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Abstract: ε-Polylysine (ε-PL) is a cationic antimicrobial peptide, which easily forms complexes with
food polyanions to weaken its antibacterial activity. A whey protein-ε-PL complex delivery system
was found to be able to solve this problem. This study investigated the antimicrobial activity of
the complexes and their mechanism against Gram-positive bacteria. The minimal inhibitory concen-
tration of the complexes with different ε-PL contents against Staphylococcus aureus and Bacillus subtilis
were 19.53–31.26 and 3.90–7.81 µg/mL, respectively, which were similar to free ε-PL. Furthermore,
the whey protein-ε-PL complexes had a strong bactericidal effect on Bacillus subtilis. The inhibi-
tion zone diameters of the complexes against Staphylococcus aureus and Bacillus subtilis containing
5000 µg/mL of ε-PL were 14.14 and 16.69 mm, respectively. The results of scanning electron mi-
croscopy showed that the complexes could destroy the cell membrane structure in Bacillus subtilis,
resulting in holes on the surface, but not in Staphylococcus aureus. The results of molecular dynamics
simulation showed that under electrostatic interaction, the complexes captured the phospholipid
molecules of the bacterial membrane through the hydrogen bonds. Parts of the ε-PL molecules of
the complexes were embedded in the bilayer membrane, and parts of the ε-PL molecules could pene-
trate the bilayer membrane and enter the bacterial internal environment, forming holes on the surface
of the bacteria. The antibacterial results in fresh meat showed that the whey protein-ε-PL complexes
could reduce the total mesophilic and Staphylococcus aureus counts. This study on the antibacterial
activity mechanism of whey protein-ε-PL complexes could provide a reference for the application of
ε-PL in protein food matrices.

Keywords: whey protein-ε-polylysine complexes; Gram-positive bacteria; antibacterial activity;
antibacterial mechanism

1. Introduction

ε-Polylysine (ε-PL) is a potent natural antibacterial agent widely used for the preser-
vation of dishes, noodles, cheese, and other foods [1–6]. ε-PL is an extracellular substance
of Streptomyces albulus ssp. lysinopolymerus [5,7,8], consisting of 25 to 30 L-lysine residues
linked by amide bonds formed by ε-amino and α-carboxyl groups [9]. More importantly,
it has been confirmed that ε-PL has the good properties of water solubility, thermal stability,
non-toxicity, and antibacterial activity [9–11].

It is worth mentioning that ε-PL is a kind of positively charged polymer, and, therefore,
it can be adsorbed by the negatively charged cell surface through its cationic properties,
leading to the formation of cellular holes and the disruption of morphology [12–14]. How-
ever, ε-PL has encountered some bottlenecks in practical application. Positively charged
amino groups also form insoluble precipitates with anions in the food matrix, thereby reduc-
ing the antimicrobial activity of ε-PL [15–17]. It was found that the optimum addition level
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of ε-PL in protein-rich foods was far greater than that in starch products [18]. Additionally,
excessive addition could bring astringency to the products and increase the product cost.
To solve these problems, the combination of cationic ε-PL and anion to form nanoparticles
was found to achieve good solubility while retaining its antibacterial activity [16,19,20].
Many studies have focused on the use of ε-PL in combination with other components,
especially polysaccharides. For example, the ε-PL-pectin complexes were reported to
achieve a good balance between good solubility and antibacterial activity [19,21]. Other
researchers also found that ε-PL-chitosan-sodium alginate nanoparticles had three times
the in vitro antibacterial activity of free ε-PL [16]. ε-PL could covalently bind to dextran
and the complex not only retained the bacteriostatic properties of ε-PL but also exhibited
good emulsifying properties [22].

Similar to polysaccharides, complexing ε-PL with proteins to form nanoparticles is
also an effective strategy. In particular, whey protein is a kind of negatively charged poly-
mer that can be combined with cationic polymers of ε-PL by interaction. It was found that
the complexes formed by ε-PL and whey protein still had antibacterial activity against
Salmonella enteritidis [23]. In addition, it was elucidated that the whey protein-ε-PL com-
plexes could form holes on the bacteria surface, resulting in the inactivation of Escherichia coli
in sauce duck [24]. Therefore, it is of great significance to study the antibacterial activity
mechanism of whey protein-ε-PL complexes in other microbial groups in food products.
The purpose of this study was to investigate the antibacterial activity of whey protein-e-PL
complexes against Gram-positive bacteria (Staphylococcus aureus and Bacillus subtilis) and
test their application in protein food matrices.

2. Materials and Methods
2.1. Sample Preparation

Food-grade whey protein and ε-PL were purchased from Hilmar Cheese Company and
Zhejiang Yinxiang Company, respectively. Table 1 shows the components and properties
of whey protein. Staphylococcus aureus (ATCC 25923) and Bacillus subtilis (ATCC 11778)
were purchased from Huankai Microbial Co., Ltd., which were cultured in Mannitol Salt
Broth/Agar or Nutrient Broth/Agar, respectively (Hangzhou Microbial Reagent Co., Ltd.,
Hangzhou, China). The final concentration of the two tested strains in the broth cultures
after reaching the stationary phase was 1 × 108 CFU/mL.

Table 1. Components and properties of whey protein.

Composition Typical Specification Test Method

Protein (% dry basis) 93.0 91.0 min Calculation
Protein (% as is) 89.0 87.0 min AOAC

Lactose (%) 0.1 / AOAC
Fat (%) 1.3 1.8 max AOAC

Moisture (%) 4.7 6.0 max AOAC
Ash (%) 2.7 3.5 max AOAC

pH / 6.2–7.0 10% Sol. At 20 ◦C

The samples were prepared according to previous studies [24,25]. Briefly, the sample
powders were dissolved in distilled water to prepare whey protein solution (10 mg/mL)
and ε-PL solution (10 mg/mL), respectively. The whey protein solution, ε-PL solution,
and distilled water were mixed in different proportions to prepare complex solutions with
different ratios of whey protein to ε-polylysine mass (RWP-PL). The RWP-PL were 50:0, 50:1,
50:2, 50:10, 50:20, 50:30, 50:40, and 50:50 (the final concentrations of ε-PL were 0, 100, 200,
1000, 2000, 3000, 4000, and 5000 µg/mL, respectively).

2.2. Determination of Minimum Inhibitory Concentration

The minimum inhibitory concentration (MIC) of whey protein-ε-PL complexes was
determined using the broth microdilution method with minor modifications [26]. Briefly,
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the whey protein-ε-PL complexes with different RWP-PL and ε-PL solution were diluted
in 96-well plates with Mueller-Hinton medium in a 2-fold gradient. Then, 100 µL of
the tested bacteria (Staphylococcus aureus or Bacillus subtilis) grown to logarithmic phase
(1 × 105 CFU/mL) was mixed with 100 µL of the samples. To the last two columns,
Staphylococcus aureus or Bacillus subtilis without antimicrobial agent and Mueller-Hinton
medium as controls were added to ensure bacterial viability and to detect contamination
of Mueller-Hinton medium. The 96-well plates were incubated in a 37 ◦C incubator for
24 h. Growth was assessed by measuring OD at 600 nm and the MIC was determined
as the minimum concentration at which wells did not show any OD increase.

2.3. Determination of Minimum Bactericidal Concentration

According to the method of Geng et al., the minimum bactericidal concentration (MBC)
of whey protein-ε-PL complexes was determined [27]. Specifically, after the experiment
of MIC, the bacterial suspension in the clear wells (100 µL) was inoculated on the solid
medium. Then, the sample was cultured at 37 ◦C for 24 h.

2.4. Analysis of Inhibition Zone

The inhibition zone was determined by the Oxford cup method with slight modifica-
tions [28]. The Oxford cups were placed in the Petri dish. Then, the bacterial suspensions
of Staphylococcus aureus and Bacillus subtilis were added into the sterilized plate count-
ing agar medium, cooled to 45 ◦C and mixed well (the final bacterial concentration was
1 × 106 CFU/mL), and appropriate amounts of medium with bacterial suspensions were
added to the Petri dishes. After a while, the Oxford cups were removed, and 200 µL of
the complexes in different proportions, ε-PL solution (5000 µg/mL), and whey protein
solution (5000 µg/mL) were added to the wells. The same volume of sterile water was
used as a blank control group. After culturing in a 37 ◦C incubator for 24 h, the diameter of
the inhibition zone was determined.

2.5. Scanning Electron Microscopy (SEM) Analysis

To study the effect of the whey protein-ε-PL complexes on the bacterial cell structure,
the cell morphology was observed using scanning electron microscopy (SU8010, Hitachi,
Japan). Staphylococcus aureus and Bacillus subtilis were cultured to the stationary phase
(1 × 108 CFU/mL). According to MIC and MBC data, the concentration of ε-PL was
5000 µg/mL and the whey protein-to-ε-PL complexes (1:1 mass ratio of whey protein-to-ε-
PL with a final ε-PL concentration of 5000 µg/mL) was chosen. Then, the two tested strains
that reached the stationary phase were mixed with ε-PL solution or whey protein-ε-PL
complexes at a volume ratio of 9:1. After mixing, the test samples were cultured at 37 ◦C
for 2 h and then treated according to the method described by Ukuku et al. [29]. Lastly,
the samples were observed using SEM.

2.6. Molecular Dynamics Simulation

Molecular dynamics (MD) simulation of the interaction of whey protein and ε-PL
with the bacterial membrane of Staphylococcus aureus and Bacillus subtilis was performed
using GROMACS 5.1.4 software package [30]. The Martini force field was employed in this
study [31].

Our previous study showed that the adsorption mechanism of the complexes on the
membrane of Gram-positive bacteria (Staphylococcus aureus and Bacillus subtilis) was similar
to that of Gram-negative bacteria (Escherichia coli) [24]. In order to elucidate the mechanism
by which complexes destroy Gram-positive bacteria membrane, a double membrane model
was established in this study (Figure 1). The Gram-positive bacteria bilayer membrane
model was composed of POPE (1-Palmitoyl-2-Oleoyl-sn-Glycero-3-Phosphoethanolamine)
and POPG (1-Palmitoyl-2-Oleoyl-sn-Glycero-3-Phosphoglycerol) molecules, in which the
POPE and POPG molecule ratio was 1:3. The upper and lower phospholipid bilayer
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constituted the inner environment of bacteria while the outer membrane belonged to
the outer environment of bacteria.
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Figure 1. Bilayer model. (A) No water molecules. (B) Only water molecules.

The molecular information on α-lactalbumin (PDB: 1HFZ) [32] and β-lactoglobulin
(PDB: 3NPO) [33] and the major components of whey protein were provided by the RCSB
Protein Data Bank. All topologies of ε-PL (degree of aggregation = 25), POPE, and POPG
for GROMACS were generated by CHARMM-GUI [34] and then modified according to
the Martini force field requirements.

In this study, six simulated systems were implemented (Table 2). The MD simulation
box size was 12.5 nm × 12.5 nm × 48 nm, and the distance of both the upper and lower
membranes from the top and bottom of the box was 10 nm. During model preparation, ε-
PL, α-La (α-lactalbumin), β-Lg (β-lactoglobulin), ε-PL-α-La complex (ε-PL-α-lactalbumin),
and ε-PL-β-Lg complex (ε-PL-β-lactoglobulin) were placed outside the bilayer membrane
(outer environment). After adding polarizable water and counterions, 10 ns of MD simula-
tion was performed to equilibrate the system while ε-PL, α-La, β-Lg, complex, and mem-
brane were constrained. The simulated pressure and temperature were controlled at 1 bar
and 37 ◦C, respectively [35,36]. The long-range electrostatic force was calculated using
the particle grid Ewald method [37]. The cutoff for both Van der Waals and short-range elec-
trostatic interaction was 11 Å. Periodic boundary conditions were applied. Other detailed
information was available from CHARMM-GUI. Ultimately, 100–300 ns of MD simulation
of the system was carried out.

Table 2. The parameters of the bilayer membrane molecular dynamics (MD) simulation.

System a ε-PL
(Number)

Protein
(Number) POPE/POPG Temperature

(◦C)
Time
(ns)

POPE/POPG 0 0 1024 37 ◦C 100
α-La-POPE/POPG 0 3 1024 37 ◦C 100
β-Lg-POPE/POPG
ε-PL-POPE/POPG

0
10

10
0

1024
1024

37 ◦C
37 ◦C

100
300

ε-PL-α-La-POPE/POPG 12 3 1024 37 ◦C 300
ε-PL-β-Lg-POPE/POPG 10 10 1024 37 ◦C 300

a POPE represents 1-Palmitoyl-2-Oleoyl-sn-Glycero-3-Phosphoethanolamine, POPG represents 1-Palmitoyl-2-
Oleoyl-sn-Glycero-3-Phosphoglycerol, ε-PL represents ε-polylysine, α-La represents α-lactalbumin, β-Lg rep-
resents β-lactoglobulin. The molecular ratio of POPE and POPG in the double-layer membrane model of
Gram-positive bacteria is 1:3 and thee POPE/POPG value is 1024 according to the model for biomolecular
simulations [31].
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2.7. Antibacterial Effect of Whey Protein-ε-PL Complexes on Total Mesophilic Counts and Native
Staphylococcus aureus in Fresh Meat

Fresh meat was purchased from Yonghui supermarket (Hangzhou, China) and kept at
4 ◦C. Firstly, fresh meat was cut into 1 cm chunks. Secondly, fresh meat was divided and
soaked in whey protein-ε-PL complexes (RWP-PL = 50:50, the final concentration of ε-PL
was 5000 µg/mL), ε-PL solution (5000 µg/mL, positive control), and whey protein solution
(5000 µg/mL, negative control). At regular intervals, the total mesophilic counts and native
Staphylococcus aureus in room temperature soaked fresh meat were determined according to
the standard microbiological testing method [38].

2.8. Data Analysis

The experiments were repeated three times on different working days. Data were
analyzed with one-way ANOVA followed by Turkey’s test (p < 0.05) and LSD test, and after-
wards by IBM SPSS Statistics 22. The data were expressed as means ± standard deviation.

3. Results and Discussion
3.1. Minimum Inhibitory Concentration of Whey Protein-ε-PL Complexes

MIC is defined as the minimum concentration required for a bacteriostatic agent to
inhibit microbial growth, and it is often used to test the bacteriostatic activity of poten-
tial antimicrobials. Table 3 shows the MIC of the ε-PL solution and whey protein-ε-PL
complexes against Staphylococcus aureus and Bacillus subtilis. All the complexes with dif-
ferent mass ratios had good inhibition against Staphylococcus aureus and Bacillus subtilis.
The MIC of the ε-PL solution and whey protein-ε-PL complexes against Staphylococcus
aureus were 19.53 and 19.53–31.26 µg/mL, respectively, and against Bacillus subtilis were
4.88 and 4.88–7.81 µg/mL, respectively. Thus, the inhibitory activity of the complexes
against Bacillus subtilis was stronger than that against Staphylococcus aureus. These results
were probably caused by differences in the cell membrane between the tested strains, such
as charges, amphoteric molecular structure, and hydrophobicity. These results were similar
to previous reports [11,39], which indicated that the MIC of ε-PL against Escherichia coli
and Staphylococcus aureus was 12.5 µg/mL, respectively. However, some research results
were slightly different from the results of this paper, which might be related to differences
in the tested strains [16,40]. More specifically, in this study, we found that the complexes
retained the bacteriostatic properties of ε-PL, and the binding of ε-PL and whey protein
did not weaken the antibacterial activity of the complexes.

Table 3. The minimum inhibitory concentration (MIC) of whey protein, ε-PL, and whey protein-ε-PL
complexes against Staphylococcus aureus and Bacillus subtilis.

Samples Mass Ratios
(Whey Protein-to-ε-PL)

MIC (µg/mL)

Staphylococcus aureus Bacillus subtilis

whey protein / - -
ε-PL / 19.53 4.88

complexes 50:1 25.00 6.25
complexes 50:2 25.00 6.25
complexes 50:10 31.26 7.81
complexes 50:20 31.26 3.90–7.81
complexes 50:30 23.44 5.86
complexes 50:40 31.26 3.90
complexes 50:50 19.53 4.88

3.2. Minimum Bactericidal Concentration of Whey Protein-ε-PL Complexes

MBC of whey protein-ε-PL complexes against Staphylococcus aureus and Bacillus subtilis
is shown in Table 4. According to the method [27], if there is no colony growth in the cul-
ture medium, it means that the compound has a bactericidal effect on microorganisms;
otherwise, it means that the compound has only an inhibitory effect on microorganisms.
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The MBC of the ε-PL solution and whey protein-ε-PL complexes against Staphylococcus
aureus were 39.06 and 39.06–100.00 µg/mL, respectively, and against Bacillus subtilis were
9.77 and 9.77–25.00 µg/mL, respectively. It was found that the MBC of whey protein-
ε-PL complexes against Staphylococcus aureus and Bacillus subtilis was about two to four
times higher than its corresponding MIC. The whey protein-ε-PL complexes had a strong
bactericidal effect on Bacillus subtilis, which showed the best bactericidal activity among
the treatments as the mass ratio of whey protein-to-ε-PL was 1:1.

Table 4. The minimum bactericidal concentration (MBC) of whey protein, ε-PL, and whey protein-ε-
PL complexes against Staphylococcus aureus and Bacillus subtilis.

Samples Mass Ratios
(Whey Protein-to-ε-PL)

MBC (µg/mL)

Staphylococcus aureus Bacillus subtilis

whey protein / - -
ε-PL / 39.06 9.77

complexes 50:1 50.00–100.00 12.50–25.00
complexes 50:2 50.00–100.00 12.50–25.00
complexes 50:10 62.50 15.63
complexes 50:20 62.50 15.63
complexes 50:30 93.75 11.72–23.43
complexes 50:40 62.50 15.63
complexes 50:50 39.06–78.13 9.77

3.3. Inhibition Zone of Whey Protein-ε-PL Complexes

The diameter of the inhibition zone can indicate the strength of the inhibition, where
a larger inhibition zone means a more significant inhibition effect. The inhibition zone
diameters of the ε-PL solution and the complexes against Staphylococcus aureus and Bacil-
lus subtilis are shown in Figure 2. It was found that the inhibition zone diameters of
the complexes against Staphylococcus aureus were in the range of 0–14.14 mm while the in-
hibition zone diameters of the ε-PL solution at the same concentration were in the range
of 0–14.15 mm. The inhibition zone diameters of the complexes against Bacillus subtilis
were in the range of 0–16.69 mm. Compared with the positive control, the inhibition zone
diameters of the ε-PL solution at the same concentration were in the range of 0–16.99 mm.
The results clearly indicated that the whey protein-ε-PL complexes retained the inhibitory
effect of ε-PL on Staphylococcus aureus and Bacillus subtilis, and the binding of whey protein
and ε-PL did not reduce the bactericidal effect of ε-PL. This is in line with the findings of
Shao et al. [24]. This phenomenon could be explained as only part of the amino groups
of ε-PL were bound to whey protein while the rest could still interact with the bacterial
surface, resulting in bacterial death.
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3.4. Morphological Changes of Staphylococcus aureus and Bacillus subtilis

To study the effect of whey protein-ε-PL complexes on the bacterial cell membrane
structure, the morphological changes in Staphylococcus aureus and Bacillus subtilis treated
with the complexes were observed using SEM (Figure 3). As shown in Figure 3A, the sur-
face of untreated Staphylococcus aureus was smooth, and the bacteria body was complete and
round with distinct boundaries. After treatment for 2 h at 37 ◦C with ε-PL (5000 µg/mL)
and the complexes (1:1 mass ratio of whey protein-to-ε-PL with a final ε-PL concentration of
5000 µg/mL) in the conditions chosen according to the MIC and MBC data, Staphylococcus
aureus adhered to each other, and the boundaries between the bacteria became blurred.
However, the bacteria body still remained intact (Figure 3B,C). Figure 3D shows that the sur-
face of untreated Bacillus subtilis was smooth, full, and complete, and the bacteria body
was short rod-shaped. After ε-PL treatment, wrinkles and holes appeared on the surface of
Bacillus subtilis, and the short rod-shaped structure was destroyed due to the deformation
of the bacteria body (Figure 3E). Similarly, after treatment with the complexes, large areas
of voids appeared on the surface of Bacillus subtilis, and the shape of the bacteria body was
completely destroyed (Figure 3F). The results of SEM confirmed the antibacterial effect
of whey protein-ε-PL complexes on Staphylococcus aureus and Bacillus subtilis. ε-PL has
shown both bacteriostatic and bactericidal properties [41]. For the bacteriostatic properties,
ε-PL could be combined with the bacterial membrane, resulting in bacterial membrane
sub-damage, and bacteria could repair this sub-damage through their own repair mecha-
nism to maintain normal growth and reproduction [3,42]. The results in this study found
that the complexes (1:1 mass ratio of whey protein-to-ε-PL with a final ε-PL concentration
of 5000 µg/mL) could destroy the cell membrane structure of Bacillus subtilis, resulting
in the holes that appeared on the surface, but not for Staphylococcus aureus.
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Figure 3. SEM images of Staphylococcus aureus and Bacillus subtilis exposed to different treatments.
(A) Untreated Staphylococcus aureus. (B) Staphylococcus aureus treated by ε-PL. (C) Staphylococcus
aureus treated by whey protein-ε-PL complexes. (D) Untreated Bacillus subtilis. (E) Bacillus subtilis
treated by ε-PL. (F) Bacillus subtilis treated by whey protein-ε-PL complexes. The concentration of
ε-PL was 5000 µg/mL and the mass ratio of whey protein-to-ε-PL was 1:1.

3.5. MD Simulation

MD simulation can analyze peptides at the atomic level, thus helping to further under-
stand the antibacterial mechanism of substances. The mechanism of bacterial inhibition
of whey protein-ε-PL complexes in monolayer and bilayer models was investigated using
MD simulation [24].

3.5.1. Schematic Diagram of Bacteriostatic Model of Bilayer Membrane

As shown in Figure 4A, the bilayer membrane of Gram-positive bacteria could main-
tain an intact configuration and could be used as a reference group. In the systems α-La-
POPE/POPG (Figure 4B) and β-Lg-POPE/POPG (Figure 4C), after the MD simulation,
α-La and β-Lg did not adsorb to the surface of the bilayer membrane of Gram-positive
bacteria. The results indicated that α-La and β-Lg could not interact with the bilayers
of Gram-positive bacteria and affect the integrity of the bilayers. In the system ε-PL-
POPE/POPG (Figure 4D), after the MD simulation, parts of the ε-PL molecules could be
embedded in the bilayer membrane, resulting in the formation of pores, which would
connect the internal and external environment of bacteria. Meanwhile, parts of the ε-PL
molecules could penetrate the bilayer membrane and then enter the bacterial internal
environment, which may lead to the disruption of bacterial growth. In the systems ε-PL-
α-La-POPE/POPG (Figure 4E) and ε-PL-β-Lg-POPE/POPG (Figure 4F), similar results
were observed. The ε-PL molecules of the complexes could be embedded in the bilayer
membrane or pass through the bilayer membrane into the bacterial internal environment,
which could destroy the structure of the bacterial membrane and result in bacterial death.
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Figure 4. The interaction diagram of ε-PL, whey protein, and the whey protein-ε-PL com-
plexes with the bilayer membrane model of Gram-positive bacteria. (A) POPE/POPG. (B) α-La-
POPE/POPG. (C) β-Lg-POPE/POPG. (D) ε-PL-POPE/POPG. (E) ε-PL-α-La-POPE/POPG. (F) ε-PL-
β-Lg-POPE/POPG.

3.5.2. Analysis of Z-Axis Potential Difference of Bilayer Membrane

The MD simulation results of Figure 5 were controlled by the potential difference
between the external environment and the internal environment of the bilayer membrane.
As shown in Figure 5, at the beginning of the MD simulation (0 ns), there existed a po-
tential difference between the external environment and bilayer membrane center (Z axis:
17–20 nm) during the system POPE/POPG, α-La-POPE/POPG, β-Lg-POPE/POPG, ε-PL-
POPE/POPG, ε-PL-α-La-POPE/POPG, and ε-PL-β-Lg-POPE/POPG. In the MD simula-
tion, the potential difference in all scenarios would result in the formation of hydrophilic
pores in the bilayer membrane. Meanwhile, the ε-PL molecules could bind to the negatively
charged phospholipid bilayer. Parts of the ε-PL molecules that were bound near the hy-
drophilic holes had the ability to gradually approach the holes by interaction, and then pass
through the holes into the internal bacterial environment. However, the α-La molecules
and β-Lg molecules had the same electric charge as the phospholipid membrane molecules,
which would prevent the α-La and β-Lg molecules from getting close to the hydrophilic
holes and being embedded in the bilayer membrane or entering the bacterial internal
environment. When exploring the mechanism of action of whey protein-ε-PL complexes
through MD simulation, it was likewise found that the compounds were able to form
nano-sized annular holes on the DPPC membrane [43]. Some researchers concluded that
antimicrobial peptides have the ability to interact with the amphiphilic membrane DMPC
through the annular holes by means of MD simulation, for example, the linear amphi-
pathic α-helical antimicrobial peptides [44]. These results were similar to the results of
the present study.
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3.5.3. Density Distribution Curve of Components in Bilayer Membrane System

In order to analyze the specific sites where the whey protein-ε-PL complexes interacted
with the bilayer membrane, the density distribution curve of the components of all MD
systems was calculated after MD simulation (Figure 6). The membrane molecule was
divided into head group, glycerol ester, and acyl chain to observe the insertion sites of whey
protein-ε-PL complexes, ε-PL, and whey protein in the membrane. In Figure 6, the X-axis 0
represents the center of mass of the bilayer membrane.
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Figure 6B,C show that α-La and β-Lg were located in the external bilayer environment
and there was no direct interaction between the whey protein and bilayer membrane.
In Figure 6D–F, parts of the ε-PL density curves overlap with the density distributions of
the external and internal membrane head group, glyceryl ester, and acyl chain. These results
are consistent with the fact that the ε-PL molecules could be embedded in the bilayer mem-
brane model or pass through the bilayer membrane into the inner bacterial environment
(Figure 4).



Foods 2022, 11, 2311 11 of 14

3.6. Antibacterial Effect of Whey Protein-ε-PL Complexes in Fresh Meat

The antimicrobial effect of the whey protein-ε-PL complexes on total mesophilic
counts and native Staphylococcus aureus was investigated in fresh meat (Figure 7). Accord-
ing to a preliminary experiment, Bacillus subtilis was not detected in fresh meat. There
was a significant decrease in the number of bacteria over time by the complexes treatment
(1:1 mass ratio of whey protein-to-ε-PL with a final ε-PL concentration of 5000 µg/mL,
120 min). As shown in Figure 7A, the total mesophilic count was reduced to 3.74 log CFU/g
in the sample treated with the complexes for 120 min while ε-PL reached 4.19 log CFU/g
and the negative control was 4.78 log CFU/g. As shown in Figure 7B, the results indicated
that the Staphylococcus aureus count was reduced to 1.59 log CFU/g in the sample treated
with the complexes for 120 min while ε-PL reached 2.00 log CFU/g and the negative control
was 2.38 log CFU/g. These results confirmed the bactericidal effect of the whey protein-
ε-PL complexes in actual food systems (fresh meat) and that such an effect was larger
than using ε-PL alone. It was hypothesized that ε-PL tended to bind to anionic proteins
in fresh meat to produce precipitation, thus affecting its antibacterial effect. In contrast,
the whey protein-ε-PL complexes better balanced its solubility and efficient antibacterial
activity, prevented the binding of ε-PL to anionic proteins in fresh meat, and therefore had
a better bactericidal effect. This agrees with our previous work on ε-PL and macromolecules
(i.e., sodium tripolyphosphate and carboxymethyl chitosan) complexes, which were proven
to have a similar antibacterial activity to ε-PL and exhibited an excellent bacteriostatic effect
in food systems [45,46].
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4. Conclusions

The interaction between ε-PL and whey protein did not diminish the efficient an-
tibacterial properties of the complexes against Staphylococcus aureus and Bacillus subtilis.
The complexes had both bacteriostatic and bactericidal effects. Among the treatments
tested, the complexes against microorganisms showed the highest antibacterial activity
at the mass ratio of whey protein-to-ε-PL of 1:1. The whey protein-ε-PL complexes could
disrupt the structure of the cell membrane in Bacillus subtilis, creating holes on the bac-
terial surface, but not in Staphylococcus aureus. The antibacterial mechanism of the whey
protein-ε-PL complexes was also revealed: the complexes and bacterial membrane were
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approached through electrostatic attraction. The complexes then affected the interaction
between the membrane molecules through hydrogen bonding between the amino group
of ε-PL and the oxygen atom of the membrane head group. Finally, parts of the ε-PL
molecules could be embedded in the bilayer membrane, forming pores that could connect
the internal and external environment of bacteria. Meanwhile, parts of the ε-PL molecules
could penetrate the bilayer membrane and enter the internal environment of bacteria, which
may lead to the disruption of bacterial growth and result in bacterial death. Additionally,
the whey protein-ε-PL complexes could inactivate microorganisms in fresh meat with better
antibacterial activity than ε-PL. This study confirmed the antibacterial activity of whey
protein-ε-PL complexes against Gram-positive bacteria and provided a theoretical basis for
its antibacterial mechanism.
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