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Malignant pleural mesothelioma (MPM) is a highly aggressive tumor primarily associated

with asbestos exposure. Early detection of MPM is restricted by the long latency

period until clinical presentation, the ineffectiveness of imaging techniques in early stage

detection and the lack of non-invasive biomarkers with high sensitivity and specificity. In

this study we used transcriptome data mining in order to determine which CLAUDIN

(CLDN) genes are differentially expressed in MPM as compared to controls. Using

the same approach we identified the interactome of the differentially expressed CLDN

genes and assessed their expression profile. Subsequently, we evaluated the effect of

tumor histology, asbestos exposure, CDKN2A deletion status, and gender on the gene

expression level of the claudin interactome. We found that 5 out of 15 studied CLDNs

(4, 5, 8, 10, 15) and 4 out of 27 available interactors (S100B, SHBG, CDH5, CXCL8) were

differentially expressed in MPM specimens vs. healthy tissues. The genes encoding the

CLDN-15 and S100B proteins present differences in their expression profile between the

three histological subtypes of MPM. Moreover, CLDN-15 is significantly under-expressed

in the cohort of patients with previous history of asbestos exposure. CLDN-15 was also

found significantly underexpressed in patients lacking the CDKN2A gene. These results

warrant the detailed in vitro investigation of the role of CDLN-15 in the pathobiology of

MPM.
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INTRODUCTION

Malignant Pleural Mesothelioma (MPM) is a highly aggressive
tumor primarily associated with exposure to asbestos. Due to
the prolonged latent period between asbestos exposure and
clinical presentation of the disease, the incidence of MPM
has continued to rise across Europe even after the imposed
restrictions on asbestos use (Jennings et al., 2014). Worldwide
the incidence of MPM is increasing and it is expected to peak in
the years 2015–2025 (Robinson and Lake, 2005). MPM diagnosis
and treatment is challenging, therefore current research efforts
are focused in biomarker discovery that would aid its early
diagnosis, prognosis and therapeutic outcome prediction (Brims
et al., 2013). Transcriptome studies combined with data mining
techniques have provided new insights into the pathogenesis of
the disease and have led to the identification of new candidate
biomarkers with potential clinical value (Melaiu et al., 2012).

Claudins represent a 24-member family of tetraspan
transmembrane proteins that contribute to the formation and
the proper function of tight junctions (TJs) (Valle and Morin,
2010). They regulate the paracellular transport of ions and
molecules in a size and charge sensitive manner (Gonzalez-
Mariscal et al., 2010). A notable feature of claudins is that
some members increase the paracellular permeability while
others decrease it. More specifically, claudin-2, -7, -10, -15, and
-16 increase the paracellular cation permeability in the Tight
Junctions (TJ) whereas claudin-3-, -4, -5, -8, -11, -14, and -18
have a sealing function (Amasheh et al., 2002, 2005; Milatz
et al., 2010; Soini, 2011). In addition to their contribution to the
establishment of cellular polarity, the TJ proteins also participate
in the regulation of cell differentiation and proliferation
(Facchetti et al., 2007b; Lal-Nag and Morin, 2009; Soini, 2011).

The pleural mesothelial cells (PMCs) form a monolayer that
expresses claudins in their TJs, although their exact role in the
pleural physiology and pathophysiology is scarcely investigated
(Apostolidou et al., 2012). Currently it is known that mesothelial
TJ claudins contribute to the pleural membrane permeability,
while during inflammation the expression levels of claudins
change leading to increased pleural permeability (Markov et al.,
2011; Markov and Amasheh, 2014). These data highlight the
role of claudins and TJ related proteins in the context of pleural
physiology and pathophysiology.

Several studies have highlighted the role of claudins in cancer
since in several malignancies (lung, kidney, breast, stomach,
instestine, pancreas, and others) their expression is deregulated
(Osanai et al., 2017). Furthermore, accumulating data suggest
roles for claudins in tumor development and progression as well
as in signal transduction while in several cancers expression
of claudins is associated with prognosis (Osanai et al., 2017).
Claudins have also been studied in the context of MPM by means
of immunohistochemistry (Kleinberg et al., 2007; Chaouche-
Mazouni et al., 2015). In this aspect several changes in the
expression of claudins have been documented (Ouban and
Ahmed, 2010; Soini, 2011). Most studies so far have focused
on the diagnostic value of claudins, notably claudins 1–7, in
distinguishing MPM from other carcinomas. Claudin-4 has been
shown to be highly effective in the differential diagnosis between

MPM and metastatic carcinomas (Facchetti et al., 2007a,b; Ohta
et al., 2013; Ordóñez, 2013; Jo et al., 2014). However, at the
transcriptional level there is scarcity of information regarding
the differential gene expression of claudins between healthy and
MPM samples.

In this study we applied data mining and transcriptomic
analysis in order to determine the CLAUDIN (CLDN) genes that
are differentially expressed in MPM specimens as compared to
healthy controls. Using the same approach we also probed for
CLDN interactors and assessed their expression patterns so as to
identify novel genes interacting with CLDNs that may contribute
to the pathophysiology of MPM. Finally, we evaluated the
effect of MPM histology, asbestos exposure, CDKN2A deletion
status, and gender on the gene expression level of the claudin
interactome.

MATERIALS AND METHODS

Identification of the Differential Gene
Expression Profile of CLDNs in Microarray
Data from MPM and Control Counterparts
We used gene expression data from an MPM study included in
the Oncomine Research Premium Edition Cancer Microarray
database (http://www.oncomine.org) in order to investigate the
gene expression profile of CLDNs (Gordon et al., 2005; GEO
Profiles: GDS 1220). We analyzed data for the 15 CLDN genes
that were assessed in this study (CLDN-1, -3, -4, -5, -6, -7, -
8, -9, -10, -11, -14, -15, -16, -17, -18) in order to detect their
potential differential expression in MPM specimens as compared
to healthy ones. The genes that were not assessed in GDS 1220,
were CLDNs -2, -12, -19, -20, -22, -23, -24,-25. In order to ensure
that the data were generated with the same methodology, we
selected gene expression data from a single study (a study that
from this point on will be referred as Gordon Mesothelioma
study throughout the text). In this study the Affymetrix Human
Genome U133A array was used assessing 12.624 genes. The raw
data were downloaded from Oncomine in Excel format, and
were scrutinized selecting only the ones referring to surgically
excised samples excluding the ones referring to mesothelial (1
sample) and MPM cell lines (4 samples). Finally, in this study
there were n = 40 MPM cases and n = 9 controls (n = 5
pleura and n = 4 lung samples). The gene expression data were
log transformed, median centered per array, and the standard
deviationwas normalized to one per array as described previously
(Rhodes et al., 2004). All values from the transformed data were
downloaded from Oncomine during March 2013.

Identification of the Interactome of the
Differentially Expressed Claudins
The gene interaction network of the significantly differentially
expressed CLDNs in MPM patients was constructed using
Bio-grid (http://thebiogrid.org), ConsensusPathDB (http://
cpdb.molgen.mpg.de/) and String 9.05 (http://string-db.org/)
databases. The Bio-grid database is a repository of genetic and
protein-protein interactions that are curated from the primary
biomedical literature for all major model organism species
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(Chatr-Aryamontri et al., 2013). The ConsensusPathDB database
integrates interaction networks including binary and complex
protein-protein, genetic, metabolic, signaling, gene regulatory,
and drug-target interactions as well as biochemical pathways
(Kamburov et al., 2009, 2013). String 9.05 is a database of
known and predicted protein interactions including both direct
(physical), and indirect (functional) associations (Szklarczyk
et al., 2011).

After querying for each differentially expressed CLDN in the
above databases, we superimposed the results in order to remove
duplicate or triplicate genes and created a list of unique genes
(List 1) that comprised the interactome of the significantly over-
and under- expressed CLDNs in MPM patients from the Gordon
Mesothelioma study. Themembers of List 1 are shown inTable 1,
where their name along with their description is provided based
on GeneCards query that was performed. GeneCards (http://
www.genecards.org) is an integrated database of human genes
that provides concise genomic related information, on all known
and predicted human genes (Safran et al., 2003). The members of
List 1 were subject to the differential gene expression analysis in
the microarray data of the Gordon Mesothelioma study so as to
identify their profile.

Identification of the Differential Gene
Expression Profile of CLDNs Interactome
in Microarray Data from MPM with Respect
to Tumor Histology, Asbestos Exposure,
CDKN2A Deletion Status, and Gender
We used gene expression data from the only MPM study
included in the Oncomine Research Premium Edition Cancer
Microarray database (http://www.oncomine.org) that compared
gene expression levels in the three main phenotypes of MPM
(epithelioid, biphasic, and sarcomatoid) in order to investigate
the gene expression profile of the claudin interactome in relation
to disease phenotype (Lopez-Rios et al., 2006; a study that from
this point on will be referred as Lopez-Rios Mesothelioma study
throughout the text). Furthermore, the same genes were analyzed
based asbestos exposure (exposed/unexposed), CDKN2A
deletion status (deletion/no deletion), and gender (male/female).
Reported asbestos exposure history was extracted by the sample
annotation information file provided in the supplementary
materials of the Lopez-Rios Mesothelioma study provided
in http://cbio.mskcc.org/public/Ladanyi_lab_mesothelioma_
datasets/. This study included adequate microarray data from
each histological subtype of MPM (n = 69 epithelioid, n = 10
sarcomatoid, n = 20 biphasic). We analyzed data only for those
genes that were found to be over- or under-expressed in the
samples of MPM patients in the Gordon Mesothelioma study.
All values from the transformed data were downloaded from
Oncomine during March 2013 following the same procedures as
in the case of the Gordon Mesothelioma study. The levels of gene
expression were subsequently arranged into strata with respect
to asbestos exposure history (exposed/unexposed), CDKN2A
deletion status (deletion/no deletion) and gender (male/female).
Regarding asbestos exposure history, 58 patients reported
asbestos exposure history, 29 patients reported non-exposure to

TABLE 1 | Interactome of the gene networks of claudin 4, 5, 8, 10, and 15.

Gene symbol Gene description

VKORC1 Vitamin K epoxide reductase complex, subunit 1

S100B S100 calcium binding protein B

EPHA2 EPH receptor A2

GEM GTP binding protein overexpressed in skeletal muscle

SHBG Sex hormone-binding globulin

UBC Ubiquitin C

OCLN Occludin

TJP1 Tight junction protein 1

TJP2 Tight junction protein 2

TJP3 Tight junction protein 3

INADL InaD-like (Drosophila)

CDH5 Cadherin 5, type 2 (vascular endothelium)

MPDZ Multiple PDZ domain protein

WNK4 WNK lysine deficient protein kinase 4

CLDN1 Claudin 1

CLDN2 Claudin 2

CLDN3 Claudin 3

CLDN6 Claudin 6

CLDN9 Claudin 9

CLDN11 Claudin 11

CLDN12 Claudin 12

CLDN14 Claudin 14

CLDN16 Claudin 16

CLDN17 Claudin 17

CLDN18 Claudin 18

CLDN19 Claudin 19

CLDN20 Claudin 20

CLDN22 Claudin 22

CLDN23 Claudin 23

CLDN24 Claudin 24

CLDN25 Claudin25

ESAM Endothelial cell adhesion molecule

TACSTD2 Tumor-associated calcium signal transducer 2

CCDC155 Coiled-coil domain containing 155

SYNE4 Spectrin repeat containing, nuclear envelope family member 4

ATE1 Arginyltransferase 1

MARVELD3 Marvel domain containing 3

CXCL8 Chemokine (C-X-C Motif) ligand 8

ETV5 Ets variant 5

GRM5 Glutamate receptor, metabotropic 5

FGF1 Fibroplast growth factor 1

asbestos, while for 12 patients this information was unknown
and they were excluded from the sub-analysis concerning the
effects of asbestos exposure. Regarding CDKN2A deletion status,
homozygous deletion was present in 59 patients, in 29 patients
it was not present while in 19 patients the information was not
available thus they were excluded from the subanalysis.

Statistical Analysis
GraphPad Prism 5.0 was used for statistical analysis. The
Kolmogorov–Smirnov normality test was used to assess the
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data distribution. Comparisons of gene expression between
MPM and healthy specimens were performed with the un-
paired t-test for parametric data and the Mann–Whitney U-
test for non-parametric data. The Benjamini–Hochberg False
Discovery Rate (FDR) was employed for multiple correction
testing, which reports FDR (or q-value), in order to corroborate
the validity of the results. The calculation of the q statistic
was based on the formula given by Rhodes et al. (2004).
The mean values of gene expression in the three histological
subtypes of MPM were compared with the One-Way ANOVA
with Tukey’s multiple comparison test for parametric data
and the Kruskal–Wallis test with Dunn’s multiple comparison
test for non-parametric data. Analysis with respect to asbestos
exposure history (exposed/unexposed), CDKN2A deletion status
(deletion/no deletion) and gender (male/female) was performed
with the un-paired t-test and the Mann–Whitney U-test for
parametric and non-parametric data respectively. Statistical
significance was set at the p < 0.05 and q < 0.05 level.

RESULTS

Identification of the Differential Gene
Expression Profile of CLDNs in Microarray
Data from MPM and Control Counterparts
The gene expression of CLDN-15 was found to be significantly
over-expressed in MPM specimens (q < 0.002) as compared to
healthy tissues. On the other hand, CLDNs -4, -5, -8, and -10were
significantly under-expressed compared to controls (q= 0.036, q
= 0.001, q = 0.003, and q = 0.001, respectively). There was no
significant difference in the gene expression of CLDN -1, -3, -6,
-7, -11, -14, -16, and -17. The results are summarized in Table 2.

Identification of the Interactome of the
Differentially Expressed CLDNs
In the analysis performed in the 3 databases as explained
in the Section Materials and Methods, 41 genes were found
to constitute the interaction network of the significantly
differentially expressed CLDNs. The symbols and descriptions of
those genes, as reported in the GeneCards database are presented
in Table 1. Gene expression data for further analysis in the
Gordon Mesothelioma study were available for 27 interactors
(gene symbols: VKORC1, S100B, EPHA2, GEM, SHBG, UBC,
OCLN, TJP1-3, INADL, CDH5, MPDZ, CLDN-1, -3, -6. -9, -11,
-14, -16, -17, -18, TACSTD2, CXCL8, ETV5, GRM5, FGF1) while

TABLE 2 | Claudins differentially expressed in MPM patients.

Gene ID q-value FC

UP-REGULATED

CLDN15 0.002 6.351

DOWN-REGULATED

CLDN4 0.036 −2.291

CLDN5 0.001 −4.055

CLDN8 0.003 −3.090

CLDN10 0.001 −1.484

no gene expression data were available for 14 interactors (gene
symbols:WNK4, CLDN -2, -12, -19, -20, -22, -23, -24, -25, ESAM,
CCDC155, SYNE4, ATE1, MARVELD3).

Identification of the Differential Gene
Expression Profile of the Interactome
Members of the Significantly Differentially
Expressed CLDNs
The gene expression of S100B, SHBG, CDH5, and CXCL8 were
significantly under-expressed compared to controls (q = 0.001,
q= 0.004, q= 0.015, and q= 0.007, respectively). The results are
summarized in Table 3.

Evaluation of the Effect of Disease
Phenotype, CDKN2A Deletion Status,
Asbestos Exposure, and Gender
The gene expression of CLDN-15 was found to be significantly
increased in the epithelioid histological subtype of MPM as
compared to both the biphasic and sarcomatoid phenotypes
(p < 0.01 and p < 0.001, respectively; Figure 1). The S100B gene
was found significantly over-expressed in the sarcomatoid type
of MPM compared to the epithelioid one (p < 0.05; Figure 2).
There was no significant difference in the gene expression of
CLDN-4, -5, -8, -10, SHBG, CDH5, and CXCL8 among the
three histological subtypes of MPM. Subsequent analysis with
respect to history of asbestos exposure showed that the CLDN-15
gene was significantly under-expressed in the cohort of patients
that were previously exposed to asbestos as compared to the
unexposed ones (p= 0.004; Figure 3). In addition, CLDN-15 was
found significantly under-expressed in the subgroup of patients
with homozygous deletion of the CDKN2A gene as opposed
to the patients with no deletion (p = 0.035; Figure 4). Gene
expression of CLDN-4, -5, -8, -10, S100B, SHBG, CDH5, and
CXCL8 was not influenced by asbestos exposure and CDKN2A
deletion status. Finally, the gene expression of CLDN-4, -5, -8, -
10, -15, S100B, SHBG, CDH5, and CXCL8 was not influenced by
gender.

DISCUSSION

MPM is a highly aggressive tumor arising from the mesothelial
cells that line the pleural cavity (Rascoe et al., 2012). Due to
the established cause and effect relationship between asbestos
exposure and MPM development, researchers seek to identify
suitable biomarkers for screening asbestos exposed populations
and for early diagnosis while avoiding false positive results

TABLE 3 | Claudin interactome genes differentially expressed in MPM

patients.

Gene ID q-value FC

S100B 0.001 −4.675

SHBG 0.004 −1.848

CDH5 0.015 −2.926

CXCL8 0.007 −3.605
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FIGURE 1 | CLDN-15 is over-expressed in epithelioid MPM as

compared to biphasic and sarcomatoid MPM. The number of patients per

group is demonstrated in the figure. Gene expression of CLDN15 gene data

was log transformed and normalized as described previously (Rhodes et al.,

2004). **p < 0.01; ***p < 0.001.

FIGURE 2 | S100B is over-expressed in sarcomatoid MPM as

compared to epithelioid MPM while it does not differ from biphasic

MPM. The number of patients per group is demonstrated in the figure. Gene

expression of S100B gene data was log transformed and normalized as

described previously (Rhodes et al., 2004). *p < 0.05.

and unnecessary invasive procedures (Ostroff et al., 2012).
Although, several studies have pointed to the effectiveness of
soluble mesothelin as a biomarker with high specificity, its
limited sensitivity confines its use as a screening tool for the
asymptomatic, asbestos-exposed cohorts (Creaney et al., 2015).
Thus, at the present time, there are no biomarkers in widespread
clinical use for MPM (Creaney et al., 2015).

Transcript profiling along with new omics-technologies
and bioinformatics, have been extensively used in the field
of personalized medicine enabling researchers to identify
biomarkers for cancer screening, diagnosis, and prognosis
(Diamantis et al., 2010). In this study we used established data
mining techniques through which we have already reported
AQP1, CLIC3, CLIC4, and BBS1 to be ideal candidates for

FIGURE 3 | CLDN-15 is under-expressed in MPM patients with history

of asbestos exposure. The number of patients per group is demonstrated in

the figure. Gene expression of CLDN-15 gene data were log transformed and

normalized as described previously (Rhodes et al., 2004). **p < 0.01.

FIGURE 4 | CLDN-15 is under-expressed in MPM patients with deletion

of the CDKN2A gene. The number of patients per group is demonstrated in

the figure. Gene expression of CLDN-15 gene data were log transformed and

normalized as described previously (Rhodes et al., 2004). *p < 0.05.

further study in MPM pathophysiology (Jagirdar et al., 2013;
Tasiopoulou et al., 2015; Vavougios et al., 2015).

Claudins are structural molecules of TJs present in epithelial,
endothelial, and mesothelial cells (Soini et al., 2006; Soini, 2011).
The patterns of claudin expression within TJs are distinctly
diverse among different tissues accounting for the observed
differences in permeability and electrical resistance of various
epithelia (Chao et al., 2009; Markov et al., 2011). It should be
noted that not only the expression of claudin family members but
also their localization within cells may vary (Amasheh et al., 2002;
Dittmann et al., 2014). The latter might be affected by several
exogenous factors such as food components, plant compounds
and microbial toxins (Dittmann et al., 2014; Markov et al., 2014).

Differential gene expression of claudins has been reported
in several tumors depending on the exact claudin and cancer
studied (Facchetti et al., 2007b; Chao et al., 2009; Lal-Nag
and Morin, 2009; Gonzalez-Mariscal et al., 2010; Valle and
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Morin, 2010; Davidson, 2011; Soini, 2011). Here we report that
CLDN-15 is significantly over-expressed in MPM patients as
compared to controls, while CLDNs -4, -5, and -8 are significantly
under-expressed. An in vitro study using M14K (epithelioid
MPM) andM38K (biphasicMPM) cell lines (Chaouche-Mazouni
et al., 2013) has shown by means of immunohistochemistry and
immunoblotting a high level of claudin 15 in both cell lines as
opposed to claudins 3 and 4. An earlier study demonstrated by
means of immunohistochemistry that in MPM there was a lower
expression of claudin-1, -3, -4, -5, and -7 than in metastatic
adenocarcinomas of the pleura, suggesting that they could serve
as differential diagnostic markers (Soini et al., 2006). In the same
report, non-neoplastic PMCs showed expression of claudin 2
but no expression was found for claudin-3, -4, -5, and -7. Two
more studies assessing the expression of claudin-4 in a large
series of normal and MPM tissues by immunohistochemistry,
reported that claudin-4 is a definitive negative marker for MPM
which is in agreement with our data showing the significant
under-expression of CLDN-4 in MPM as opposed to controls
(Facchetti et al., 2007a,b). This finding has been consistently
shown in other studies as well (Ohta et al., 2013; Ordóñez, 2013;
Jo et al., 2014). Finally one more study has demonstrated that the
gene expression of CLDN-3, -4, and -6 was significantly lower
in malignant peritoneal mesothelioma as compared to ovarian
carcinomas (Davidson et al., 2006).

In our study we also demonstrate that the CLDN-15 gene
is significantly over-expressed in the epithelioid histological
subtype of MPM as compared to the sarcomatoid and biphasic
phenotypes. Similar results were shown in diffuse malignant
peritoneal mesothelioma at the protein level (Davidson et al.,
2006).

On the contrary, we observed that the gene expression
of S100B is significantly increased in sarcomatoid MPM as
compared to epithelioid MPM. S100B has been reported as a
useful biomarker in assessing tumor load, stage, and prognosis
for patients with malignant melanoma (Zarogoulidis et al., 2015).

It has been suggested that the differences in the molecular
biology of epithelioid and non-epithelioid MPM may contribute
to differences in their clinical behavior (Balduyck et al., 2010).
The epithelioid cell type is among the factors that favor the overall
survival of MPM patients (Balduyck et al., 2010; Musk et al.,
2011; Linton et al., 2014). As a consequence it has been proposed
that the diagnosis of the sarcomatoid variant on a biopsy should
preclude radical surgery, and therapy should aim at symptoms
management and preservation of quality of life (Balduyck et al.,
2010). Therefore, the clear distinction of histological subtypes
could direct clinicians to the appropriate treatment options. In
the literature it is supported that the current golden standard for
MPMdiagnosis is a combination of two positive and two negative
immunohistochemical markers in the epithelioid and biphasic
type, but sarcomatous type do not have specific markers, making
diagnosismore difficult (Panou et al., 2015). Here we propose that
CLDN-15 and S100B could serve as complementary diagnostic
tools and should be further investigated.

Next we observed that CLDN-15 was under-expressed in
patients lacking theCDKN2A gene. Moreover, theCLDN-15 gene
was significantly under-expressed inMPMpatients with previous

history of asbestos exposure compared to the unexposed ones.
CDKN2A is the most frequently inactivated tumor suppressor
gene in human MPM. The inactivation of both p16INK4a and
Arf products of the CDKN2A gene has been suggested to act
synergistically in accelerating asbestos-induced tumorigenesis
in vivo (Sekido, 2013). Development of MPM is strongly
associated with asbestos exposure, with 80% of the patients
having previous exposure to asbestos fibers (Robinson and Lake,
2005; Nakano, 2008; Sekido, 2013). A significant association
has been described between increasing number of methylated
cell cycle control genes and asbestos burden. This finding was
followed by the observation that quantitative measure of asbestos
exposure was associated with over 100 discrete CpG loci and
that in 94% of cases there was increased methylation associated
with increased exposure (Christensen and Marsit, 2011). The
correlation between methylation status and extended exposure
to asbestos was also confirmed by Fujii et al. (2012). Likewise,
the results of this study are indicative of the epigenetic effect
of asbestos in the transcriptional level of the CLDN-15 gene
suggesting its potential utility as a screening biomarker for
populations at risk.

Although, in our analysis with respect to gender the gene
expression of CLDN-4, -5, -8, -15, S100B, SHBG, CDH5, and
CXCL8 was not different between sexes, we observed that the
SHBG gene which encodes the Sex Hormone-Binding Globulin
was under-expressed in MPM patients as compared to healthy
controls. SHBG is a major regulator of free plasma androgens
and also mediates androgen and estrogen signaling at the cell
membrane via cyclic adenosine monophosphate (Mononen and
Schleutker, 2009).

It is generally accepted that although MPM is less common in
women compared to men, female MPM patients survive longer
(Balduyck et al., 2010; Musk et al., 2011; Linton et al., 2014; Taioli
et al., 2014). It has been proposed that differences in asbestos
exposure, tumor biology, and the impact of circulating hormones
on host response must be investigated to understand this survival
advantage and improve prognosis for patients of both genders
(Taioli et al., 2014). The observed down-regulation of the SHBG
gene in the group of MPM patients relative to the control group
advocates the role of sex hormones in the pathogenesis and
prognosis of the disease. This is stressed out by a study showing
that estrogen receptor beta (ERβ) acts as a tumor suppressor of
high potential relevance to prediction of disease progression and
to therapeutic response in MPM patients (Pinton et al., 2009).

As in the case of SHBG, the genes encoding S100B, CDH5
and CXCL8 were found significantly under-expressed in MPM
specimens as compared to their healthy counterparts. The
protein product of S100B interacts with its target proteins within
cells to regulate enzyme activities, cell growth, differentiation and
Ca2+ homeostasis (Pang et al., 2012). It is thought that expression
levels of individual S100 family proteins vary considerably in
different tumors and with respect to cancer progression (Harpio
and Einarsson, 2004).

CXCL8 or interleukin-8 (IL-8) is a proinflammatory CXC-
type chemokine involved in the promotion of neutrophil
chemotaxis and degranulation (Waugh and Wilson, 2008). It
has been demonstrated that many types of human carcinomas

Frontiers in Physiology | www.frontiersin.org 6 March 2017 | Volume 8 | Article 156

http://www.frontiersin.org/Physiology
http://www.frontiersin.org
http://www.frontiersin.org/Physiology/archive


Rouka et al. Claudin Interactome Perturbations in MPM

express high levels of IL-8 relative to normal tissues (Palena et al.,
2012). In addition, high serum levels of this chemokine correlate
with disease progression and poor prognosis while a link exists
between IL-8, tumor epithelial-mesenchymal transition (EMT)
and tumor stemness (Palena et al., 2012; Gales et al., 2013). In
this study, IL-8 gene was found down-regulated in the group
of MPM patients compared to the control group. It has been
demonstrated that neutrophil infiltration into the pleural space
is a characteristic feature of an early and acute inflammatory
response in several pleural diseases and that activated PMCs
secrete IL-8 in a polarized fashion (Nasreen et al., 2001).
Inhibition of IL-8 has been shown to reduce human MPM
propagation in a nude mouse model (Galffy et al., 1999).
Asbestos directly stimulate PMCs to synthesize IL-8, possibly
playing an important role in mediating asbestos induced pleural
inflammation (Batra and Antony, 2015; Mutsaers et al., 2015).
Further studies are warranted to compare IL-8 expression and
features of EMT at various stages of tumor development (Palena
et al., 2012).

Vascular endothelial cadherin (VE-cadherin; CDH5),
an endothelial specific cell-cell adhesion molecule, plays a
pivotal role in the formation, maturation, and remodeling
of the vascular wall (Gavard, 2009). It has been shown that
CDH5 directly enhances the expression level of CLDN-5 by
tethering repressive transcription factors away from the CLDN-5
promoter. Conversely, the absence of functional CDH5 is
associated with loss of CLDN-5 expression (Taddei et al., 2008;
Gavard, 2009). These results suggest that any changes in CDH5
will impact the endothelial barrier function at multiple levels and
also explain why CDH5 inhibition may cause a marked increase
in permeability (Gavard and Gutkind, 2008; Taddei et al., 2008).
Increased permeability is an early step in the angiogenic process
enabling endothelial migration out of the primary vessel in
order to begin formation of the tumor neovasculature (Le Guelte
et al., 2011). On the other hand, it has been demonstrated
that induction of CDH5 during EMT promotes breast cancer
progression via TGFβ signaling indicating that in certain tumor
cells, CDH5 can induce cellular responses that are in contrast to
its role in cell-cell contact growth inhibition in endothelial cells
(Labelle et al., 2008). Thus, there are two distinct functions of
CDH5 both in angiogenesis and progression of cancer (Labelle
et al., 2008).

Regarding thoracic tumors in particular, it has been reported
that VE-cadherin may be an interesting marker for analysis in
anti-angiogenic therapeutic trials although results from clinical
studies are pending (Reinmuth et al., 2010).

An important limitation of our findings is the lack of
information regarding the asbestos exposure history of the
MPM patients of the Gordon Mesothelioma study. If these

data were available we could assess asbestos induced gene
expression changes between MPM patients and controls. Our
results require further investigation in the clinical setting with
the inclusion of a large series of MPM patients vs. healthy
asbestos exposed individuals serving as controls. Moreover,
detailed information regarding the duration of asbestos exposure
and the type of exposure (environmental/occupational) should
also be incorporated in future research.

CONCLUSIONS

The results of this study are suggestive of a distinct gene
expression profile of the claudin interactome in MPM and
underline the epigenetic effect of asbestos on the transcriptional
level of the CLDN-15 gene. The role of claudin-15 and
S100B in pleural physiology and pathophysiology is unknown
and requires in depth investigation at the functional level.
Additionally, both CLDN-15 and S100B should be further
investigated as gene biomarkers in MPM with respect to their
potential to discriminate the histological MPM subgroups at
the molecular level and thus provide tools for personalized
therapy.
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