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Abstract: Vitamin D deficiency is highly prevalent in newly settled refugees in Western Australia (WA).
If adherence to daily vitamin D therapy is problematic, depot therapy is a therapeutic alternative. The aim
of this study was to compare daily versus depot treatment and factors influencing the therapeutic outcome.
Newly settled refugees (n = 151) with 25(OH)D levels less than 78 nmol/L were randomised to receive
daily or depot vitamin D therapy with eight weekly interval follow up to 40 weeks. Biochemical and
clinical parameters were collected at each visit. Generalized Linear Mixed Models (GLMM) examined
the longitudinal changes over time controlling for confounders including age, gender, treatment arm,
season, country of refuge/origin and sun exposure score. Participants were aged 5.5 months to 16.0 years
(75 males, 83 females). Both treatment groups achieved vitamin D sufficiency. The daily treatment group
had significantly higher 25(OH)D levels at each visit post baseline and a higher proportion of participants
with levels above 50 nmol/L at all time points. Time, treatment group, calcium and sun exposure score
were significant predictors of 25(OH)D serum levels. Depot vitamin D therapy is an alternative to daily
treatment in this at-risk group of children and adolescents in whom treatment adherence is problematic.
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1. Introduction

Vitamin D deficiency is one of the most common nutritional deficiencies in the world with
approximately one billion people at risk [1,2]. It is on the rise in developed countries, even in Australia
where there is an abundance of sunlight [3]. Additional risk factors among newly settled refugees
include veiling, dietary deficiencies, darker skin colour and unfamiliarity with the local healthcare
system [4,5]. More specifically, in Australian children with vitamin D deficiency rickets, risk factors
include dark skin and maternal veiling with 96–98% of these being children migrants or born to a
migrant parent [6,7].

Vitamin D is involved in the regulation of several skeletal and non-skeletal functions through
the action of its active metabolite, 1,25(OH)2D. Research into non-skeletal effects of vitamin D has
increased greatly in recent years [8,9]. Some of these associations include suppression of proliferation
and differentiation of cancer cells, modulation of innate and adaptive immunity, modulation of muscle
cell proliferation, improved cardiovascular health, modulation of pancreatic beta cell function and
insulin sensitivity, clearance of amyloid plaques and promotion of survival, development and neuron
function [9–13]. Furthermore low vitamin D concentrations have been associated with increased
longitudinal risk of hypertension, diabetes, cardiovascular disease and atherosclerosis [11].

Vitamin D deficiency, whilst prevalent, is often asymptomatic. Clinical features include rickets,
craniotabes, bone pain, muscle pain, hypocalcaemia seizures, delayed gross motor milestones and
irritability [14], but more likely in infants compared to older children and adolescents.

Increasing sunlight exposure within recommendations for the prevention of skin cancer is the ideal
method of improving vitamin D status, but it may not be suitable or effective for refugee children due
to darker skin colour, veiling and other socio-cultural factors [15–17]. A recent international consensus
paper recommends implementing national supplementation and fortification of food programmes
with vitamin D and/or calcium to address the high rates of nutritional deficiency [2,18]. For high risk
ethnic groups, vitamin D supplementation during every winter and spring has been suggested [2].

Due to the longer periods of treatment required in this group, adherence with daily oral vitamin
D supplementation is problematic and hence, depot (or “stoss”) vitamin D supplementation at larger
doses in intervals of weeks or months may be a suitable alternative therapeutic option [2,19]. The use
of high-dose depot vitamin D therapy is increasing, but there are little data on its use in children.
In Australia, the experience with depot vitamin D therapy is limited.

In Western Australia (WA), the Humanitarian Entrant Health Service (HEHS) provides health
assessments for all refugee and humanitarian entrants who have been resettled in the state under
the Humanitarian Programs. Vitamin D assessment is conducted for all refugees who access this
service. At the time of the study approximately10,000 refugees were resettled in Australia annually,
with over 10% resettled in WA [20]. Children represent about half of the resettled refugees. The main
source regions for offshore refugee and humanitarian visas during the study period were Middle
East, South West Asia and Africa [20]. Vitamin D deficiency remains a common referral reason to the
Princess Margaret Hospital for Children (PMH) Refugee Health Service (RHS) [21].

The aim of this study was to compare the efficacy of daily and depot vitamin D therapy in newly
settled refugees aged 0–16 years with low vitamin D levels and to analyse factors influencing the
therapeutic outcome.

2. Materials and Methods

2.1. Trial Design

This is a prospective randomised controlled trial, approved by the PMH Human Research Ethics
Committee (registration number 1564/EP), and registered with the World Health Organisation (WHO,
# U1111-1125-4879) and Australian and New Zealand Clinical Trials Registry (http://www.anzctr.org.
au/; ANZCTR, ACTRN12611001177943). Inclusion criteria were children aged 0–16 years, refugee
background and a 25(OH)D level lower than 78 nmol/L. Participants were excluded if they were

http://www.anzctr.org.au/
http://www.anzctr.org.au/
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already on Vitamin D supplements. Professional interpreters were used for the duration of the study
in keeping with the WA Department of Health Language Services Policy.

In this context, vitamin D deficiency is commonly thought of as a spectrum, from optimal vitamin
D status to insufficiency to deficiency. There is ongoing debate about what the optimal serum 25(OH)D
thresholds should be. Levels < 50 nmol/L are widely regarded as vitamin D deficient by some
groups, and a target of ≥50 nmol/L is currently recommended for infants, children, and adolescents
in Australia [2,14,22–24]. For adults > 75 nmol/L has been proposed as the level needed to support
extra-skeletal functions of vitamin D [1,25]. This has not been confirmed for children [14,26]. We used
78 nmol/L as the cut-off for vitamin D insufficiency and 27.5 nmol/L for vitamin D deficiency based
on the level of 25(OH)D that induces a positive PTH-response to maintain normocalcaemia [27].

2.2. Participants

Participants were recruited from HEHS, where they were screened for their eligibility during initial
health assessment. Written informed consent was obtained from primary caregivers and interpreters
utilised for all study related activities including explanation of the study, consent, plan for follow up,
administration of questionnaires and treatment plan where indicated.

2.3. Intervention

A concentrated water-soluble emulsified vitamin D3 solution was used for daily therapy
(Bio-Logical Vitamin D3 solution at 5000 IU/mL, Biological Therapies, Braeside, VIC, Australia), and a
50,000 IU/mL vitamin D3 solution in olive oil prepared by the PMH Clinical Trials Pharmacy was used
for depot therapy. Calcium supplements (200–600 mg elemental calcium per day) were also prescribed
for participants whose diet was low in calcium and those with hypocalcaemia (<2.15 mmol/L).

2.4. Outcomes

The following were recorded at the visits:

(i) Clinical parameters: height, weight, clinical signs of rickets (bone deformities, widened epiphyses,
craniotabes and rachitic rosary);

(ii) Biochemical parameters: serum 25(OH)D (DiaSorin Liaison, DiaSorin (PTY) LTD, NSW, Australia),
calcium and alkaline phosphatase (ALP) (Abbott Architect, Abbott Diagnostics Division, NSW,
Australia or on Vitros 250, Ortho Clinical Diagnostics Australia, VIC, Australia);

(iii) A sun exposure questionnaire was applied using the recall method (duration and timing of sun
exposure four days before the visit, factors affecting sun exposure including weather, season,
clothing, hat and sun screen). This information was transformed into a validated score system
“sun exposure score (SES)” based on a method by Specker et al. [28]; with higher scores equivalent
to greater sun exposure;

(iv) Nutrition was assessed using a three-day food diary. This information was analysed using software
of the German Society for Nutrition (DGE-PC Professional Version 2.8.0.26, 2007) to assess average
dietary calcium and vitamin D intake across the three major ethnic groups: Asian, Middle-Eastern
and African;

(v) Data on country of origin and country of refuge (last country of transit) were included.

2.5. Sample Size

Power calculation determined eight participants (n = 8) per group were needed to detect a change
of 5 nmol/L in 25(OH)D levels with power set at 0.8 and alpha of 0.05.

2.6. Randomisation

Participants were randomised to receive either daily or depot vitamin D therapy by selecting a
number between one and 10 from a sealed opaque envelope (odd numbers assigned to the daily group,
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even numbers to the depot group). However, if multiple children from the same family were recruited,
each were assigned to the same treatment group. Participants remained in the same treatment group
for the duration of the study. Follow up appointments were every eight weeks for up to 40 weeks and
included a clinical examination, blood test, administration of sun exposure and dietary questionnaires
and supply of medication. Depot vitamin D was administered under supervision at the time of the
visit. Doses were standardised according to serum 25(OH)D levels at the time of recruitment and
subsequent follow up (Figure 1). The total depot dose was slightly lower than the sum of the daily
dose over the eight-week period of therapy.
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Figure 1. Study design.

For the first 50 participants, they exited the study if the 25(OH)D was >78 nmol/L and if the
level was still low, they had a planned RHS review. Partway, a protocol amendment was incorporated
following interim analysis to allow optimal longitudinal follow up data to 40 weeks. Subsequently,
participants exited the study if there was no longer need for further follow up at the RHS and they had
achieved levels of >78 nmol/L.

Parents or guardians were contacted a week before the appointment, using telephone interpreters,
to minimise participant loss.

2.7. Statistical Methods

Statistical analysis was performed using the Statistical Package for Social Sciences (SPSS) software
(version 24.0, IBM Corporation, New York, NY, USA). Four additional variables were calculated; 25(OH)D
levels were dichotomised based on the recommended target value of >50 nmol/L [2], and categorised
into groups of <27.5, 27.5 to <50, 50 to <78, and ≥78 nmol/L. A country of origin group was created
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where country of origin was categorised into South Asia, Central Asia, Central Africa, East Africa,
North Africa or Middle East. Actual age in years at each visit was calculated by subtracting the date
of birth from the date of assessment. For all analyses, 95% confidence intervals (CI) are reported and
significance was set at p < 0.05.

At each time point, demographic, anthropometric data (age, height and weight), biochemical
parameters and sun exposure data were collected. Shapiro–Wilk test result was used to assess the
assumption of normal distribution. The treatment group differences were examined using independent
t-test (or the non-parametric alternative Mann–Whitney U). At each time point, gender, season and
dichotomised 25(OH)D treatment group differences were examined using Chi Square, reporting
Fisher’s Exact test results for cell counts less than five.

Three longitudinal investigations were conducted using a Generalized Linear Mixed Model (GLMM).
GLMM are an extension of the flexible linear mixed model but incorporate random effects which are useful
for accommodating the heterogeneity present in repeated measures (longitudinal design), and ability to
also model count and binary data [29]. GLMM was used to examine the longitudinal changes in 25(OH)D
over time examining time (weeks) and treatment group while controlling for age, gender, country of
origin (grouped), calcium, ALP, season and sun exposure score. Individuals were set as a random effect.
Model 1 investigated 25(OH)D as a scale variable using a linear GLMM which allowed for each variables’
contribution to changes in serum 25(OH)D to be quantified. Model 2 and model 3 investigated 25(OH)D
as a dichotomous variable (>50 and ≥78 nmol/L respectively) using a binary logistic regression GLMM
which allowed for each variables’ contribution to be quantified with respect to risk of having 25(OH)D
serum levels above the nominated cut-off.

3. Results

The flow of participants is described according to CONSORT criteria (Figure 2). Of the 163 eligible
participants, 157 participants (96.3%) were recruited and randomised to daily (n = 73) or depot therapy
(n = 84) at baseline. Six participants did not return after the initial baseline visit and were not included in
the data analyses. The final sample for analysis was 151 (92.6%), with 71 receiving daily and 80 receiving
depot therapy.

3.1. Baseline Characteristics of the Study Population

Participants of the study ranged in age from 5.5 months to 16 years, with participants in the daily
treatment group (median = 8.05) slightly older than the depot treatment group (median = 7.49; p = 0.023).
Both groups were similar with respect to demographic and anthropometric parameters indicating that
the two groups were comparable at baseline (p > 0.05) (Table 1).

Table 1. Baseline characteristics of study population.

Vitamin D3 Therapy

Daily Treatment Depot Treatment Daily Vs. Depot
p-Valuen Mean (SD) 95% CI n Mean (SD) 95% CI

Age (years) 71 8.05 (4.29) 7.04–9.07 80 7.49 (4.23) 6.54–8.43 0.023 *
Height (cm) 64 124.6 (26.2) 118.0–131.1 75 120.5 (26.1) 114.5–126.5 0.317
Weight (kg) 67 28.0 (16.0) 24.1–32.0 76 27.2 (14.7) 23.9–30.6 0.772

Gender 37 male, 34 female 36 male, 44 female χ2 = 2.21, p = 0.137

Note: * Indicates significant Independent Samples Mann–Whitney U Test for treatment group differences (p < 0.05).
SD = Standard Deviation.
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Most of the influx of refugees were from Central Asia (25.8%), then South Asia (23.2%) with no
treatment group differences (χ2 = 8.08 p = 0.151). Of these, 29.8% transited through South Asia (34.4%)
with no treatment group differences (χ2 = 1.14 p = 0.904).

The majority of participants were recruited for the study during the season of winter (n = 85,
56.3%), the least in summer (n = 7, 4.6%). There were no seasonal differences at baseline between
treatment groups (χ2 = 1.70 p = 0.668).

3.2. Clinical Findings

None of the participants had clinical signs of rickets throughout the study.
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3.3. Biochemical Parameters and Surrounding Factors

Biochemical and sun exposure data are described in Table 2. The daily treatment group had
significantly higher 25(OH)D levels at each visit post baseline (Figure 3). The dichotomised 25(OH)D
variable showed that the daily treatment group had a higher proportion of participants with levels
above 50 nmol/L at all time points, however this was not statistically significant at any time point
(Table 3).

Table 2. Biochemical and sun exposure data.

Vitamin D3 Treatment
Daily Vs. Depot

p-ValueNormal Range Daily Mean
(95% CI)

Depot Mean
(95% CI)

25(OH)D (nmol/L)

Baseline (n = 71; 80) 45 (41–49) 41 (37–45) 0.223
8 weeks (n = 71; 79) 98 (85–112) 69 (64–74) <0.001 *
16 weeks (n = 57; 71) 81 (62–101) 64 (59–68) 0.021 *
24 weeks (n =30; 39) 74 (63–84) 58 (52–64) 0.005 *
32 weeks (n = 18; 27) 72 (64–80) 64 (57–71) 0.032
40 weeks (n = 7; 10) 76 (65–87) 57 (49–66) 0.005 a,*

Calcium (mmol/L) 1.90–2.60

Baseline (n = 69; 80) 2.35 (2.33–2.37) 2.34 (2.32–2.36) 0.571 a

8 weeks (n = 71; 78) 2.36 (2.34–2.38) 2.35 (2.33–2.37) 0.361
16 weeks (n = 56; 67) 2.33 (2.31–2.35) 2.33 (2.32–2.35) 0.876 a

24 weeks (n = 27; 36) 2.33 (2.30–2.36) 2.31 (2.28–2.33) 0.163 a

32 weeks (n = 18; 24) 2.30 (2.28–2.33) 2.28 (2.24–2.31) 0.231 a

40 weeks (n = 7; 10) 2.28 (2.24–2.33) 2.26 (2.22–2.30) 0.367 a

ALP (U/L) 40–420

Baseline (n = 68; 80) 257 (233–280) 253 (229–276) 0.669
8 weeks (n = 71; 78) 275 (250–300) 255 (233–278) 0.230
16 weeks (n = 55; 64) 258 (235–281) 240 (214–264) 0.264
24 weeks (n = 28; 34) 270 (233–307) 253 (212–294) 0.369
32 weeks (n = 17; 24) 275 (230–319) 255 (208–303) 0.435
40 weeks (n = 7; 10) 247 (191–303) 254 (162–345) 0.904 a

Sun exposure Score -

Baseline (n = 71; 79) 0.10 (0.08–0.12) 0.10 (0.08–0.13) 0.398
8 weeks (n = 71; 80) 0.14 (0.11–0.16) 0.10 (0.09–0.12) 0.158
16 weeks (n = 57; 71) 0.13 (0.11–0.16) 0.12 (0.11–0.14) 0.996
24 weeks (n = 30; 39) 0.20 (0.16–0.25) 0.12 (0.09–0.14) 0.005 *
32 weeks (n = 18; 27) 0.20 (0.16–0.25) 0.11 (0.08–0.13) 0.001 *
40 weeks (n = 7; 9) 0.25 (0.24–0.26) 0.11 (0.07–0.15) <0.001 *

Note: * Indicates significant treatment group differences (p < 0.05); a Indicates an independent t-test was used,
otherwise the non-parametric alternative Mann–Whitney test result is reported.

One participant (eight months of age, breastfed with introduction of solids, 7.9 kg at eight weeks
of treatment; 10 months, 9 kg at 16 weeks of treatment) had intermittent hypervitaminosis D on daily
therapy with 25(OH)D level of 440 and 595 nmol/L at 8 and 16 weeks respectively. The calcium levels
were 2.70 mmol/L (2.15–2.65 mmol/L) and 2.31 mmol/L respectively. The participant was asymptomatic.
The follow up level was 71 nmol/L after 14 weeks.

Calcium and ALP levels were similar for both treatment groups at each time point (Table 2)
and were within normal range (Ca 2.15–2.65 mmol/L, ALP ≤ 420 U/L). However, three participants
presented with asymptomatic hypocalcaemia (<2.15 mmol/L) at recruitment. Albumin adjusted
calcium levels were 2.02 mmol/L, 2.09 mmol/L and 2.04 mmol/L; 25(OH)D 47 nmol/L, 34 nmol/L



Nutrients 2018, 10, 348 8 of 19

and 40 nmol/L; ALP 385 U/L, 174 U/L and 206 U/L respectively. One participant presented with
asymptomatic hypercalcaemia of 2.7 mmol/L at their eight weeks follow up.
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Table 3. Frequency (percent) of participants according to 25(OH)D level cut-off points.

nmol/L

Vitamin D3 Treatment

χ2 (p-Value)Daily Depot

<27.5 27.5 to <50 50 to <78 ≥78 <27.5 27.5 to <50 50 to <78 ≥78

Baseline
(n = 71; 80)

15
(21.1%)

22
(31.0%)

34
(47.9%)

0
(0%)

19
(23.8%)

31
(38.8%)

30
(37.5%) 0 (0%) 1.72

(p = 0.440)

8 weeks
(n = 71; 79)

0
(0%)

5
(7.0%)

25
(35.2%)

41
(57.7%)

1
(1.3%)

14
(17.7%)

35
(44.3%)

29
(36.7%)

8.44
(p = 0.023) a,*

16 weeks
(n = 57; 71)

0
(0%)

10
(17.5%)

23
(40.4%)

24
(42.1%)

1
(1.4%)

17
(23.9%)

38
(53.5%)

15
(21.1%)

6.96
(p = 0.050) a

24 weeks
(n = 30; 39)

0
(0%)

4
(13.3%)

16
(53.3%)

10
(33.3%)

2
(5.1%)

11
(28.2%)

22
(56.4%)

4
(10.3%)

7.15
(p = 0.048) a,*

32 weeks
(n = 18; 27)

0
(0%)

1
(5.6%)

13
(72.2%)

4
(22.2%)

0
(0%)

5
(18.5%)

19
(70.4%)

3
(11.1%)

2.10
(p = 0.451) a

40 weeks
(n = 7; 10)

0
(0%)

0
(0%)

5
(71.4%)

2
(28.6%)

0
(0%)

2
(20.0%)

7
(70.0%)

1
(10.0%)

1.92
(p = 0.460) a

a Fisher’s Exact Chi square results are reported; * Indicates statistical significance p < 0.05.

Sun exposure scores were similar at baseline, but differentiated significantly between treatment
groups at 24, 32 and 40 weeks, with the daily treatment group reporting higher scores.

Results of the dietary analysis are shown in Figure 4. Typical diets of African families consisted of
bread, rice, lamb, beef, chicken, pasta and various vegetables with 1–3 cups of milk per day. The typical
diet of Islamic/Middle-Eastern families consisted of bread, potato, chicken, fish, beef, lamb, vegetables
and pasta with 0–2 cups of milk daily, while in Asian families noodles, rice, chicken, beef, eggs,
pork and vegetables were common with 0–1 cups of milk per day. The analyses revealed that none of
these groups obtained the recommended dietary intake of calcium or vitamin D.



Nutrients 2018, 10, 348 9 of 19
Nutrients 2018, 10, x FOR PEER REVIEW  9 of 18 

 

(a) 

 

(b) 

 

 
(c) 

 

 

Figure 4. Typical dietary vitamin D and calcium intakes in (a) African; (b) Middle-Eastern and (c) 
Asian families. (Arrows indicate the actual intake, while vertical lines represent the recommended 
daily intake). DGE empfehlung = German Nutrition Society (DGE) recommendation 

Results of the dietary analysis are shown in Figure 4. Typical diets of African families consisted 
of bread, rice, lamb, beef, chicken, pasta and various vegetables with 1–3 cups of milk per day. The 
typical diet of Islamic/Middle-Eastern families consisted of bread, potato, chicken, fish, beef, lamb, 
vegetables and pasta with 0–2 cups of milk daily, while in Asian families noodles, rice, chicken, beef, 
eggs, pork and vegetables were common with 0–1 cups of milk per day. The analyses revealed that 
none of these groups obtained the recommended dietary intake of calcium or vitamin D. 

The GLMM for Model 1 (Table 4) revealed time (p < 0.001), sun exposure score (p = 0.046), 
treatment group (p < 0.001), and calcium (p < 0.001) as significant predictors of 25(OH)D serum levels. 
Vitamin 25(OH)D serum levels increased over time (β = 4.80, 95% CI 2.47–7.14), and were higher for 
the daily treatment group (β = 13.59, 95% CI 7.39–19.79). When accounting for contributing factors 
(Model 1) the predicted 25(OH)D serum levels over time show demonstrated better improvement 
pattern for participants in the daily treatment group (Figure 5). 

Table 4.  Generalized Linear Mixed Models (GLMM) Model 1 Parameter Estimates for Vitamin D 
serum levels (25(OH)D nmol/L). 

Model Term β Coefficient SE p-Value 
95% CI 

Lower Upper
Intercept −103.06 42.61 0.016 −186.77 −19.35 

Time * 4.80 1.19 <0.001 2.47 7.14 
Female −2.58 3.01 0.391 −8.49 3.33 

Male (reference) 0     
Age −0.72 0.38 0.060 −1.47 0.03 

Season = Autumn −8.28 4.58 0.071 −17.28 0.71 
Season = Spring 3.80 3.32 0.253 −2.73 10.33 
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Figure 4. Typical dietary vitamin D and calcium intakes in (a) African; (b) Middle-Eastern and (c) Asian
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DGE empfehlung = German Nutrition Society (DGE) recommendation

The GLMM for Model 1 (Table 4) revealed time (p < 0.001), sun exposure score (p = 0.046),
treatment group (p < 0.001), and calcium (p < 0.001) as significant predictors of 25(OH)D serum levels.
Vitamin 25(OH)D serum levels increased over time (β = 4.80, 95% CI 2.47–7.14), and were higher for
the daily treatment group (β = 13.59, 95% CI 7.39–19.79). When accounting for contributing factors
(Model 1) the predicted 25(OH)D serum levels over time show demonstrated better improvement
pattern for participants in the daily treatment group (Figure 5).
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Table 4. Generalized Linear Mixed Models (GLMM) Model 1 Parameter Estimates for Vitamin D serum
levels (25(OH)D nmol/L).

Model Term β Coefficient SE p-Value
95% CI

Lower Upper

Intercept −103.06 42.61 0.016 −186.77 −19.35
Time * 4.80 1.19 <0.001 2.47 7.14
Female −2.58 3.01 0.391 −8.49 3.33

Male (reference) 0
Age −0.72 0.38 0.060 −1.47 0.03

Season = Autumn −8.28 4.58 0.071 −17.28 0.71
Season = Spring 3.80 3.32 0.253 −2.73 10.33

Season = Summer 0.32 4.42 0.943 −8.36 9.00
Season = Winter (reference) 0

Daily Treatment Group * 13.59 3.16 <0.001 7.39 19.79
Depot (reference) 0

Calcium * 67.13 17.47 <0.001 32.81 101.44
ALP −0.02 0.02 0.315 −0.05 0.01

Sun Exposure Score * 33.29 16.63 0.046 0.63 65.95
Country of Origin group = Central Africa −7.31 6.94 0.293 −20.96 6.33

Country of Origin group = East Africa −1.47 4.97 0.767 −11.23 8.28
Country of Origin group = North Africa 2.76 5.78 0.633 −8.60 14.11
Country of Origin group = Middle East −6.11 4.69 0.194 −15.33 3.12
Country of Origin group = Central Asia 2.63 4.29 0.540 −5.79 11.06

Country of Origin group = South Asia (reference) 0

* Indicates significance (p < 0.05); SE = Standard Error.

The GLMM for Model 2 (Table 5) reported duration of treatment and season as significant predictor
for the dichotomous 25(OH)D serum levels (p < 0.001). However, of clinical interest was the participant’s
odds (OR) of having 25(OH)D serum levels above 50 nmol/L. Participants were more likely to reach
this threshold if they received the daily treatment (OR = 1.5, 95% CI 0.9–2.7), had higher calcium levels
(OR = 3.6, 95% CI 0.2–73.5), had higher sun exposure scores (OR = 11.1 95% CI 0.5–226.7), and if the
participant was from Central Africa (OR = 2.4, 95% CI 0.6–9.4) or North Africa (OR = 2.0, 95% CI 0.6–6.3)
compared to participants from South Asia. In summer, the likelihood of achieving Vitamin D sufficiency
was 2.3 times (95% CI 1.1–4.8) compared to winter (p = 0.034). When investigating 25(OH)D serum levels
≥above 78 nmol/L (Table 6) treatment group, time, age, season, sun exposure and country of origin
remained important risk modifiers.

Table 5. GLMM Model 2 Parameter Estimates for meeting Vitamin D serum threshold (25(OH)D > 50 nmol/L).

Model Term Coefficient SE p-Value
95% CI

OR
95% CI OR

Lower Upper Lower Upper
Time (weeks) * 0.52 0.11 <0.001 0.30 0.73 1.68 1.35 2.08

Female −0.05 0.28 0.861 −0.60 0.50 0.95 0.55 1.65
Male (reference) 0

Age −0.01 0.04 0.752 −0.08 0.06 0.99 0.92 1.06
Season = Autumn 0.45 0.37 0.224 −0.28 1.18 1.57 0.76 3.25
Season = Spring 0.54 0.28 0.054 −0.01 1.08 1.71 0.99 2.94

Season = Summer * 0.82 0.39 0.034 0.06 1.58 2.27 1.06 4.84
Season = Winter (reference) 0

Daily Treatment Group 0.42 0.29 0.149 −0.15 0.99 1.52 0.86 2.68
Depot (reference) 0

Calcium 1.29 1.53 0.398 −1.71 4.30 3.65 0.18 73.46
ALP −0.01 0.00 0.286 −0.04 0.01 1.00 1.00 1.00
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Table 5. Cont.

Model Term Coefficient SE p-Value
95% CI

OR
95% CI OR

Lower Upper Lower Upper
Sun Exposure Score 2.41 1.53 0.117 −0.60 5.42 11.14 0.55 226.65

Country of Origin group = Central Africa 0.86 0.71 0.225 −0.53 2.24 2.36 0.59 9.43
Country of Origin group = East Africa −0.20 0.45 0.653 −1.09 0.68 0.82 0.34 1.98

Country of Origin group = North Africa 0.70 0.58 0.229 −0.44 1.84 2.01 0.64 6.28
Country of Origin group = Middle East −0.63 0.42 0.138 −1.46 0.20 0.53 0.23 1.22
Country of Origin group = Central Asia −0.07 0.40 0.863 −0.85 0.71 0.93 0.43 2.03
Country of Origin group = South Asia

(reference) 0

SE = standard error; OR = odds ratio; * Indicates significance (p < 0.05). Shaded grey indicates clinically relevant
risk factors.

Table 6. GLMM Model 3 Parameter Estimates for meeting Vitamin D serum threshold (25(OH)D≥78 nmol/L).

Model Term Coefficient SE p-Value
95% CI

OR
95% CI OR

Lower Upper Lower Upper
Time (weeks) * 0.24 0.11 0.036 0.02 0.46 1.27 1.02 1.58

Female 0.31 0.25 0.222 −0.19 0.80 1.36 0.83 2.23
Male (reference) 0

Age * −0.09 0.03 0.010 −0.15 −0.02 0.92 0.86 0.98
Season = Autumn * −1.82 0.65 0.006 −3.10 −0.53 0.16 0.05 0.59

Season = Spring 0.38 0.29 0.192 −0.19 0.95 1.46 0.83 2.58
Season = Summer −0.41 0.41 0.321 −1.22 0.40 0.67 0.30 1.49

Season = Winter (reference) 0
Daily Treatment Group * 0.81 0.27 0.003 0.28 1.34 2.24 1.32 3.82

Depot (reference) 0
Calcium 2.68 1.55 0.085 −0.37 5.73 14.54 0.69 306.62

ALP −0.00 0.00 0.599 −0.00 0.00 1.00 1.00 1.00
Sun Exposure Score * 3.06 1.36 0.025 0.39 5.72 21.28 1.48 305.40

Country of Origin group = Central Africa * −1.41 0.65 0.031 −2.68 −0.13 0.25 0.07 0.88
Country of Origin group = East Africa −0.30 0.41 0.465 −1.10 0.50 0.74 0.33 1.66

Country of Origin group = North Africa 0.76 0.43 0.076 −0.08 1.61 2.14 0.92 4.98
Country of Origin group = Middle East −0.47 0.40 0.241 −1.26 0.32 0.63 0.29 1.37
Country of Origin group = Central Asia −0.25 0.36 0.491 −0.96 0.46 0.78 0.38 1.59

Country of Origin group = South Asia (reference) 0 . . . . . . .

SE = standard error. OR = odds ratio. * indicates significance (p < 0.05). Shaded grey indicates clinically relevant
risk factors.

4. Discussion

This is a randomised controlled clinical trial comparing the outcome of daily versus depot vitamin D
supplementation in a group of newly-settled refugee children and adolescents in Western Australia.
Participants on both daily and depot regimens achieved vitamin D sufficiency (Figure 3). The therapeutic
outcome was influenced by time, sun exposure score, calcium and treatment group. Studies looking
at vitamin D status in recently arrived immigrants confirm similar patterns with highest prevalence of
vitamin D deficiency in Middle Eastern populations [30,31]. This is of growing global importance in the
context of the ongoing Syrian refugee crisis and resettlement health challenges internationally.

Our study demonstrated statistical difference between treatment groups for 25(OH)D at all follow
up time points with higher serum levels for the daily group. Predictive modelling controlling for
other determining factors supported this relationship, indicating that daily treatment was 1.5 times
more likely to improve and maintain vitamin D levels. The drop in vitamin D levels for the daily
treatment group after eight weeks is most likely related to a lack of adherence to treatment. With longer
duration of treatment, it is possible that only the most dedicated participants showing high adherence
to daily treatment regimen are remaining. This consistent decline could be due to a change in patient
behaviour resulting from their involvement in a study known as the “Hawthorne effect” [32–34]. It is
also possible that this outcome was affected by the fact that the depot dose chosen was slightly lower
than the potential cumulative dose for the daily doses i.e., the 5000 IU/day group would have had
280,000 IU cumulative dose (5000 IU/day × 56 days) between visits compared to the 200,000 IU given
as a single depot dose. Similarly, the 2500 IU/day group received 140,000 IU cumulative dose (2500 IU
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× 56 days) between visits compared to the 100,000 IU given as a depot dose. We were conservative
with the calculation of the depot dose as we could not include an early follow up to analyse for peak
values post depot administration. A second rationale was that this would allow compensating for
non-adherence in the daily group. Importantly, the study demonstrates that even with treatment
at the relatively lower depot vitamin D dose, 25(OH)D levels were sufficient. For the maintenance
phase, the depot dose was higher than the potential sum of the daily doses (35,000 versus 22,400 IU).
This regimen allowed further stabilisation of 25 OHD levels.

Several studies have used depot or stoss therapy or daily treatment to treat vitamin D deficiency.
Many of the studies are adult studies but there are increasing numbers of studies in children
(Supplementary Table S1), but study/trial designs are significantly heterogenous, making direct
comparisons difficult. Importantly the variability in vitamin D replacement regimens with respect to
formulation (Ergocalciferol, (vitamin D2) or Cholecalciferol (vitamin D3)), dosing (low dose 1000–5000 IU
or depot 150,000–600,000 IU), frequency (daily, weekly/bi-weekly and stat/intermittent) and different
routes of delivery (intramuscular or oral) may influence generalisability of results to other clinical settings.

The majority of the trials in children have used single high doses of vitamin D [35–40] or compared
different doses or duration of depot preparations [41–50] for treatment. There are only limited numbers of
trials comparing low dose daily against intermittent depot vitamin D therapy [51–58]. Studies using depot
vitamin D treatment in children suggest that high-dose repletion approaches are safe and effective. Various
combinations of high doses have been used including 600,000 IU vitamin D2 [36], 60,000 IU vitamin
D3 weekly for 4–8 weeks [41], intermittent 50,000 IU to 300,000 IU 1–3 monthly over 12 months [59],
600,000 IU single dose versus 60,000 IU weekly over eight weeks [46], 45,000 IU weekly for two months [57],
100,000 IU bimonthly (total three doses) during winter [60] and were reported to be effective with no
hypercalcaemia, hypercalcuria or nephrocalcinosis observed. Cesur et al. [45] compared depot vitamin D
doses of 150,000 IU, 300,000 IU and 600,000 IU to treat vitamin D deficiency rickets in children 3–36 months
of age and showed no differences in the improvement of rickets between the different doses, but two
of the 300,000 IU group (n = 16) and six of the 600,000 IU group (n = 16) developed hypercalcaemia.
In our cohort asymptomatic hypercalcaemia was seen in only one child in the daily arm at eight weeks.
Similarly, hypercalcaemia and/or hypercalciuria has been reported when 300,000 IU or 600,000 IU of
an oral depot solution is used [47,61]. Severe hypercalcaemia was not seen in a cohort of 987 infants
supplemented 400 IU to 1200 IU daily at 6 and 12 months [62]. Interestingly, in a study by Vijayakumar
and Meenu [46] comparing effectiveness of 600,000 IU stat versus 60,000 IU weekly oral dosing in children
with nutritional rickets; calcium supplementation was administered to all children for 12 months without
any demonstrated increased risk of hypercalcaemia.

Some literature exists exploring safety and efficacy of comparative treatment regimens. Specifically,
daily treatment (2000 IU D3 for six weeks [51,55,56], 2000 IU D2 [55,56] and 20 days [52], 400 IU D3 or
2000 IU D3 for two months then 1000 IU D3 daily over 12 months [57]) against depot treatment (50,000 IU
D2 weekly for six weeks [55,56], 150,000 IU D3 [51] and 600,000 IU D3 [52], 45,000 IU D3 weekly for
two months then 400 IU D3 daily [57]). Vitamin D level post treatment in depot therapy groups were
significantly higher compared to daily vitamin D treatment groups [51,52]. No difference was seen in
the other two studies [55,56]. Talaat et al. [57], randomised clinically asymptomatic vitamin D deficient
children aged 2 to 18 years into three different vitamin D3 replacement regimens: 400 IU daily or 45,000 IU
weekly for two months then 400 IU daily or 2000 IU daily for three months then 1000 IU daily for a period
of 12 months with assessment at the 4 and 12 month time points. No dosing adjustments were made to
vitamin D therapy at follow up assessment. Similar to our study, daily replacement therapy was the best
therapeutic regimen in maintaining sufficient vitamin D levels.

A recent global consensus statement on nutritional rickets [2] defines vitamin D toxicity as
hypercalcaemia and 25(OH)D >250 nmol/L with hypercalciuria and suppressed PTH. These cases
are regarded as being rare and usually asymptomatic, limited data exists exploring toxic doses of
vitamin D [63]. In infants and young children, toxicity has been reported after dosage in the range of
240,000 IU to 4,500,000 IU [63]. Only one participant in our study, receiving daily supplementation,
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had hypervitaminosis D and hypercalcaemia of 2.70 mmol/L but remained asymptomatic. We ensured
the participant was being given the correct dose and not excess supplementation. Unfortunately, a
renal ultrasound was not performed; levels normalised on repeat testing at 14 weeks.

Studies looking at safety of depot vitamin D therapy have not reported significant evidence
of hypercalcaemia or renal nephrocalcinosis, but follow-up periods were predominantly <8 weeks.
Compared to our study, relatively higher doses of depot treatment [52] were used and in two of
the studies, vitamin D2 rather than vitamin D3 was used. Our cohort provides longitudinal data to
40 weeks, which is a key strength of this study. Talaat et al. [57] reported calcium and hypercalciuria
at 4 months and found up to 1.5% of cases hypercalciuria in the daily replacement group and no
reported hypercalcaemia in any of the participants. It is postulated that daily or weekly therapy are
more physiological and effective with less adverse effects compared to depot therapy [22,64]. However,
depot therapy is a preferred option when adherence to therapy is uncertain [2].

None of our participants had clinical signs of rickets; routine radiological imaging was not
undertaken. Similarly, in a study by Jain et al. [65], none of the 98 infants (aged 2.5–3.5 months)
with 25(OH)D < 25 nmol/L showed any clinical signs of rickets. Studies by Ladhani et al. [66],
Gordon et al. [67] and Perez-Rossello [68] included radiological assessment in addition to clinical
assessment in children with vitamin D deficiency and reported radiological changes in 32.5% (all
clinically asymptomatic) to 70% (no mention of clinical evidence of rickets) of the children with vitamin
D deficiency. Given the varying aetiology and prevalence of rickets in infants, children and adolescents
with vitamin D deficiency, clinical signs alone are not adequate for screening and diagnosis. The role
of ALP as a screening parameter for vitamin D deficiency is controversial. ALP is an enzyme found in
all body tissues, including osteoblasts where it is a marker for bone formation. It is especially utilised
as a bone marker due to being cost effective. Whilst levels of ALP have been noted to raise during
vitamin D deficiency, thought to be due to regeneration of bone tissue, it is not a suitable marker for
children due to its wide distribution and increase during skeletal growth [69,70]. ALP levels vary
according to age, race and gender, making it difficult to associate vitamin D deficiency with ALP levels
alone [71–74]. In our study clinical findings and ALP were not reliable markers of vitamin D deficiency
in line with other studies [70]. We did not measure bone specific ALP, which has been shown to be a
reliable marker [18]. Population-based screening with serum 25(OH)D, ALP and radiographs is not
recommended [2]. However, testing serum 25(OH)D in at risk populations can be considered.

Depot therapy has been proposed as an alternative to daily therapy to improve the therapeutic
outcome. In the Global Consensus paper daily therapy was preferred over depot therapy acknowledging
that depot therapy may be more practical in certain situations such as non-adherence to treatment [2].
An important factor in the context is that depot therapy can be administered under supervision in
clinic. A successful example for this strategy is “directly observed therapy for treating tuberculosis” [75].
Depot utilisation in more vulnerable clinical cohorts (e.g., young children, adolescents, limited English
proficiency or itinerant populations) also needs consideration.

Significant predictors of 25(OH)D serum levels were time, treatment group, calcium and sun
exposure score. Gender, age, season and country of refuge/origin did not significantly influence
the treatment effectiveness depending on chosen cut-off points. A significant positive change in sun
exposure scores at each of the follow up visits was observed in the daily treatment group compared
to the depot group, with statistically significant group differences at 24, 32 and 40 weeks. It is likely
that taking daily treatment is a reminder of need for sun exposure as opposed to depot treatment.
A positive association between sun exposure and 25(OH)D3 levels has been confirmed in a few studies
by Jones et al. [26,76], although this association became non-significant once adjusted for number of
sports played [26]. Unfortunately, in our study, sport participation information was not obtained.

Dietary analysis confirmed that traditional diets of all families, regardless of ethnic background,
were deficient in calcium and vitamin D. Newly settled migrants and refugees are often in poor
health due to prolonged periods in their country of origin or refuge before entering Australia [5,77].
Once in Australia, unfamiliarity with local produce, food insecurity, accessibility, limited health
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literacy, language barriers and acculturation (e.g., consumption of high-fat, high-calorie fast foods) can
further influence suboptimal nutrition [5,77–79]. Our data demonstrate the importance of nutritional
assessment for refugee children and provision of culturally appropriate health and nutrition education
to allow families to familiarise themselves with local produce and foods and optimise nutritional
intake in keeping with age-appropriate recommendations [79].

There were limitations to this study design. This study focussed on prospective longitudinal
follow up of vitamin D treatment using different treatment modes. As such, one limitation is the lack
of data regarding potential vitamin D toxicity at the end of the initial two weeks following depot
treatment as there was no follow up at this time point.

It should be noted that the study was underpowered statistically at 40 weeks for the daily group,
although statistical significance was still shown, suggesting sufficient power. Post study design and
implementation, it was decided to analyse four categories of Vitamin D, hence the Chi square analysis
is likely underpowered for detecting significant group differences, but data suggests that there is a
difference between treatment groups and Vitamin D categories that should be further explored in
future research studies.

Loss to follow-up was significant, however engagement through the paediatric RHS facilitated
longitudinal follow-up, particularly in a mobile and predominantly non-English proficient cohort.
No comparative international data currently exist beyond a period post-treatment; our data provide
important evidence to improve this gap in knowledge. Importantly, sample selection bias was negated
by the recruitment through the centralised refugee screening service.

Different study preparations of vitamin D solutions were utilised; the daily regimen arm received
a commercially available preparation whilst the depot D3 therapy was prepared by the Clinical Trials
Pharmacy. The depot solution required refrigeration and any precipitation may have altered the
concentration of the solution, although precautions were in place in the study protocol with respect to
time for warming prior to administration. Consequently, the solution half-lives of the solutions may
have differed however the high number of participants and long duration of the study is likely to have
reduced this variability.

Compliance with the daily vitamin D supplementation was assessed by parental report via
interpreters, but formal review of bottles was not undertaken. Similarly, a degree of recall bias
may have influenced sun exposure reporting and dietary questionnaires. Interestingly, vitamin D
intoxication was only noted in the daily treatment group at the scheduled visits. It can be speculated
that this risk of overdosing on daily therapy needs to be considered as a factor in favour of depot
therapy when depot therapy under supervision represents a safe alternative.

5. Conclusions

Our study provides important clinical data demonstrating the efficacy of depot vitamin D therapy
as an alternative to daily supplementation in refugee children and adolescents both in short and
longer-term follow-up durations. Use of depot formulations may be beneficial to ensure compliance in
higher risk cohorts, particularly where daily administration may be challenging. Supplementation
of vitamin D, needs to be combined by improved nutritional assessment and culturally sensitive
education programmes following resettlement to ensure that longer term dietary requirements are
being addressed.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-6643/10/3/348/s1,
Table S1: Summary of paediatric published literature looking at oral depot and/or daily vitamin D therapy.
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