
previously shown that similar analysis using a common average
reference was not affected by the small number of electrodes,
even with individual PCA analysis carried out for each subject
separately (Sabra et al., 2020). Common average referencing is
not infrequently employed in sEEG studies (Kubánek et al., 2009;
Gaona et al., 2011; Schalk et al., 2017) although we do recognize
that other sEEG reference schemes exists, albeit with limited
evidence as to how one should select among them (Li et al., 2018).
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