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Abstract

Chromosomal deletions or reciprocal duplications of the 16p13.1 region have been implicated in a variety of
neuropsychiatric disorders such as autism, schizophrenia, epilepsies, and attention-deficit hyperactivity disorder (ADHD).
In this study, we investigated the association of recurrent genomic copy number variants (CNVs) with thoracic aortic
aneurysms and dissections (TAAD). By using SNP arrays to screen and comparative genomic hybridization microarrays to
validate, we identified 16p13.1 duplications in 8 out of 765 patients of European descent with adult-onset TAAD compared
with 4 of 4,569 controls matched for ethnicity (P = 5.061025, OR = 12.2). The findings were replicated in an independent
cohort of 467 patients of European descent with TAAD (P = 0.005, OR = 14.7). Patients with 16p13.1 duplications were more
likely to harbor a second rare CNV (P = 0.012) and to present with aortic dissections (P = 0.010) than patients without
duplications. Duplications of 16p13.1 were identified in 2 of 130 patients with familial TAAD, but the duplications did not
segregate with TAAD in the families. MYH11, a gene known to predispose to TAAD, lies in the duplicated region of 16p13.1,
and increased MYH11 expression was found in aortic tissues from TAAD patients with 16p13.1 duplications compared with
control aortas. These data suggest chromosome 16p13.1 duplications confer a risk for TAAD in addition to the established
risk for neuropsychiatric disorders. It also indicates that recurrent CNVs may predispose to disorders involving more than
one organ system, an observation critical to the understanding of the role of recurrent CNVs in human disease and a finding
that may be common to other recurrent CNVs involving multiple genes.
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Introduction

Recurrent copy number variants (CNVs) in the human genome

occur in areas of the genome prone to non-allelic homologous

recombination (NAHR) due to unequal crossover between large

regions of highly identical segmental duplications (.10 Kb in

length with .90% sequence identity) [1–3]. The short arm of

chromosome 16 contains an unusually high number of inter-

spersed segmental repeats, which lead to recurrent deletions and

duplications of discrete regions such as 16p13.1. Deletions of

16p13.1 vary in size but typically involve 14.7 Mb to 16.3 Mb and

have been described in a variety of complex mental disorders such

as autism, mental retardation, schizophrenia, attention-deficit

hyperactivity disorder (ADHD), and epilepsy [1,4–8]. The pre-

valence of reciprocal duplications of 16p13.1 is significantly

increased in patients with schizophrenia and ADHD [9,10].

Duplications or deletions of 16p13.1 can be inherited in families or

occur de novo. CNVs involving 16p13.1 are also found in normal

controls, which raise the question as to what determines the

pathogenicity of these CNVs.

Aortic aneurysms involving the ascending thoracic aorta

predispose to acute aortic dissection, and deaths due to aortic

dissections have ranked as high as the 15th leading cause of death

by the Center of Disease Control [11,12]. Although hypertension

and bicuspid aortic valve (BAV) are both risk factors for thoracic

aortic aneurysms and dissections (TAAD), one in five patients has

one or more affected relatives [13,14]. Thoracic aortic disease can

be a complication of genetic syndromes resulting from a single

gene mutation, such as Marfan syndrome (MFS) [15], but more

commonly a predisposition for aortic disease is inherited in
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families as an autosomal dominant condition without syndromic

features, termed familial thoracic aortic aneurysms and dissections

(FTAAD) [16]. A number of mutant genes have been identified

that predispose to FTAAD, including MYH11 (MIM 160745),

ACTA2 (MIM 100678), TGFBR2 (MIM 190182), TGFBR1 (MIM

190181) and MYLK (MIM 600922) [17–21]. MYH11 mutations,

which include missense mutations and in-frame splicing errors

and deletions, are responsible for 1% of FTAAD and are found in

families presenting with aortic disease and patent ductus arteriosus.

The majority of patients who have thoracic aortic aneurysms and

dissections do not have an identified syndrome or family history of

aortic disease.

Genetic factors predisposing to these sporadic thoracic aortic

aneurysms and dissections (STAAD) have not been identified. We

previously reported the first genome-wide copy number analysis of

STAAD patients using single nucleotide polymorphism arrays

[22]. Gene ontology and network analysis demonstrated that rare

CNVs in STAAD patients were enriched for genes that regulate

vascular SMC adhesion and contractility. One of the most com-

mon recurrent STAAD-associated CNVs involved large duplica-

tions of chromosome 16p13.1, and we sought to validate and

further characterize this duplication in STAAD patients in this

study.

Results

Duplications of 16p13.1 in STAAD patients
Single nucleotide polymorphism (SNP) array data (Illumina

Human CNV370-Quad BeadChip) obtained from 765 unrelated

STAAD patients of European descent over the age of 30 years

(STAAD-1 cohort) were analyzed for CNVs and compared with

CNVs identified from SNP array data from 4569 ethnically

matched controls (Table S1) as previously reported [22]. Com-

paring the STAAD-1 cases and 4569 controls from 4 dbGAP

control datasets revealed only weak evidence of population sub-

structure (l= 1.05). We identified large heterozygous 16p13.1

duplications of variable size in 8 of 765 (1.0%) STAAD patients

compared with 4 duplications of 16p13.1 involving the same

region in 4569 (0.09%) ethnically matched controls (Table 1, Table

2, and Table S2; Figure 1, Figures S1 and S2). Thus, 16p13.1

duplications were significantly enriched in patients with STAAD

(Fisher’s exact P = 5.061025, odds ratio (OR) = 12.2, 95% confi-

dence interval (CI) = 3.2–54.8). We validated the 16p13.1 duplica-

tions with a second independent assay, a customized oligonucleotide

array that targeted the common duplicated interval between 14.0

and 17.7 Mb of 16p13.1 (Figure S3). The 16p13.1 duplications

ranged in size from 0.84 to 2.1 Mb and encompassed a common

0.84 Mb genomic interval from 14.6 to 16.7 Mb on chromosome

16p13.1. One patient with segmental uniparental isodisomy of 16p

(start 0, end 30888403) was not included in our analysis. The

duplicated region contained between 9 and 18 genes, and 9 genes

were duplicated in all patients: MPV17L, C16orf45, KIAA0430, NDE1,

MYH11, C16orf63, ABCC1, ABCC6, and NOMO3. The variable size

of the duplications and haplotype analysis of flanking SNPs indicate

that the duplications in these patients are unique and independent

events. No deletions of 16p13.1 were identified in STAAD-1 patients.

Interestingly, patients with 16p13.1 duplications were signifi-

cantly more likely than controls to harbor a second rare CNV.

Three patients with 16p13.1 duplications harbored additional

CNVs that were unique to STAAD patients and not found in 4569

unaffected controls. In comparison, only 7 of 134 STAAD patients

without 16p13.1 duplications had two or more rare CNVs not

found in controls (Fisher’s exact P = 0.012) (Table S3).

To replicate the association of 16p13.1 duplications with

STAAD, quantitative PCR (Q-PCR) assays were designed to

assess the number of alleles at the 16p13.1 locus in genomic DNA.

Since MYH11 was common to all the identified duplications and

the best candidate for the dosage-sensitive gene conferring

increased aortic disease risk, probes were designed for exons 2,

19 and 27 of MYH11 for this assay (Figure S4), along with probes

for other genes, specifically PDXDC1, C16orf45 and ABCC1 (Figure

S1, Table S4). Quantification of copy numbers for these genes

using Q-PCR coincided with the copy number derived from the

Illumina SNP array analysis of the 8 original samples, as well as 15

samples without 16p13.1 duplications (Figure 1; Figures S1, S2,

S3). Using the Q-PCR assay, we identified two 16p13.1 dup-

lications in 242 STAAD patients of European descent who were

recruited using the same clinical criteria as the STAAD-1 cohort

(STAAD-2 cohort; Table S1). Additionally, a cohort of 95 patients

of European descent with bicuspid aortic valves and ascending

aortic aneurysms or aortic dissections (BAV/TAAD cohort) was

obtained from the GenTAC registry and screened for 16p13.1

duplications (Figure 1 and Table S5). One BAV/TAAD patient

was identified with a 16p13.1 duplication. To determine if 16p13.1

duplications caused an inherited predisposition to TAAD, we

screened 130 unrelated affected probands with familial TAAD and

without identified causative mutations (FTAAD cohort) [17]. In

family TAA499, the 16p13.1 a de novo duplication in the affected

proband and did not segregate with aortic disease (Figure 2). In

family TAA337, the duplication 16p13.1 was inherited but failed

to segregate with thoracic aortic disease. In total, the replication

cohort consisted of 466 patients. We identified 5 patients (1.1%)

with 16p13.1 duplications in comparison with 1 of 1361 controls

(Table 1, P = 0.005, OR = 14.7, 95% CI = 1.6–694), including no

duplications identified in 521 local controls of European descent

and one of 840 SNP genotypes in a dbGAP dataset derived from

SNP array data on controls of European descent without known

vascular disease. A SNP array platform (Illumina Human 660W-

Quad Beadchip) was used to confirm the duplications identified by

Q-PCR in the FTAAD and BAV/TAAD cohorts. Combining the

data from all cohorts (1232 patients and 5930 controls) resulted in

Author Summary

Thoracic aortic aneurysms and acute aortic dissections
(TAAD) have ranked as high as the fifteenth leading cause
of death in the United States. TAAD can be inherited
in families in an autosomal dominant manner, and
mutations in ACTA2 and MYH11, genes encoding two
major components of the smooth muscle contractile unit,
are responsible for approximately 15% of familial TAAD.
However, the majority of patients with TAAD do not have
an identified syndrome or family history of aortic disease,
and genetic factors predisposing to these sporadic cases
have not been identified. To determine whether recurrent
genomic copy number variants (CNVs) contribute to TAAD
pathogenesis, we screened 765 patients with adult-onset
TAAD for CNVs and identified recurrent 16p13.1 duplica-
tions in 1% of TAAD cases compared with 0.09% of
controls. The 16p13.1 duplication involves 9 genes,
including MYH11. This recurrent duplication of 16p13.1
has also been determined to be associated with neuro-
psychiatric conditions, specifically schizophrenia and
attention-deficit hyperactivity disorder. Our study suggests
that recurrent duplications of 16p13.1 confer a risk for
both neuropsychiatric diseases and TAAD, a finding that
may be common to other recurrent CNVs involving
multiple genes.

Genomic Duplication and Aorta Dissection

PLoS Genetics | www.plosgenetics.org 2 June 2011 | Volume 7 | Issue 6 | e1002118



a highly significant association between TAAD and duplications of

16p13.1 (P = 3.9761027, OR = 12.6, 95% CI = 4.2–45.3).

Phenotype, pathology, and MYH11 expression levels in
patients with 16p13.1 duplications

Analysis of clinical data from the 16p13.1 duplication STAAD

patients revealed that all 11 patients from the STAAD cohorts

with 16p13.1 duplications presented with aortic disease that had

progressed to aortic dissection involving either the ascending (type

A) or descending (type B) aorta (Table 2). The sizes of the as-

cending aorta at the time of type A dissections were noted to be

between 4.5–5.0 cm, which is smaller than aortic diameter trig-

gering referral for surgical repair (5.0–5.5 cm). Therefore, unlike

TAAD patients without duplications who more often harbor

clinically stable aortic aneurysms, patients with duplications were

more likely to dissect (P = 0.010). Importantly, review of the

medical records of the 11 STAAD and 2 FTAAD patients with

16p13.1 duplications found no evidence of autism, developmental

delay, ADHD, schizophrenia, or congenital anomalies including

patent ductus arteriosus, although one patient was on medication

for an anxiety disorder, while another patient abused alcohol

(information not available from GenTAC patients, Table 2).

Assessment of the ascending aortic pathology of patients with

16p13.1 duplications identified medial degeneration of the aorta

characterized by loss of elastic fibers and proteoglycan accumu-

lation (Figure 3A). Fibromuscular dysplasia was evident in arteries

of the vasa vasorum, a finding previously observed in aortas from

patients with MYH11 mutations [23]. Since MYH11 lies within the

duplicated 16p13.1 region, MYH11 expression was assessed using

ascending aortic tissue from STAAD patients with the 16p13.1

duplications. MYH11 expression levels were increased in the RNA

from 16p13.1 duplication aortas compared with aortas from

patients without the duplication and age-matched controls, using

either smooth muscle (SM) calponin 1 (CNN1, a SM-specific gene;

P = 0.011 and 0.014, respectively) or glyceraldehyde-3-phosphate

dehydrogenase (GAPDH,) expression as an internal control

(P = 0.033 and 0.027, respectively; Figure 3B). MYH11 expression

levels in ascending aortic tissue were not significantly different

between STAAD patients’ aortas without the 16p13.1 duplication

and control aortas.

Discussion

Here we report a twelve-fold overrepresentation of chromosome

16p13.1 duplications in patients with thoracic aortic disease

(1.06% versus 0.09% in controls), indicating greater enrichment of

this duplication in thoracic aortic disease than the three-fold

overrepresentation previously identified in schizophrenic patients

and the five-fold increase in attention-deficit hyperactivity disorder

[10]. Note that the frequency of the 16p13.1 duplication in

European controls or controls of European descent of 0.09% was

identical between our study and both the schizophrenia and

attention-deficit hyperactivity disorder studies [4]. Although the

16p13.1 duplications vary in size, the duplicated regions associated

with these three disorders overlap. Therefore our data support a

stronger predisposition for thoracic aortic disease than for neu-

ropsychiatric disease with 16p13.1 duplications. In contrast with

other contiguous gene defects, such as the 1q21.1 deletion syn-

drome, we found that 16p13.1 duplications are associated with an

adult-onset cardiovascular disorder in the absence of significant

neuropsychiatric abnormalities [24,25]. These data indicate that

CNVs may be associated with non-overlapping phenotypes that

affect more than one organ system, an observation critical to our

understanding of the role of recurrent CNVs in human disease and

a finding that may be common to other recurrent CNVs involving

multiple genes.

Significant associations were recently reported between neuro-

psychiatric disorders and rare but recurrent deletions and dupli-

cations involving the short arm of chromosome 16. These studies

used cohorts of patients with and without a family history of the

disease, similar to the study reported here [9,26]. Although our

data on segregation of the 16p13.1 duplications were limited in

this study, both inherited and de novo duplications were identified in

FTAAD patients. As in prior studies of duplications or deletions

involving this region, we found that the association between

16p13.1 duplications and STAAD is moderated by decreased

penetrance, as illustrated by the identification of these CNVs in

controls and unaffected family members. Among 16p13.1

duplication carriers, the risk for thoracic aortic disease is relatively

higher than the risk for schizophrenia, but less than the risk

associated with single gene mutations that cause familial TAAD.

We hypothesize that the duplications may act to modify the age of

onset and dissection risk in families with single gene mutations. At

the same time, the effect of 16p13.1 CNVs is substantially greater

than the typical effect size of common variants identified in

genome-wide association studies. Although we cannot exclude the

possibility that the 16p13.1 leads to another, unidentified trait that

increases the risk for TAAD, our findings suggest that rare CNVs

with moderate effects are an important part of the allelic spectrum

that contributes to the risk for TAAD.

This is the first report of an association between a recurrent

CNV and an adult-onset vascular disease, although the assessment

of CNVs in vascular diseases has been limited [22,27,28]. In

addition to the increased frequency of 16p13.1 duplications in

TAAD in this study, we also identified increased numbers of rare

CNVs in TAAD patients compared to controls, as well as a greater

Table 1. Frequency of 16p13 duplications in cases and controls.

Cases Controls Significance

16p13 dup Total 16p13 dup Total OR (95% CI) P value

Discovery 8 765 4 4569 12.2 (3.2–54.8) 5.061025

Replication 5 467 1 1361 14.7 (1.6–694) 0.005

Combined 13 1232 5 5930 12.6 (4.2–45.3) 3.9761027

Published Controlsa 32 34421 11.3 (5.4–22.3) 2.7761029

Total 13 1232 37 40351 10.7 (5.1–21.1) 1.461028

aData on published controls is cited from [8].
doi:10.1371/journal.pgen.1002118.t001

Genomic Duplication and Aorta Dissection
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prevalence of additional rare CNVs in TAAD patients with

16p13.1 duplications [22]. In addition, ontology analysis of the

rare CNVs identified in sporadic and familial TAAD patients were

more significantly more likely to include genes encoding proteins

involved in contraction and adhesion of cells when compared to

rare CNVs found in controls [22].

Nine genes are commonly duplicated amongst all TAAD pa-

tients harboring 16p13.1 duplications, and of these genes, MYH11

is the most likely candidate for the predisposition to thoracic aortic

disease. MYH11 encodes the smooth muscle cell (SMC)-specific b-

myosin heavy chain isoform. The monomeric unit of myosin is

a multimeric complex consisting of two heavy chains associate

with two pairs of light chains. These units then assemble into

thick filaments that slide along adjacent a-actin-containing thin

filaments to contract SMCs using the force generated by the

myosin heavy chain. Prior studies on MYH11 mutations that cause

familial TAAD suggested that the mutant myosin molecules have a

dominant negative effect on filament formation, supporting the

hypothesis that MYH11 mutations will disrupt SMC contractile

function [18]. We demonstrated that the 16p13.1 duplications are

associated with increased MYH11 mRNA levels in aortic tissue.

Data from a transgenic mouse model overexpressing an isoform of

Myh11, SM1, similarly showed increased SM1 mRNA levels, but

no increase in SM1 protein levels [29]. Studies in C. elegans have

shown that a precise ratio of b-myosin to its cellular chaperone,

UNC45, is required for proper folding of myosin and assembly

into thick filaments, and an imbalance in this ratio causes the

degradation of myosin heavy chain protein and dysfunction of

Figure 1. Characterization of 16p13.1 duplications in individuals with thoracic aortic aneurysms and dissections. (A) The extent of
16p13.1 duplications in controls (green), the discovery cohort (blue) and the replication cohort (black) is shown. The scale is in megabases. The
common duplicated region that is spanned by all CNVs is boxed. Below is a schematic of the 16p13.1-p12.3 region, which includes the location of
genes and low-copy repeats (LCR, arrows).
doi:10.1371/journal.pgen.1002118.g001
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the contractile complex [30]. Therefore, we hypothesize that over-

expression of MYH11 does not lead to increased b-myosin protein

levels, possibly due to imbalance of b-myosin to its chaperone,

leading to degradation of b-myosin and dysfunction of the SMC

contractile unit.

One important limitation of our study is potential bias due to

the differential sensitivity of SNP array platforms and quantitative

PCR to detect 16p13.1 duplications, which could potentially lead

to a spurious association between this CNV and TAAD. We found

that the prevalence of 16p13.1 duplications was similar in dis-

covery and replication cases, which were screened using these two

different methods. In addition, the frequency of duplications in

controls matched the population frequency reported in multiple

previous publications. Therefore, our conclusions are unlikely to

be altered significantly by the bias related to using different CNV

discovery methods.

In summary, although the presence of the 16p13.1 duplication

confers a risk for thoracic aortic disease, the decreased penetrance

of TAAD associated with the duplication suggests that other risk

factors are required for expression of the clinical phenotype [26].

The risk factors can be a genetic variant, such as another CNV, or

possibly the presence of a BAV or a single gene mutation.

Alternatively, other known risk factors for TAAD, such as poorly

controlled hypertension, could contribute to aortic dissections in

16p13.1 duplication carriers by increasing the hemodynamic

forces on the ascending aorta. With these risk factors, the presence

of the 16p13.1 duplication predicts development of an acute aortic

dissection at an aortic diameter less that 5.0 cm rather than a sta-

ble aneurysm when compared with thoracic aortic disease patients

without the duplication. At the same time, the lack of schizo-

phrenia and ADHD in these patients also implies that a second,

and most likely different event, is required for development of neu-

ropsychiatric disease. Further studies in larger cohorts with com-

plete phenotypic data are needed to further define the additional

genetic and environmental risk factors leading to aortic dissection

or schizophrenia in patients with 16p13.1 duplications.

Material and Methods

Thoracic aortic aneurysm and dissection cohorts
The Institutional Review Boards at the University of Texas

Health Science Center at Houston and Baylor College of Medi-

cine approved this study. Informed consent was obtained from

all study participants. A cohort of 800 patients (STAAD-1) of

European descent referred for treatment of an ascending aneu-

rysm or an ascending (Stanford type A) or descending (type B)

aortic dissection was recruited (STAAD-1). The following patients

were excluded from this cohort: patients less than 31 years of age;

patients with aortic lesions associated with trauma, infection,

aortitis, or connective tissue disorders (Marfan syndrome, Ehlers-

Danlos syndrome, Loeys-Dietz syndrome); patients with a first

degree relative with thoracic aortic aneurysm or dissection;

patients with an isolated intramural hematoma, penetrating aortic

ulcer, or pseudoaneurysm; and patients who received packed red

blood cell, whole blood or platelet transfusion within 72 hours

of blood collection. To select 765 ethnically matched cases, mul-

tidimensional scaling (MDS) was performed on a subset of the

genome wide genotype data that were in linkage equilibrium or in

low levels of linkage disequilibrium; these data came from the

cases, the controls, and four HapMap populations (CEU – CEPH

Utah residents with ancestry from northern and western Europe,

YRI-Yoruba in Ibadan, Nigeria, JPT-Japanese in Tokyo, Japan

Figure 2. Segregation of the 16p13.1 chromosomal duplication in patients with familial inheritance of thoracic aortic aneurysms
and dissections. Circles indicate females; squares indicate males. Pedigrees of families TAA337 and TAA499 are shown, and the legend indicates the
diseases and the presence or absence of the 16p13.1 duplication in the family members.
doi:10.1371/journal.pgen.1002118.g002
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and CBT - Han Chinese in Beijing, China) [31]. Samples that

deviated by more than 4 SDs from the median of MDS com-

ponents 1 and 2 were removed.

A second cohort of 242 patients meeting the same criteria was

used as a replication cohort (STAAD-2). A third cohort of 130

affected probands of unrelated families with multiple members

with TAAD (FTAAD cohort) who did not carry a known genetic

mutation or syndrome identified as the cause of the inherited

TAAD was enrolled. The probands and family members were

considered affected if they had dissection of the thoracic aorta,

surgical repair of an ascending aneurysm, or had dilatation of the

ascending aorta greater than 4.5 cm based on echocardiographic

measurements of the aortic diameter at the sinuses of Valsalva

and/or the ascending aorta. Finally, a cohort of 95 patients with

bicuspid aortic valve and ascending aneurysm or dissection was

obtained from the GenTAC registry (BAV/TAAD cohort). No

history of schizophrenia, autism, ADHD or other mental illnesses

were identified in any of the above TAAD patients.

The primary controls for this study were 6809 Illumina geno-

types from unaffected adults (accessions phs000092.v1.p1, phs000

004.v1.p1, phs000093.v2.p2, phs000001.v2.p1 and phs000142.

v1.p1), which were obtained from the Database of Genotypes

Figure 3. Pathological abnormalities and MYH11 expression levels in aortic tissue associated with 16p13.1 duplication in patients
with staad. (A) Movat staining of aortic media from a 16p13.1 duplication patient shows medial degeneration characterized by proteoglycan
accumulation (stained blue), loss and fragmentation of elastic fibers (stained black) and an acute aortic dissection (arrowhead) when compared with a
control aorta. Some of the arteries in the vasa vasorum of the patients with 16p13.1 duplication showed increased size and thickness (arrows).
Smooth muscle cell (SMC) alpha-actin staining of the vasa vasorum indicated that increased thickness of vasa vasorum was due to increased SMCs in
the medial layer. (B) Quantitative real-time PCR assays (Q-PCR) of MYH11 expression levels in ascending aortic tissues from STAAD patients with and
without 16p13.1 duplications and control aortic tissues indicated that MYH11 message levels were significantly increased in patients with 16p13.1
duplication (n = 4), compared to those of patients without 16p13.1 duplication (n = 6) or to controls (n = 5). The relative MYH11 mRNA expression was
determined by Q-PCR and normalized to either calponin-1 (CNN1) or GAPDH.
doi:10.1371/journal.pgen.1002118.g003
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and Phenotypes (dbGAP, http://www.ncbi.nlm.nih.gov/gap). As

described above for the cases, MDS was used to select 5409

ethnically matched controls of European descent. The character-

istics of the five control cohorts and genotypes, as well as the

methods for data quality control, allele detection and genotype

calling, have been described [22]. Unrelated European descent

individuals from each dataset were analyzed with identical me-

thods. Numbers of excluded genotypes were not significantly

different between datasets. For the discovery cohort, 4569 controls

from 4 independent datasets were analyzed. For the replication

cohort, a fifth independent dataset with 840 controls was analyzed,

in addition to 521 European descent healthy control DNAs from

individuals who did not have cardiovascular disease. DNA was

isolated from peripheral blood or buccal cells using standard

methods.

Quantitative real-time PCR for CNV assay
Quantitative PCR was performed using an ABI Prism 7900

Sequence Detection System (Applied Biosystems, Foster City, CA).

Each reaction was performed in a total volume of 20 ml,

containing 16 Taqman Universal PCR Master Mix, 16 RNase

P Primer-Probe (VIC dye) Mix, 10 mM forward and reverse

primers, 5 mM TaqMan Probe and 10 ng genomic DNA. RNaseP

is a single copy gene present as two copies in all samples and was

used as an endogenous control for normalizing the differences in

input DNA. All reactions were performed in quadruplicate and

repeated three times. Positive controls (samples with the 16p13.1

duplication) were randomly embedded in the TAAD samples to

confirm these samples were appropriately detected as having three

alleles. PCR thermocycling conditions consisted of an initial

polymerase activation and DNA denaturation step at 60uC for

15 min, followed by 40 cycles of 15 s at 95uC and 1 min at 60uC.

The threshold cycle (Ct) level for each tested gene was auto-

matically determined by the Sequence Detection Software (SDS

v2.1, Applied Biosystem, Foster City, CA). The copy number of

the MYH11 as well as PDXDC1, C16orf45 and ABCC1 in each

tested sample was determined using Copy Caller (verson 1.0,

Applied Biosystems, Foster City, CA).

CGH using agilent oligonucleotide array
Sample DNA and reference DNA were fluorescently labeled

and hybridized according to the manufacturer’s protocol. Array

CGH was performed with the human genome CGH microarray

kit (Agilent Technologies, Santa Clara, CA). Following hybridiza-

tion, slides were washed and assessed for fluorescence using an

Agilent microarray scanner (Agilent Technologies, Santa Clara,

CA). The scanned data were extracted using Feature Extraction

9.1.1 software (Agilent Technologies, Santa Clara, CA) and were

analyzed using CGH Analytics 3.4 software (Agilent Technologies,

Santa Clara, CA). Genomic copy number changes were identified

with the assistance of the Aberration Detection Method 1

algorithm.

Aortic tissue collection and analysis
Control ascending aortic tissues were obtained through the

International Institute for the Advancement of Medicine (IIAM)

from individuals with no known cardiovascular diseases or

hypertension that died of non-vascular causes. Patients’ ascending

aortic tissues were obtained from STAAD patients in the operating

room and transferred immediately to the laboratory for processing

and freezing. Total human aortic tissue RNA was extracted with

Trizol (Invitrogen, Carlsbad, CA) according to the manufacturer’s

protocol. Reverse transcription reactions were performed using

MMLV-RT kit (Invitrogen, Carlsbad, CA) and random hexamer

according to the manufacturer’s protocol. For Quantitative Real-

time PCR analysis of mRNA expression, TaqMan probes were

purchased from Applied Biosystems and analyzed using an

Applied Biosystems Prism 7900 HT Sequence Detection System

(Applied Biosystems, Foster City, CA) according to the manufac-

turer’s protocol. Experiments were performed in triplicate. Both

calponin-1 (CNN1), which encodes another smooth muscle cell

contractile protein, and GAPDH were used as internal controls.

Formalin-fixed, paraffin-embedded aortic tissue sections from

STAAD patients and controls were stained with Movat stain or

immunostained with monoclonal antibody (Sigma Aldrich, St.

Louis, Missouri ) for smooth muscle (SM) a-actin as described [32].

Statistical analysis
Statistical comparisons of continuous variables between the

discovery and replication cohorts were performed using the Mann-

Whitney U test, while categorical variables were compared using

the Chi-square test or Fisher’s exact test, as appropriate. Survival

curves for time to enrollment were compared using the log-rank

test. Stepwise Cox proportional hazards regression was used to

estimate adjusted odds ratios for predictor variables. The Breslow-

Day-Tarone test was used to assess the homogeneity of the ORs

between the primary and replication datasets. Statistical analysis of

Q-PCR data was performed with the Mann-Whitney U test.

Supporting Information

Figure S1 Characterization of 16p13.1 duplications in STAAD

patients and comparison with other reports. (A) 16p13.1

duplications were detected in 9 out of 800 discovery cases using

Illumina Human CNV370-Quad SNP arrays. The extent of

16p13.1 duplications from each of the patients is represented by a

blue line with the patient sample ID on the side. The consensus

region that is spanned by all CNVs is shown by a dashed red line.

The common duplicated regions identified by Williams et. al.,

Ingason et. al., Ullmann et. al. and Hannes. et al. are also indicated

with green lines. Below is a schematic of the 16p13.1-p12.3 region,

which includes the location of genes and segmental duplications

(denoted by orange, yellow and black bars). The locations of Q-

PCR probes used to detect DNA duplications are indicated by

colored arrows. At the bottom, the largest low copy repeats in the

region (,50 kb) with high sequence homology (.98%) are shown.

The arrows show directionality and the different colors denote

different repeats. (B) 16p13.1 duplications identified in STAAD

patients by Illumina SNP array were validated by Q-PCR assays

using probes located in PDXDC1, C16orf45, MYH11 and ABCC1.

Patient identifiers are shown on the X-axis. The predicted copy

number as detected by independent probes is shown on the Y-axis.

(TIF)

Figure S2 Illumina GenomeStudio plots of 16p13.1 duplications

in STAAD patients. B allele frequencies (top) and Log R ratio

values (bottom) are plotted for SNPs from each individual on

chromosome 16p. The 16p13.1 duplications in patients MG7647,

MG521044 and MG8233 can be identified by the deviation of

heterozygous values from 0.5 to 0.67 and 0.33 in the B allele

frequency plots (as indicated by the red arrows) as well as the

upward shift in Log R ratios (as indicated by the blue arrows).

MG5742, a STAAD patient without 16p13.1 duplication, is pro-

vided for comparison.

(TIF)

Figure S3 Agilent oligonucleotide arrays confirm 16p13.1 dupli-

cations in STAAD patients. The X-axis shows the Log2 ratios of

chromosome 16p probes; the Y-axis shows the location of the
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probes along chromosome 16 in megabases (Mb). Regions of loss

(green dots), gain (red dots) and no change (blue dots) were color-

coded. The ratio of total red dots above the line to green dots

below the line is greater than 1 in samples with 16p13.1 dupli-

cations (MG3392, MG5041, MG6343, MG4890 and MG4948). A

negative control without 16p13.1 duplication (MG6153) is pro-

vided for comparison.

(TIF)

Figure S4 Determination of MYH11 copy number using real-

time quantitative PCR (Q-PCR). (A) Validation of MYH11 Q-

PCR assay using DNA samples from patients with sporadic

thoracic aneurysms and dissections (STAAD). Predicted MYH11

copy number values are graphed with standard errors derived

from four replicate assays. Q-PCR using three different probes

within the MYH11 gene confirmed that 8 STAAD cases identified

as 16p13.1 duplication carriers by microarray analysis harbor

three copies of MYH11. Two copies of MYH11 were confirmed in

five additional STAAD cases. (B) Screening for MYH11 duplica-

tions in healthy controls using the MYH11 Q-PCR assay. All

control samples harbored 2 copies of MYH11 as detected by

MYH11 probe 1 and these findings were confirmed with probes 2

and 3 (data not shown). PC is a positive control with a confirmed

16p13.1 duplication (MG5041). (C) Detection of MYH11 dupli-

cations in STAAD patients using the MYH11 Q-PCR assay with

MYH11 probe 1. Samples S2, S4, S5, S6, S11 and S13 (original

sample ID are MG4948, MG4890, MG9973, MG6983, MG9076

and MG5041) harbor 3 copies of the MYH11 gene.

(TIF)

Table S1 Clinical characteristics of STAAD-1 and STAAD-2

cohorts.

(DOCX)

Table S2 Size of chromosome 16p13.1 duplications in 6 out of

4569 controls as detected by Illumina SNP arrays.

(DOCX)

Table S3 Large CNV second hits in individuals with 16p13.1

duplications.

(DOCX)

Table S4 Primers and probes used for determination of 16p13.1

copy number variation.

(DOCX)

Table S5 Clinical characteristics of the BAV/TAAD (GenTAC)

cohort.

(DOCX)
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