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Abstract

In eukaryotes, the nuclear ribosomal DNA (rDNA) is the source of the structural 18S, 5.8S and 25S rRNAs. In
hemiascomycetous yeasts, the 25S rDNA sequence was described to lodge an antisense open reading frame (ORF) named
TAR1 for Transcript Antisense to Ribosomal RNA. Here, we present the first immuno-detection and sub-cellular localization
of the authentic product of this atypical yeast gene. Using specific antibodies against the predicted amino-acid sequence of
the Saccharomyces cerevisiae TAR1 product, we detected the endogenous Tar1p polypeptides in S. cerevisiae (Sc) and
Kluyveromyces lactis (Kl) species and found that both proteins localize to mitochondria. Protease and carbonate treatments
of purified mitochondria further revealed that endogenous Sc Tar1p protein sub-localizes in the inner membrane in a Nin-
Cout topology. Plasmid-versions of 59 end or 39 end truncated TAR1 ORF were used to demonstrate that neither the N-
terminus nor the C-terminus of Sc Tar1p were required for its localization. Also, Tar1p is a presequence-less protein.
Endogenous Sc Tar1p was found to be a low abundant protein, which is expressed in fermentable and non-fermentable
growth conditions. Endogenous Sc TAR1 transcripts were also found low abundant and consistently 59 flanking regions of
TAR1 ORF exhibit modest promoter activity when assayed in a luciferase-reporter system. Using rapid amplification of cDNA
ends (RACE) PCR, we also determined that endogenous Sc TAR1 transcripts possess heterogeneous 59 and 39 ends probably
reflecting the complex expression of a gene embedded in actively transcribed rDNA sequence. Altogether, our results
definitively ascertain that the antisense yeast gene TAR1 constitutes a functional transcription unit within the nuclear rDNA
repeats.
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Introduction

In Saccharomyces cerevisiae the ribosomal DNA (rDNA) locus is

unique, located on chromosome XII and composed of 150 to 200

units repeated in tandem [1]. Each unit contains the 18S, 5.8S and

25S rRNA genes transcribed by RNA polymerase I (Pol I) as a

unique 35S pre-rRNA and the 5S rRNA gene transcribed by

RNA polymerase III (Pol III) (see Figure 1A). Whereas rDNA is

highly transcribed by Pol I and III [2], Pol II-transcribed genes

integrated into the rDNA units are silenced [3] [4] (and references

therein). Despite the rDNA silencing of Pol II genes, chromatin

immunoprecipitation (ChIP) analyses have revealed sites of yeast

Pol II occupancy in the rDNA [5]. Additionally, coding-sequences

nested in the rDNA have been trapped in an approach based on

transposon tagging with a lacZ reporter that lacks both promoter

sequences and an initiator ATG codon [6]. Insertions that

produced protein fusions to b-galactosidase were thus identified

in three small open reading frames (ORF) antisense to the rDNA.

They were named ART1 (hereafter TAR1), ART2 and ART3 [6].

Whereas TAR1 (Transcript Antisense to Ribosomal RNA) and

ART2 are on the opposite strand of the 25S rDNA, ART3 stands

opposite to the 5.8S rDNA (Figure 1A). In S. cerevisiae, the TAR1

ORF is 375 base pairs (bp) long and possesses a codon adaptation

index (CAI) of 0.169 that is indicative of a sequence likely to be

expressed [7]. All of the insertions of lacZ in the TAR1 sequence

were indeed reported to yield b-galactosidase activity [8]. In

comparison, the ART2 and ART3 ORF are shorter (186 bp and

204 bp, respectively), possess a lower CAI index (0.086 and 0.105,

respectively) and detailed expression of the ART2-lacZ and ART3-

lacZ in frame-fusions was not reported.

In a genetic approach aimed to select for yeast factors

interfering with mitochondrial import, we had isolated portions

of a nuclear rDNA unit that included the TAR1 and ART3 ORF

[9] (and unpublished data). Nevertheless, neither TAR1 nor ART3

were found involved in the improvement of the respiratory growth

we observed in our strains (unpublished data). Selection of nuclear

rDNA fragments acting as genetic suppressors was independently

described in a screen that used a mutant of the Rpo41p

mitochondrial RNA polymerase [8]. In this case, while a moderate

expression of TAR1 ORF was found to rescue the respiration-

deficient phenotype of the rpo41 mutant [8], a high expression

exacerbated the defects of the mutant [10]. Genetic interaction

between the rDNA-nested TAR1 ORF and the RPO41 gene is thus

unclear as is the selection of nuclear rDNA portions in genetic
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screens based on the rescue of respiration-deficient phenotypes in

yeast. Two decades ago, other links associating the respiratory-

function of mitochondria and the nuclear rDNA locus had been

reported. A differential expression of transcripts derived from the

rDNA locus had thus been observed between respiratory

competent and respiratory deficient yeast cells [11] [12]. In

addition, it was found that respiratory deficient cells could show a

tendency to trigger the polymerase switch from RNA Pol I to RNA

Pol II in the synthesis of the rRNA [13]. So, amazing connections

between yeast mitochondria and the nuclear rDNA locus exist but

they stay poorly characterized and little studied.

In the present work, we establish for the first time that the

rDNA-nested TAR1 ORF of the yeasts S. cerevisiae (Sc) and

Kluyveromyces lactis (Kl) codes for an authentic endogenous protein,

which is specifically immuno-detected in the mitochondria of both

species. Using a combination of biochemical and molecular

approaches, we found that Tar1p is a presequence-less protein,

which is anchored in the inner membrane by one transmembrane

domain. Considering Tar1p amino-acid sequence, we propose

that mitochondrial localization uses an internal amphipathic a-

helix. We found that endogenous Sc Tar1p was similarly

detectable in glucose and galactose medium while being less

detectable under respiratory conditions. Finally, we present data

underlining the complex transcriptional expression of the TAR1

gene and discuss about the cis- and trans-elements that could

regulate the expression of this atypical gene.

Results

In S. cerevisiae and K. lactis, the rDNA-nested TAR1 gene
codes for an authentic protein located in mitochondria

In S. cerevisiae, TAR1 is predicted to encode a polypeptide of 124

amino acids (aas, Figure 1B). We obtained polyclonal antibodies

raised against two C-terminal peptides of the Sc Tar1p amino-acid

sequence that were predicted to be antigenic: TKNRTP-

RHTGFSPS (residues 79 to 92, residue 1 being the first

methionine of TAR1 ORF; Figure 1B) and CSKEHRQG-

TAPKLPS (residues 96 to 110). Antibodies affinity purified against

the peptide TKNRTPRHTGFSPS (hereafter anti-Tar1p anti-

body) gave rise to a better immuno-detection and were used for

the western blot analyses showed in this study.

To assess the specificity of the anti-Tar1p antibody, we first used

it to detect a version of Sc Tar1p tagged with 3 copies of the

haemagglutinin (HA) epitope at the amino-terminal end (3HA-

Tar1p) and expressed from a plasmid in the wild-type background

W303 (Figure 2A). The 3HA-Tar1p polypeptide consists of three

copies of the HA epitope fused to TAR1 ORF and has a predicted

size of 19.7 kD. Considering that Sc TAR1 ORF tagged at the 39

end was reported to be located in mitochondria [8], we assayed

3HA-Tar1p immuno-detection in whole cell extract, postmito-

chondrial supernatant and purified mitochondria prepared from

the 3HA-Tar1p containing strain. One immunoreactive species

with an apparent molecular weight of 25 kD was detectable in

Figure 1. TAR1 nested antisense gene and Tar1p protein sequence. (A) Diagram of one S. cerevisiae rDNA repeat unit showing the
polymerase I (Pol I) transcript (processed into mature 18S, 5.8S, and 25S rRNA), the polymerase III (Pol III) transcribed gene 5S, and the polymerase II
(Pol II) transcribed genes TAR1 (375 bp), ART2 (186 bp) and ART3 (204 bp). Position of the Pol II genes within the rDNA sequence is represented by
black boxes. Each arrow indicates the direction of transcription. (B) Protein sequence alignment of Tar1p from S. cerevisiae (Sc), Saccharomyces
paradoxus (Spa), Kluyveromyces lactis (Kl) and Ashbya gossypii (Ag) species. Numbering refers to the entire predicted product of corresponding TAR1
genes. Star indicates identity and dots similarity. Black lines indicate the C-terminal peptides of Sc Tar1p chosen for polyclonal antibodies production.
Dotted line indicates the putative transmembrane domain (TM). (C) Hydropathy plot of Sc Tar1p [40]. The putative TM is indicated.
doi:10.1371/journal.pone.0016325.g001
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whole cell extract (Figure 2A, lane 5) and an additional band of

21 kD was detected in purified mitochondria, suggesting that the

3HA-Tar1p polypeptide undergoes a proteolytic cleavage

(Figure 2A, lane 7). In comparison, no bands were recognized

by the anti-Tar1p antibody in the postmitochondrial supernatant

(Figure 2A, lane 6) or in the whole cell lysate and postmitochon-

drial supernatant from strain W303 carrying an empty plasmid

(Figure 2A, lanes 1–2). Meanwhile, probing with an anti-HA

antibody revealed the same immunoreactive species as those

detected with the anti-Tar1p antibody (Figure 3B and data not

shown). All together, these results established the specificity of our

anti-Tar1p antibody.

Then, detection of the endogenous Sc Tar1p was assayed in

whole cell lysates and purified mitochondria from strain W303.

Whereas we did not detect the endogenous protein in total cell

extracts (Figure 2A, lane 1), we did detect Sc Tar1p in purified

mitochondria (Figure 2A, lane 4). The anti-Tar1p antibody

recognizes one mitochondrial immunoreactive species with an

apparent molecular weight of 12 kD that is compatible with the

expected size of endogenous Tar1p (14.3 kD). Importantly, the

immuno-detection required that at least 100 mg of purified

mitochondria were loaded on the gel (Figure 2A, lanes 3–4) and

the signal was found strongly reduced when mitochondrial extracts

were heated before loading (Figure 2B, compare lanes 3–4 to 1–2).

Figure 2. Endogenous Tar1p from S. cerevisiae (Sc) and K. lactis
(Kl) species co-fractionate with mitochondria. Yeast cells were
grown in galactose containing medium, disrupted to yield total cell
extracts (T), and fractionated into mitochondrial pellets (M) and
postmitochondrial supernatants (PM). Extracts were resolved on SDS-
polyacrylamide gel electrophoresis and subjected to immunoblotting.
Markers for the different subcellular fractions were Sup45p for cytosol,
Cox2p and Abf2p for mitochondria. Sc Tar1p, Kl Tar1p and 3HA-Tar1p
were detected using a specific anti-Tar1p antibody. (A) Subcellular
localization of endogenous Tar1p and tagged 3HA-Tar1p in S. cerevisiae
W303 strain. The 3HA-Tar1p is expressed from a high copy vector.
Mitochondria samples (M20, 20 mg or M100, 100 mg), T samples (5 mg)
and PM samples (20 mg) were not heated before loading. Endogenous
Sc Tar1p is hardly detectable in 20 mg of mitochondrial extract. (B)
Immuno-detection of Sc Tar1p is sensitive to heating. As indicated,
mitochondria samples (M100, 100 mg or M200, 200 mg) extracted from
W303 strain, were or not heated before loading. (C) Mitochondria from
K. lactis contain a Tar1p-like protein. Mitochondria from K. lactis were
purified following the protocol used for S. cerevisiae. Mitochondria from
S. pombe (Sp) were obtained from N. Bonnefoy. Mitochondria samples
(Sc 100 mg, Kl 20 mg and Sp 100 mg) were not heated before loading
excepted when indicated. The protein Cox2p was detected with Sc or
Sp anti-Cox2p antibody as indicated. Asterisks indicate the position of
non-specific signals or putative oligomeric forms of Sc and Kl Tar1p
polypeptides (see also Figure 3).
doi:10.1371/journal.pone.0016325.g002

Figure 3. Endogenous Tar1p and tagged 3HA-Tar1p are
associated with the mitochondrial inner membranes. (A, C)
Mitochondria purified from W303 strain or (B, D) from W303 strain
expressing tagged 3HA-Tar1p were (A, B) treated with proteinase K
(Prot K) or (C, D) extracted with carbonate sodium (Na2CO3). Proteins
were analyzed by immunoblotting with anti-cytochrome b2 as an
intermembrane space protein marker (Cytb2p), anti-porin as an integral
outer membrane marker (Porin), anti-Cox2p as an integral inner
membrane marker (Cox2p) and anti-Abf2p as a matrix marker (Abf2p).
Unless indicated, Tar1p and 3HA-Tar1p were detected with the anti-
Tar1p antibody. (A) Mitochondria (100 mg) were treated with increased
amount of proteinase K: 0.5, 1, and 4 mg (lanes 2–4). Lane 1: no
treatment (-). (B) Mitochondria (20 mg) were treated with increased
amount of proteinase K: 0.5, 1, and 4 mg (lanes 2–4). Lane 1: no
treatment (-), lane 5: proteinase K (4 mg) treatment in the presence of
1% Triton (Detergent, +). (C, D) Mitochondria (M300, 300 mg, lane 1)
were incubated with Na2CO3 and separated into soluble supernatant (S,
lane 2) and membrane pellet (P, lane 3) fractions by centrifugation.
Porin was used as an integral membrane marker and Cytb2p as a
soluble protein.
doi:10.1371/journal.pone.0016325.g003

Nested Antisense Genes in Yeasts

PLoS ONE | www.plosone.org 3 January 2011 | Volume 6 | Issue 1 | e16325



Such thermo-labile property was not observed for the mitochon-

drial matrix marker Abf2p (Figure 2B) or for the mitochondrial

inner membrane marker Cox2p (Figure 2A). Bonawitz and

colleagues have previously reported that endogenous Sc Tar1p

was neither detectable in whole cell extracts nor in purified

mitochondria [10]. Since we have unambiguously detected Tar1p

in mitochondria, we suspect that the authors used either heated

samples, too low amount of purified mitochondria or had low

quality antibodies.

The presence of TAR1-like ORF nested antisense the rDNA was

shown conserved in several hemiascomycetous yeasts [8] with the

length of the predicted Tar1p-like proteins varying from 64 to 124

residues (see examples in Figure 1B). The predicted Tar1p-like

protein of the yeast K. lactis is 109 aas in length, it shares 78.2%

sequence identity with Sc Tar1p and sequence of the antigenic

peptide TKNRTPRHTGFSPS is well conserved (Figure 1B). We

thus asked whether an endogenous Kl Tar1p polypeptide could be

detected using S. cerevisiae anti-Tar1p antibody. Mitochondria from

K. lactis wild type strain CBS2359 were isolated following the

protocol used for S. cerevisiae (see Materials and Methods). Three

immunoreactive bands were detected in K. lactis purified

mitochondria, the major one having the higher mobility and the

same apparent molecular weight (12 kD) as Sc Tar1p endogenous

protein (Figure 2C, lanes 1–2). The two bands of slower mobility

had apparent molecular weights of 45 kD and 29 kD. A similar

29 kD immnunoreactive signal can be detected in S. cerevisiae

mitochondrial extracts (Figure 2C, lane 1; see also Figure 2B). As

observed for Sc Tar1p, the Kl Tar1p immunoreactive signals

appeared thermo-labile (Figure 2C, compare lanes 2 and 3). This

heating-sensitivity was not observed for K. lactis Cox2p detected on

the same western blot using S. cerevisiae anti-Cox2p antibody. In

contrast to Sc Tar1p, Kl Tar1p can be detected in 20 mg of purified

mitochondria suggesting that the endogenous K. lactis polypeptide

is more stable or more expressed than the S. cerevisiae protein. The

29 kD and 45 kD detected bands have molecular mass that could

correspond to oligomeric forms of the Tar1p polypeptides but

these signals could as well being non-specific.

Next, we tested whether the mitochondria from the fission yeast

Schizosaccharomyces pombe could contain a Tar1p-like product

although we did not detect the presence of a TAR1-like ORF in

the rDNA units or in the whole genome of this organism. No

specific bands were recognized by S. cerevisiae anti-Tar1p antibody

in S. pombe purified mitochondria (Figure 2C, lane 4). Meanwhile,

the mitochondrial inner membrane marker Cox2p was efficiently

detected in these S. pombe mitochondrial extracts.

Thus, the product of the rDNA-nested antisense gene TAR1 can

be detected as an authentic mitochondrial polypeptide in two

hemiascomycetous species. Sc and Kl Tar1p endogenous polypep-

tides show the same apparent molecular weight although their

predicted lengths differ from fifteen residues. The first methionine

residue of the Kl protein-sequence corresponds to the second

methionine residue of Sc protein-sequence and both sequences

contain an additional proximal methionine residue (see Figure 1B).

This suggests that in S. cerevisiae the used initiator codon might be

the second (or third) in-frame ATG codon or alternatively, that the

N-terminal end of Sc Tar1p is cleaved (see below and Discussion).

The endogenous S. cerevisiae Tar1p is associated with
mitochondrial inner membranes

The detection of endogenous Tar1p prompted us to determine

its submitochondrial location in the yeast S. cerevisiae. We first

examined Tar1p sensitivity to digestion by exogenous proteinase

K added to purified mitochondria. This protease treatment

degraded the outer membrane marker protein porin and the

intermembrane space marker protein cytochrome b2 (Cyt b2)

indicating that the outer membrane of purified mitochondria was

a little damaged (Figure 3A). Nevertheless, the matrix marker

protein Abf2p was protected from digestion. In comparison to

porin and Cyt b2, endogenous Tar1p was more resistant to

protease treatment, a behavior similar to that of the inner

membrane marker protein Cox2p (Figure 3A).

We performed the same experiment to determine the protease

sensitivity of the tagged protein 3HA-Tar1p. In this case, the

western blot was successively probed with the anti-HA and the

anti-Tar1p antibodies. Tagged protein 3HA-Tar1p appeared

highly resistant to digestion by proteinase K when detected with

the anti-HA antibody, which recognizes the N-terminal 3HA

epitopes (Figure 3B). In comparison, probing with the anti-Tar1p

antibody, which recognizes a C-terminal epitope (residue 79 to 92;

Figure 1B), revealed a sensitivity of 3HA-Tar1p towards digestion

and a behavior similar to that of the endogenous Tar1p (Figure 3A

and 3B, lanes 2–4). For each probing condition (anti-HA and anti-

Tar1p), the 3HA-Tar1p bands of 25 kD and 21 kD showed the

same behavior towards the protease treatment. Detergent

solubilization of the membranes rendered 3HA-Tar1p entirely

sensitive to protease (Figure 3B, lane 5). The difference in resistant

profiles indicates that the N-terminal part of the tagged protein

3HA-Tar1p is protected from the protease digestion (as is the

matrix marker protein Abf2p) whereas the C-terminal end is

exposed.

Hydropathy analysis suggests that Tar1p contained one putative

membrane spanning-segment (residues 21 to 41; Figure 1B–C).

We thus tested endogenous Tar1p and tagged protein 3HA-Tar1p

for membrane association (Figure 3C–D). Purified mitochondria

were treated with sodium carbonate that disrupts all mitochondrial

membranes. Afterwards, soluble and membrane fractions were

separated by ultracentrifugation, subjected to SDS-electrophoresis

and probed with anti-Tar1p antibody. Endogenous Tar1p was

mainly recovered in the membrane fraction and to a less extent in

the soluble fraction, indicating that a large amount of the protein

could not be extracted from mitochondrial membranes

(Figure 3C). Also, endogenous Tar1p is mainly associated with

membranes. The 25 kD and 21 kD immunoreactive species of the

tagged protein 3HA-Tar1p could not be extracted from

mitochondrial membranes, indicating that they are also integral

membrane polypeptides (Figure 3D).

In summary, carbonate treatment shows that endogenous and

tagged proteins Tar1p are associated with mitochondrial mem-

branes. Protease treatment indicates that polypeptides reside in the

mitochondrial inner membranes most probably in a Nin-Cout

topology because the C-terminus of the endogenous and tagged

protein is exposed to protease digestion whereas the N-terminus of

the tagged protein is not. These results are fully consistent with the

physical interaction detected between Tar1p and the methyltrans-

ferase Coq5p [10], which is a mitochondrial matrix protein

peripherally associated with the inner membrane [14].

Neither the N-terminus nor the C-terminus of S. cerevisiae
Tar1p are critical for mitochondrial localization

Compared to the amino-acids sequence of S. cerevisiae Tar1p,

Tar1p-like sequences can be truncated at their N-terminal end,

their C-terminal end or both (see examples in Figure 1B). As

mentioned above, the amino-acids sequence of Kl Tar1p does not

possess the first fifteen residues of Sc Tar1p sequence, nevertheless

endogenous K. lactis protein does localize to mitochondria

(Figure 2C).

To address whether the first fifteen residues of Sc Tar1p

participated in the mitochondrial localization of the S. cerevisiae

Nested Antisense Genes in Yeasts

PLoS ONE | www.plosone.org 4 January 2011 | Volume 6 | Issue 1 | e16325



protein, we constructed two non-tagged plasmid-versions of TAR1

ORF: one encoding a 124 aas polypeptide that starts at the first

ATG codon (Tar1p-ATG1) and one encoding a 109 aas

polypeptide that starts at the second ATG codon (Tar1p-ATG2).

Both constructions were expressed under the control of the

promoter of the PGK1 gene on a high copy plasmid. We took

advantage of the non-detection of the endogenous Sc Tar1p

protein within low amounts of mitochondria to detect the plasmid-

derived polypeptides in 20 mg of mitochondrial extracts from

strain W303 expressing plasmids. Whereas unique immunoreac-

tive species of the expected size were detected in whole cell extracts

(Figure 4A, lanes 2–3), two bands were revealed in mitochondria

(Figure 4A, lanes 5–6) suggesting that plasmid-derived Tar1p-

ATG1 and Tar1p-ATG2 polypeptides underwent a proteolytic

cleavage. In both cases, the smaller immunoreactive species were

more abundant than full-length polypeptides and their apparent

molecular weights suggest they were about thirty residues shorter.

Since both Tar1p-ATG1 and Tar1p-ATG2 polypeptides similarly

localize to mitochondria, the N-terminal end (residues 1 to 15) of

Sc Tar1p was found dispensable for targeting.

As shown in Figure 4B and 4C, both Sc and Kl endogenous

Tar1p migrated at the same apparent molecular weight as the full-

length plasmid-derived Tar1p-ATG2 polypeptide (109 aas). While

expected for Kl Tar1p, this result indicates that mitochondrial Sc

Tar1p is probably also 109 aas long suggesting once again that the

initiator codon is the second in-frame ATG codon or that N-

terminal end of endogenous Tar1p is cleaved. The latter

hypothesis seems however less probable because the plasmid-

derived Tar1p-ATG1 polypeptide was not matured to a 109 aas

product but to a shorter one (Figure 3 B).

Next, we constructed a plasmid-version of the TAR1 ORF

encoding a polypeptide shortened of 32 residues at its C-terminal

end (Tar1pDC, 92 aas). The construction uses the first ATG codon

as initiator codon and ends immediately after the epitope

specifically recognized by the anti-Tar1p antibody (see

Figure 1B). The 39 end truncated ORF was expressed under the

control of PGK1 promoter on a high copy plasmid. The Tar1pDC

product fractionated with mitochondria as one immunoreactive

species, which had the same apparent molecular weight as the

unique signal detected in whole cell extract (Figure 4D, lanes 1 and

3). Also, in this case, a proteolyzed form was not detected in

purified mitochondria, indicating that the C-terminal truncated

polypeptide became resistant to cleavage. Finally, the Tar1pDC

protein was found completely resistant to extraction by carbonate

showing that it was strongly embedded in the mitochondrial

membranes (Figure 4E).

These results show that neither the N- nor the C-terminal ends

of Sc Tar1p are required for protein targeting to mitochondria.

Moreover, Tar1p truncated of its last 32 aas is still associated with

mitochondrial membranes. Altogether, it indicates that Tar1p is

generated without a presequence and its targeting might depend

on internal segment(s) (see Discussion). We noticed that with the

exception of the Tar1pDC construct, all plasmid-derived Tar1p

polypeptides (3HA-Tar1p, Tar1p-ATG1 and Tar1p-ATG2) gave

rise to a second immunoreactive species in mitochondrial extracts

that, in each case, had an apparent size shortened of about thirty

residues. In addition, immunoreactive species derived from the N-

terminal tagged 3HA-Tar1p can be revealed with anti-HA

antibody (Figure 2A and 3B). Thus, we suspect that a proteolytic

cleavage site exists within the last 32 residues of Sc Tar1p amino-

Figure 4. Sc Tar1p polypeptide truncated at its N-terminus or
C-terminus co-fractionates with mitochondria. (A) Total cell
extracts (T, 5 mg) and mitochondrial extracts (M20, 20 mg) from W303
strain expressing an empty plasmid (control) or plasmid-version of
Tar1p (Tar1p-ATG1, 124 aas) or of N-terminal truncated Tar1p (Tar1p-
ATG2, 109 aas). The amino-acids length of plasmid-derived polypep-
tides is indicated. The apparent molecular weight of smaller immuno-
reactive species detected in mitochondrial extracts is indicated. (B, C)
Compared electrophoretic mobility between endogenous Sc Tar1p,
endogenous Kl Tar1p and plasmid-derived Tar1p-ATG1 and Tar1p-ATG2
in mitochondrial extracts. Mitochondrial extracts are the same as in (A)
and from S. cerevisiae and K. lactis wild type strains (see Figure 2). (D)
Total cell extracts (T, 10 mg), postmitochondrial supernatant (PM, 10 mg)
and mitochondria (M10, 10 mg) from W303 strain expressing a plasmid-
derived C-terminal truncated Tar1p (Tar1pDC, 92 aas). Mitochondria
(M10, 10 mg) from W303 strain expressing Tar1p-ATG1 or Tar1p-ATG2
were loaded in parallel to compare the apparent molecular weight of
the different immnuoreactive species. Lane 3, the thin band detected
above the Tar1pDC signal may correspond to endogenous Sc Tar1p. (E)
Mitochondria (M300, 300 mg) from W303 strain expressing Tar1pDC
were incubated with Na2CO3 and separated into soluble supernatant (S)

and membrane pellet (P) fractions. The different Tar1p polypeptides
were revealed using the specific anti-Tar1p antibody.
doi:10.1371/journal.pone.0016325.g004

Nested Antisense Genes in Yeasts

PLoS ONE | www.plosone.org 5 January 2011 | Volume 6 | Issue 1 | e16325



acid sequence. However, such maturation event was not observed

for S. cerevisiae or K. lactis endogenous proteins.

TAR1 transcripts are low abundant and display extensive
59 and 39 heterogeneity

High frequency with which the short S. cerevisiae TAR1 ORF has

been identified in the gene-trapping approach, led to the proposal

that many, if not all TAR1 copies in the rDNA were transcribed

[6] [8]. This transposon-insertion approach has been carried out

into the genetic background Y800 and for strains grown in glucose

medium [6]. Using northern blot analyses, we hardly detected

TAR1 transcripts in mRNAs purified from wild-type strain W303

grown in glucose or galactose rich medium (data not shown). Also,

TAR1 transcripts might be rather weakly expressed or unstable

hence, the difficulty to detect endogenous Tar1p protein.

RT-PCR experiments were previously used to detect the

endogenous TAR1 mRNA in total RNA purified from strain

Y800 grown at stationary phase [10]. Here, we performed RT-

PCR on total RNA samples isolated from strain W303 grown to

mid-log phase in glucose or galactose rich medium. In parallel, we

also assayed detection of the transcripts of ART2 and ART3, the

two other ORF nested antisense the rDNA (Figure 1A). In both

fermentable growth conditions, a RT-PCR product of the

expected length was generated from TAR1 and ART2 mRNAs

whereas none was amplified from the ART3 transcript (Figure 5A

and data not shown). Equivalent results were obtained when

reverse transcription was carried out using a random or an oligo

dT primer and no PCR product was amplified in the absence of

RT.

Next, we used rapid amplification of cDNA ends (RACE) to

characterize the 59 and 39 ends of endogenous TAR1 transcript

(see Materials and Methods for details). Amplification products

were cloned and sequenced individually to map 59 and 39 cDNA

ends. Nucleotide sequences identified multiple 59 and 39 ends

indicative of alternate promoter and terminator uses (Figure 5B).

No fewer than twelve different 59 ends were identified, located 37–

657 bp upstream the first ATG codon of TAR1 ORF. The more

frequently identified 59 ends are 657 and 75 bp upstream the

TAR1 ORF but only the proximal one is very closed to a TATAA

element (273 bp; Figure 5B). Five different 39 ends were

identified, located 109–266 bp beyond TAR1 stop codon. The

major 39 end falls in an A-rich element located 266 bp beyond

TAR1 stop codon (Figure 5B).

In conclusion, endogenous TAR1 transcripts are present at low

level, which is in agreement with the non-detection of Tar1p in

crude cell extracts and the need for large amounts of purified

mitochondria to detect it. The substantial 59 and 39 heterogeneity

of TAR1 transcripts may result from the atypical genomic location

of the TAR1 gene within rDNA repeats (see Discussion).

TAR1 is expressed in fermentable and non-fermentable
growth conditions

We quantified the promoter activity of the TAR1 gene using a

low-copy plasmid-borne reporter system in which the expression of

the firefly luc gene was driven by either TAR1 59 flanking

sequences (286 bp to 1 kb; Figure 5B–C), the promoter of the

PGK1 gene (used as a positive control), or a 500 bp fragment of

18S rDNA (pAG1-s18S construct used as a negative control).

Luciferase activity was measured for W303 cells grown to mid-log

phase in fermentable (glucose, galactose; Figure 5D) or non-

fermentable (glycerol, lactate; Figure 5D–E) medium. During non-

fermentable and fermentable growth, PGK1 promoter gave rise to

activities 600 to 1400-fold higher than control constructs,

respectively (controls were empty vector pAG1 or pAG1-s18S

vector; see Figure 5C and data not shown). In comparison, tested

TAR1 59 flanking sequences showed a modest but significant (p-

values #0.024) promoter activity 3 to 7-fold higher than controls

when W303 strains used glucose or galactose as carbon sources

(Figure 5D). Equivalent TAR1 promoter activities were quantified

in glucose and galactose medium and in both cases shortening of

TAR1 59 flanking sequence to 286 bp (pAG1-286 bp construct)

significantly enhanced expression of the reporter luc gene when com-

pared to the pAG1-1 kb construct (Figure 5D; p-values = 0.008).

In contrast, when strains were grown in non-fermentable carbon

sources, shortening of TAR1 59 flanking sequences did not sig-

nificantly change luciferase activity (Figure 5D–E). It could suggest

that negative regulatory elements responsive to fermentable growth

conditions were present in distal position of the TAR1 59 flanking

region.

For all plasmid constructions, our reporter system gave rise to

luciferase activities of lesser magnitude when strains were grown in

non-fermentable (glycerol, lactate) compared to fermentable

medium (glucose, galactose; Figure 5 D–E). Luciferase expression

driven by the TAR1 59 flanking regions was however 7 to 14-fold

higher than controls indicating that their enhancer effect was more

important in respiratory than in non-respiratory growth. This is

consistent with the reported induced expression of a chromosomal

TAR1-lacZ fusion in glycerol versus glucose medium [10]. Using

western blot analyses, we found that the endogenous Tar1p

protein was however less detectable in growing condition that

requires respiration (lactate), than in glucose or galactose

(Figure 5F), Thus, whereas reporter systems [10] (and this work)

indicated an induction of TAR1 expression under respiratory

conditions, our western analyses did not show a correlated increase

in the amount of endogenous Tar1p. This apparent discrepancy

could be simply explained by the instability of endogenous Tar1p

in lactate medium or by a different turn over of the Tar1p,

luciferase (This work) and b-galactosidase [10] polypeptides.

Discussion

In the present work, we demonstrate for the first time that the

TAR1 gene nested antisense to the nuclear rDNA repeats, encodes

an authentic protein, which localizes to the mitochondria from S.

cerevisiae and K. lactis hemiascomycetous yeasts. Detailed localiza-

tion of S. cerevisiae Tar1p further indicates that Tar1p is associated

with the mitochondrial inner membrane.

Mitochondrial Sc and Kl Tar1p share the same apparent

molecular weight (12 kD) although Sc Tar1p is predicted to be

fifteen residues longer at its N-terminal end. It may suggest that

the N-terminal end of Sc Tar1p protein was cleaved off in

mitochondria. An alternative is that Sc Tar1p was generated by

initiation of translation at the second (or third) in-frame AUG

codon although according to the scanning model for translation,

the first AUG codon is ordinary preferred. We examined the

nucleotide context of the three in-frame AUG codons of Sc TAR1

ORF. In yeast, the preferred consensus sequence is 59-(A/Y)A(A/

U)A AUG UCU-39 with the A in position -3 being the most highly

conserved residue surrounding the AUG codon [15] [16]. Only

the second AUG codon of Sc TAR1 ORF has the appropriate A

residue in this position whereas the first and third AUG contain a

residue G or C at this site, respectively. In addition, the second

AUG is followed by the prevailing UCU serine codon whereas the

first and third AUG codons are followed by rare CGA and CCC

codons, respectively. Thus, the sequence context of the second

AUG is more favorable than the one of the first AUG, a situation

that might promote translation from the second start codon.

Nested Antisense Genes in Yeasts
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Figure 5. Characterization of the TAR1 transcripts - Expression of TAR1 in fermentable and non-fermentable conditions. (A) RT-PCR
analyses were performed on total RNA extracted from wild-type W303 strain grown in galactose medium. After DNase treatment (DNase I, +) and
reverse transcription (RT, +) with random hexamers (6-mers, +) or oligodT primer (dT primer, +), PCR was performed using gene-specific primers (as
indicated; Table S1). Samples without RT (-) were used as controls for DNA contamination. RT-PCR product’s length (600 bp) generated from the
transcript of the intron-containing gene EBF1 confirmed the absence of genomic contamination. Expecting sizes of RT-PCR products were TAR1:
258 bp, ART2: 156 bp, and ART3: 204 bp. (B) Schematic representation of TAR1 showing 59 and 39 ends mapped by 59 and 39 RACE. Size of arrows (59
ends) and of vertical lines (39 ends) is proportional to the number of amplification products identified at indicated positions: 237 (x1), -45 (x1), 275
(x6), 2123 (x1), 2130 (x1), 2146 (x1), 2178 (x3), 2241 (x2), 2355 (x2), 2415 (x1), 2440 (x1), and 2657 (x5) (59 ends); +109 (x3), +170 (x1), +181 (x2),
+198 (x1), and +266 (x12) (39 ends). Numbering refers to 21 as the first residue upstream the first ATG codon and to +1 as the first residue beyond the
TGA stop codon. Small black squares represent putative TATA elements (273 and 2144). ITS2: internal transcribed sequence 2 of Pol I transcript. Grey
box represents TAR1 ORF in the 25S rDNA. TAR1 59 flanking regions tested in (C) are indicated (pAG1-1 kb, pAG1-536 bp pAG1-429 bp, pAG1-286 bp).
(C) Schematic representation of the plasmid-borne reporter system used to test promoter activity of TAR1 59 flanking regions. The empty vector pAG1
and the pAG1-s18S construct were used as negative controls. pAG1-s18S contains a 500 bp region of 18S rDNA devoid of small ORFs. TerPGK1:
terminator of the PGK1 gene; luc: Firefly luciferase gene; EcoICR1: cloning site. (D–E) Histograms showing luciferase activities from indicated construct
and indicated growth condition. The values (in relative light units per milligram of total protein per second) are averages of five independent assays.
Error bars are indicated. Note the different scales of the two histograms. (F) Expression of endogenous Tar1p in fermentable or non-fermentable
carbon sources. Mitochondria (M100, 100 mg) were purified from W303 strain grown in glucose (YPD), galactose (YPGal) or lactate (YPLac) rich
medium. Tar1p and the matrix marker Abf2p were detected with the anti-Tar1p and anti-Abf2p antibodies, respectively. Five mg of total cell extract
(T) from W303 strain expressing plasmid-borne Tar1p-ATG1 (124 aas) were loaded in parallel.
doi:10.1371/journal.pone.0016325.g005
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Since endogenous Sc Tar1p protein could not be detected in

whole cell extract, we cannot settle between these two hypotheses

(cleavage of the N-terminal extension or translation initiation). We

can however exclude that the Sc N-terminal extension (if present)

acts as a mitochondrial targeting sequence since: (i) it is not

predicted to form an amphipathic a-helix and moreover contains

negatively charged residues [17]; (ii) its removal does not prevent

mitochondrial localization; (iii) the addition of three HA epitopes

at the N-terminus of Sc Tar1p does not either prevent

mitochondrial localization; (iv) Kl Tar1p devoid of N-terminal 15

aas extension localizes to mitochondria. As many mitochondrial

inner-membrane proteins [18], Tar1p is thus generated without an

amino-terminal presequence. Numerous other types of targeting

signals, which are located at various positions within mitochon-

drial proteins, have been described [19] (for review). We noticed

that Tar1p primary sequences contain a stretch of positively

charged amino acid residues after the hydrophobic region of the

proteins (Figure 6A; see also Figure 1B). Such composite sequence

arrangement can constitute an internal mitochondrial-targeting

signal for proteins associated with the inner membrane [19]. For

example, this has been demonstrated for yeast Bcs1p, cytochrome

c1 and Tim23p that are anchored in the inner membrane via one

(Bcs1p, cytochrome c1) or four (Tim23p) transmembrane domains

[20] [21] [22]. Whereas Bcs1p and Tim23p do not carry an

amino-terminal presequence, cytochrome c1 has one that operates

independently from the internal signal [21]. It was proposed that

the positively charged segment of these proteins has the potential

to form an amphipathic a-helix, like presequences. The internal 18

aas segment (residues 64 to 81) of Sc Tar1p similarly displays the

ability to form an amphipathic a-helix (Figure 6B). The

corresponding segment of Kl Tar1 has the same ability (data not

shown).

Targeting of Sc Tar1p to mitochondrial inner membranes is

preserved even if the last 32 residues of the polypeptide are

deleted. As illustrated in Figure 1B, some Tar1p-like polypeptides

do not contain the C-terminal end present in S. cerevisiae and K.

lactis sequences and these shorter Tar1p amino acid sequences end

just after the positively charged region [8]. Also, the conserved

core of Tar1p polypeptides is made up of a putative transmem-

brane domain (TM, Figure 1B–C) and of a targeting signal

resembling those of hydrophobic inner membrane associated

proteins [19]. We found that the C-terminal end of plasmid-

derived Sc Tar1p polypeptides probably undergoes a proteolytic

processing event in mitochondrial extracts. Such processing was

not observed for the low abundant endogenous protein suggesting

that it could be triggered by high expression of Tar1p

polypeptides, which would become targets of protease(s). Addi-

tional studies will be required to determine whether such

proteolytic event might participate in Tar1p regulation.

Detection of the endogenous TAR1 product definitively

ascertains that the TAR1 gene forms a transcription unit within

rDNA repeats. Whereas the rDNA region is highly transcribed by

RNA polymerases (Pol) I and III, it is known that Pol II-

transcribed genes integrated into the rDNA are silenced [3] [4].

However, chromatin immunoprecipitation (ChIP) analyses

showed two sites of pol II occupancy in the yeast rDNA, one at

a characterized bidirectional E-pro promoter and one in the

vicinity of the TAR1 gene [5]. The Pol II E-pro promoter was

identified in the intergenic spacer region, which separates two

rDNA repeats [23]. The two divergent non-coding transcripts

generated from the E-pro promoter were proposed to regulate

rDNA copy number and rDNA stability [4] [24] [25]. Both E-pro

and TAR1-close promoters showed a Pol II enrichment dependent

of the Sen1p helicase, which is a Pol II termination factor for short

non coding and protein-coding genes in yeast [5]. Sen1p works in

complex with the RNA-binding proteins Nrd1p and Nab3p, which

can be targeted to transcripts carrying the recognition sequences

GUA(A/G) and UCUU, respectively [26] [27] [28]. Whereas the

longest observed TAR1 transcript contains multiple potential

binding sites for Nab3p, there are only two potential binding sites

for Nrd1p, one in the 59 end and the other in the 39 end. Nrd1p

binds to early elongating-Pol II enzyme thereby targeting the

Nrd1-Nab3-Sen1 complex to 59 regions of genes and promoting

Sen1p-dependent termination pathway [28]. Nrd1p also associates

to the 39 to 59 exosome thus influencing RNA degradation [29]

[30]. Also, we can speculate that the Nrd1-Nab3-Sen1 complex

may participate in the regulation of TAR1 expression. In addition,

39 end heterogeneity of TAR1 transcripts may also result from the

collision with the oncoming Pol I molecules as previously proposed

for the antisense IGS1-R transcripts generated from the E-pro

promoter [25].

To date, the function of Tar1p remains unknown. The

localization of S. cerevisiae endogenous protein in association with

the mitochondrial inner membrane is consistent with the two-

hybrid interaction reported with the Coq5p protein [10], which is

peripherally associated with the inner mitochondrial membrane

on the matrix side [14]. Along with nine other yeast genes, COQ5

was shown to be required for the endogenous biosynthesis of the

coenzyme Q, a critical component of the electron transport

pathways [31] (for review). However, the putative role of Tar1p in

the biosynthesis of coenzyme Q remains to be clarified. Tar1p

function might be not restricted to hemiascomycetous yeasts. We

looked for S. cerevisiae Tar1p homologs by performing BLASTp

searches (BLASTP 2.2.23, May 2010) and detected candidates

beside the Saccharomycotina subphylum, for example, one

hypothetical protein of the platyhelminthe Schistosoma japonicum

(99 aas in length; accession ABA40770.1) and one of the

archamoeba Entamoeba histolytica (111 aas in length; accession

XP_001914542.1). In both cases, the TAR1-like genes were

similarly nested antisense to 25S rDNA sequences. The hypothet-

ical polypeptides share 30.6% and 34.7% identity with the Sc

Tar1p sequence, respectively and they possess the conserved core

Figure 6. The positively charged region of Sc Tar1p. (A) The
internal 23 amino acids of Tar1p with the positive residues, +. (B) a-
helical plot of 18 amino acids (residues 64 to 81) constructed using the
DNA strider program [40]. Apolar residues are circled.
doi:10.1371/journal.pone.0016325.g006
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of Tar1p polypeptides within which sequence identity with Sc

Tar1p reaches 54%.

To comprehend the role, if any, of the antisense TAR1 gene,

further investigations will be required. Classical functional analyses

by inactivation or deletion of this gene are obviously challenging

due to its genetic location within highly constrained and repeated

rDNA sequences. However, it was recently reported that artificial

box C/D RNA can be successfully used to specifically guide

mRNA modification thus interfering with gene expression [32]

[33]. This new molecular approach certainly represents an

opportunity to attempt inactivation of TAR1 gene expression via

the 29-O-methylation targeting of its transcripts.

Materials and Methods

Yeast strains and growth conditions
The Saccharomyces cerevisiae strain used in this study is W303 (Mata

ade2-1, trp1-1, ura3-1, his3-11,15, leu2-3). The Kluyveromyces lactis

strain is wild-type CBS2359 (MAT ATCC8585). For mitochondria

isolation, unless otherwise indicated, W303 strain and derivatives

were grown in 2% galactose-0,1% glucose rich medium plus

adenine (20 mg/L) or in 2% galactose-0,1% glucose complemented

selective medium (CSM, BIO-101) plus adenine (20 mg/L) for

strains containing plasmids. Cells were collected at OD600 nm = 2.

Luciferase activities were measured for S. cerevisiae strains grown in

either 2% glucose, 2% galactose, 2% glycerol or 0,5% lactate CSM

medium, as indicated. In this case, cultures were harvested at

OD600 nm = 1.5. For RNA isolation, W303 strain was grown in 2%

galactose-0,1% glucose and cells collected at OD600 nm = 1.

Plasmid-derived Tar1p polypeptides
For all constructs, TAR1 sequences were amplified by PCR

from an rDNA sequence borne on vector pFL44L [34]. Constructs

were confirmed by sequencing. Plasmid version of TAR1 ORF

tagged at its 59 end with 3 copies of the haemagglutinin (HA)

epitope was constructed as followed. The TAR1 ORF was PCR

amplified with the primer pair (59EcoRI-TAR1) and (39EcoRI-

TAR1) (for all primers used in this study, see Table S1). The

resulting PCR fragment contains the whole coding sequence

except the first ATG codon. The PCR fragment was digested with

EcoRI and cloned at the corresponding site in the high copy

plasmid BFG1 (2 mm, LEU2; a gift of J. Camonis) that contains

three copies of the HA epitope. The resulting BFG1-TAR1

plasmid carries a 3HA-N-terminal tagged version of Tar1p (3HA-

Tar1p) under the control of the promoter of the PGK1 gene.

Plasmid versions of full length and truncated TAR1 ORF were

constructed as followed. Full length TAR1 ORF was amplified

using the primer pair (59BamHI-TAR1) and (39BamHI-TAR1).

The PCR product was digested with BamHI and inserted into the

BglII site of the high copy plasmid pEMBLye30/2 (2 mm, LEU2)

[35]. The resulting pEMBL-TAR1-ATG1 plasmid carries the

entire TAR1 ORF (375 bp; polypeptide Tar1p-ATG1) under the

control of the PGK1 promoter. The pEMBL-TAR1-ATG2 plasmid

that carries a TAR1 ORF starting from the second ATG codon

(330 bp; polypeptide Tar1p-ATG2), was similarly constructed

using the primer pair (59BamHI-2ndTAR1) and (39BamHI-TAR1).

The pEMBL-TAR1-DCter plasmid carrying a TAR1 ORF

truncated of its last 32 codons (279 bp; polypeptide Tar1pDC)

was constructed on the same vector using the primer pair

(59BamHI-TAR1) and (39BamHI-TAR1-M93stop).

Luciferase reporter-system
Constructions were done in the low copy vector pFL38 (CEN

URA3) [34] as followed. First, terminator region (487 bp) of the

PGK1 gene was amplified by PCR from yeast genomic DNA using

the primer pair (59TerPGK1) and (39TerPGK1). The PCR

product was inserted into the PvuII site and also into the SmaI

site of pFL38. Second, The luc ORF (1653 bp) encoding luciferase

enzyme was amplified by PCR from the plasmid p2Luc [36] using

the primer pair (59Firefly) and (39Firefly). The PCR product was

inserted into the EcoICRI site of the vector between the two PGK1

terminator sequences to yield plasmid pAG1, which conserves a

unique EcoICRI site downstream of the luc ORF (see Figure 5C).

Third, 59 flanking regions of the TAR1 ORF were PCR-amplified

from an rDNA sequence borne on vector pFL44L and inserted

into the EcoICRI site of pAG1. Primer pairs used to construct the

pAG1-1 kb, pAG1-536 bp, pAG1-429 bp and pAG1-286 bp

plasmids consist of the same 39 primer (39pTAR1) and the 59

primers (591 kb-pTAR1), (pTAR1-536), (pTAR1-429) and

(pTAR1-286), respectively. As a positive control, promoter of

the PGK1 gene (992 bp) was amplified by PCR using the primer

pair (59pPGK1) and (39pPGK1) and inserted into the EcoICRI site

of pAG1. As a negative control, a rDNA fragment of 500 bp

corresponding to the 39 end of 18S sequence was amplified by

PCR using the primer pair (500 pb-pAG1w) and (500 pb-pAG1c)

and inserted into the EcoICRI site of pAG1 yielding pAG1-s18S.

All constructs were confirmed by sequencing.

Luciferase assays
For each pAG1 construct, luciferase assays were performed on

crude cell extracts (5 ml) from five transformants cultivated in the

same conditions. Cells were broken in luc buffer (1% Triton X-

100, 8 mM MgCl2, 1 mM DTT, 1 mM EDTA, 25 mM Tris-

Phosphate pH 7.8, 15% glycerol) using the glass-beads method

described [37]. Luciferase assays were performed in the presence

of 2 mM ATP and 200 mM luciferin in luc buffer (100 ml). Light

emission was measured during 10 seconds using a luminometer

(Lumat LB9501). The protein concentration was determined for

each cell extract using the method of Bradford (Bio-Rad Protein

Assay). Luciferase activity was expressed as relative light units per

milligram of protein per second.

Miscellaneous
Mitochondria were isolated following classical differential-

centrifugation procedures as described [38] with two modifica-

tions. Cells were resuspended in 1.2 M sorbitol buffer (1.2 M

sorbitol, 50 mM Tris-HCl, pH 7.5, 10 mM EDTA, 0,3% 2-

mercaptoethanol) at 3 ml/g wet mass cells before addition of

zymolyase-100T (1 mg/g cells). The protein concentration was

determined using the Bio-Rad assay. Protease digestion of

mitochondria was carried out with 0.5, 1 or 4 mg proteinase K

(Invitrogen). The mixtures were incubated for 20 min at 0uC and

action of protease was halted by addition of 1 mM phenylmethyl-

sulfonyl fluoride (PMSF) for 5 min on ice. When indicated, the

reactions were carried out in the presence of 1% Triton X-100.

For alkaline extraction with sodium carbonate, mitochondrial

extracts were first reprecipitated at 17,000 g for 15 min. Pellets

were resuspended in 100 mM Na2CO3 (pH 11.5), 5 mM DTT

and protease inhibitors (Roche) and incubated on ice for 30 min.

The membrane fraction was precipitated by centrifugation at

110,000 g for 1 hour (TL100; Beckman). The pellet was

resuspended in 20 mM HEPES pH 7.4, 1 mM EDTA, 5 mM

DTT with protease inhibitors. Supernatant and the pellet fractions

were cleaned by centrifugation at 110,000 g for 30 min. Proteins

of the supernatant were precipitated with 10% trichloroacetic acid

(TCA) and resuspended in western blot loading buffer. Pellets were

resuspended in loading buffer.
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Western blotting and antisera used in this study
Proteins were resolved on Pre-Cast gels (NuPAGE Bis-Tris gels,

Invitrogen) and probed with the following antisera obtained from

different sources. Anti-HA antibody (used at 1/5000, Eurogentec),

S. cerevisiae anti-Cox2p (used at 1/500, Invitrogen), S. pombe anti-

Cox2p (used at 1/5000, gift of N. Bonnefoy), anti-Cytb2p (used at

1/10000, gift of B. Guiard), anti-porin (used at 1/5000,

Invitrogen), anti-Abf2p (used at 1/50000, C. Jacq, ENS, France),

anti-Sup45p (used at 1/10000, gift of V. Heurgué-Hamard).

Specific anti-Tar1p antibodies (used at 1/1000) were produced in

an immunization program that included two successive immuni-

zations and an affinity purification of rabbit polyclonal antibodies

(Eurogentec).

Transcripts analyses using RT-PCR and RACE PCR
Total RNA was isolated using the hot-phenol extraction method

as described [39]. DNase treatment was performed using DNaseI

RNase free enzyme (BioLabs). Reverse transcriptase reactions

were carried out by standard procedures using Superscript II

(Invitrogen) and random hexamers or oligodT primer. PCR

amplifications were then independently performed from each

cDNA sample using the following gene-specific primer pairs:

EBF1: (ATG.EFB) and (TAA.EFB); TAR1: (59BamHI-TAR1) and

(TAR1F78S); ART2: (59ATG-ART2) and (39ART2(156-137));

ART3: (59ATG-ART3) and (39ART3-TAA). The 59/39 RACE

Kit, 2nd Generation (Roche) was used for amplification of 59 and

39 cDNA ends following manufacturer’s instructions. For 59

RACE reactions, cDNA amplification was carried out using the

gene-specific primer (TAR1F78S). The PCR reactions successively

used the primer pairs (antiTAR44-63)/(dT-anchor primer) and

(antiTAR37-17)/(anchor primer). For 39 RACE reactions, cDNA

amplification was carried out using the (dT-anchor primer). The

PCR reactions successively used the primer pairs (TAR*325-348)/

(anchor primer) and (39TAR1(350-375))/(anchor primer). Second

amplification products were cloned in the vector pUC19 and

sequenced individually.

Supporting Information

Table S1 Primers used in this study. Primers are listed in the

order they appear in the Materials and Methods section.
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20. Fölsch H, Guiard B, Neupert W, Stuart RA (1996) Internal targeting signal of

the BCS1 protein: a novel mechanism of import into mitochondria. EMBO J 15:

479–487.
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