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REVIEW

Synaptic tau: A pathological or physiological 
phenomenon?
Miranda Robbins1, Emma Clayton2 and Gabriele S. Kaminski Schierle1*   

Abstract 

In this review, we discuss the synaptic aspects of Tau pathology occurring during Alzheimer’s disease (AD) and how 
this may relate to memory impairment, a major hallmark of AD. Whilst the clinical diagnosis of AD patients is a loss of 
working memory and long-term declarative memory, the histological diagnosis is the presence of neurofibrillary tan-
gles of hyperphosphorylated Tau and Amyloid-beta plaques. Tau pathology spreads through synaptically connected 
neurons to impair synaptic function preceding the formation of neurofibrillary tangles, synaptic loss, axonal retraction 
and cell death. Alongside synaptic pathology, recent data suggest that Tau has physiological roles in the pre- or post- 
synaptic compartments. Thus, we have seen a shift in the research focus from Tau as a microtubule-stabilising protein 
in axons, to Tau as a synaptic protein with roles in accelerating spine formation, dendritic elongation, and in synaptic 
plasticity coordinating memory pathways. We collate here the myriad of emerging interactions and physiological 
roles of synaptic Tau, and discuss the current evidence that synaptic Tau contributes to pathology in AD.
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Introduction
This review is primarily focused on synaptic Tau in Alz-
heimer’s disease. Studies that investigate the function of 
synaptic Tau have been obtained through various experi-
mental models including overexpression of proteins, 
Tau with FTLD. We are aware of the current limitations 
of various animal models as they may not fully replicate 
human AD, however there is still much we can learn 
from these models especially when it comes to a molec-
ular understanding of the disease, and we will therefore 
discuss results from animal models alongside results 
from tissue studies of AD patients.

An overview of Alzheimer’s disease, the most 
common form of dementia
Alzheimer’s disease (AD) is the most common form of 
dementia affecting 50 million people worldwide in 2018, 
a number predicted to triple by 2050 to affect over 152 
million people. Alongside this, 25% of hospital beds in 
the UK are occupied by people aged over 65 and suffer-
ing from dementia (Alzheimer’s Research UK). Age is 
the greatest risk factor for developing the sporadic form 
of AD [82, 119, 176, 184], however there are also genetic 
and environmental risk factors [120, 217, 219] that con-
tribute to familial or sporadic forms of AD, respectively. 
The pathophysiology of AD is complex and not fully 
understood as we will see through the course of this 
review article.

AD is diagnosed histologically in post mortem brains 
of patients by the presence of two types of aggregated 
proteins with little understanding of how these proteins 
interact with each other during the different stages of 
disease. Extracellular plaques of Amyloid-beta (Aβ) pep-
tides and intracellular neurofibrillary tangles (NFTs) of 
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microtubule-associated protein Tau (MAPT; Tau) are 
both hallmarks of AD. Due to the presence of these dif-
ferent protein pathologies in AD, the field has been 
divided for a long time between people believing in either 
Aβ or Tau being causal to AD pathology [322]. For exam-
ple, scientists who suggested that Aβ was causative of AD 
thought that Tau and other pathology were secondary to 
the cascade triggered by Aβ [172].

In the past years though, some research has moved 
away from preventing Aβ pathology towards inhibit-
ing Tau pathology as the distribution and density of Aβ 
positive plaques are variable between neuropathological 
stages of the disease and not informative of the cogni-
tive status of the patient [144]. Cognitive decline is most 
closely associated to the load and progression of NFTs as 
compared to Aβ pathology [171, 326]. Therefore, Aβ may 
thus be considered as a catalyst of Tau pathology [35], 
with Tau being a more central player in AD progression. 
The latter is supported by the fact that there are currently 
more than 20 different Tauopathies [395]. Tau pathology 
spreads anterogradely and follows the disease progres-
sion, the so called ‘Braak stages’, which progress from I–
IV based on brain regions burdened by NFTs. Although 
the locus coeruleus has previously been suggested to 
be the starting point [41, 43, 427], recent evidence sug-
gests that Tau pathology begins in the transentorhinal/
entorhinal regions [220]. Thus, symptoms of AD highly 
correlate with the progression of Tau pathology from the 
hippocampus to the cortex, beginning with memory dys-
function and later leading to other cognitive impairments 
including loss of executive functioning, language, and 
visuospatial skills [101, 144, 245, 362]. The hippocampus 
is an anatomical region of the brain responsible for spa-
tial or contextually-based learning and memory and it is 
one of the earliest and most drastically affected areas, dis-
playing atrophy, accumulation of Aβ plaques, and NFTs 
in AD [16–18]. The role of hippocampal neuron subtypes 
in learning and memory is defined by their characteris-
tic calcium dynamics, a high degree of plasticity and the 
capacity to undergo synaptic remodeling into adulthood. 
It has also been believed that hippocampal neuron sub-
types are a major source of human adult neurogenesis [4, 
95, 233, 498] until recent controversy [420]. The proper-
ties of hippocampal neurons are thought to impart the 
selective vulnerability of these cells, as pathology dras-
tically accelerates on reaching neurons in this region at 
early stages of AD [156].

Microtubule‑associated protein tau (MAPT)
Full-length monomeric forms of Tau have long been 
seen as the ‘glue’ that binds and stabilises microtubules 
in axons, in concert with other microtubule-associated 
proteins, such as MAP2, which have homologous roles in 

neuronal dendrites [468]. Microtubule stability is impor-
tant for cellular polarity and for antero- or retrograde 
cellular transport of vesicles and organelles to occur. 
However, as the full interactome of Tau is revealed, the 
ubiquity of Tau’s roles is being uncovered to show how 
Tau binds to a diverse range of molecules to elicit a mul-
tiplicity of functions. Before binding to microtubules, 
Tau is an intrinsically disordered protein which confers 
conformational and functional flexibility. Numerous Tau 
binding partners with diverse cellular functions have now 
been reported. Tau binds directly to DNA for DNA pro-
tection [58, 279, 432, 467], to calmodulin to regulate gene 
expression [24], at the cell membrane to support growth 
processes [257], to Fyn for synaptic activity [200, 338], to 
actin for crosslinking actin filaments [56] and to numer-
ous other proteins with yet unknown functional conse-
quences [276]. Missense mutations in MAPT, the gene 
coding for Tau, can result in familial forms of frontotem-
poral dementia but are not causative of AD [111, 197, 
356]. The ability of Tau to bind and interact with such a 
diverse range of molecules, and thus taking up so many 
roles, stems from Tau being produced as six different 
splice variants [158], from its ability to be post-transla-
tionally modified, its diverse binding regions, and from it 
being prone to terminal truncations (for review see [3].

The complex structure of tau
Six isoforms of Tau are present in the adult human cen-
tral nervous system, although Tau occurs as a larger iso-
form in the peripheral nervous system [153].

Figure  1a shows how the six different Tau isoforms 
arise from alternative splicing. N-terminus inserts, Exons 
2 and 3, result in 0 N, 1 N or 2 N Tau, whereby exon 3 
is never inserted independently of exon 2. Exclusion 
or inclusion of the microtubule binding repeat region 
(MTB), exon 10, results in 3 repeat (3R) or 4 repeat 
(4R)-Tau, respectively, altogether providing 0N3R-, 
0N4R-, 1N3R-, 1N4R-, 2N3R-, 2N4R- Tau [10, 150, 151, 
260]. The N-terminus projection region has been found 
capable of binding to synaptic vesicles, either through 
protein binding (Fig.  1b, [424, 503] or through direct 
membrane interactions [44, 265]. The proline-rich region 
and microtubule binding domain are capable of poly-
merising F-actin, a cytoskeletal protein that has various 
roles in neurons including remodelling dendritic spines 
upon synaptic stimulation [136, 177, 194]. The proline-
rich region is also able to bind SH3 domains such as Fyn 
kinase, which is of interest for a post-synaptic role of Tau 
[371]. The microtubule binding repeat region, alongside 
binding and stabilising tubulin, can also bind to lipid 
membranes [142], and part of this region forms the core 
of aggregates [128, 129].
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Debates about the role of post-translational modifi-
cations and truncated forms of Tau are ongoing. In one 
study, it was shown that the major form of Tau in the 
pre-synaptic compartment is truncated at its C-termi-
nal and therefore lacks the (aggregation-determining) 
microtubule binding domain region [416]. The release 
of this truncated form of Tau is increased upon synaptic 
activity [216]. However, a study investigating the level of 
truncation in AD patient brains has shown that there is 
a relative increase in N-terminal truncations of Tau in 
AD patients as compared to controls [505]. The longest 
isoform of Tau has a total of 85 possible phosphorylation 
sites that interact with multiple kinases and phosphatases 
[150, 151]. Phosphorylation can determine the confor-
mation and protein–protein interactions of this intrin-
sically disordered protein and therefore the residues at 
which Tau is phosphorylated can differ between physi-
ological versus pathological conditions (for a review see 
[209]. For example, phosphorylation can modulate bind-
ing dynamics of Tau to tubulin, biolipid, and Fyn kinase 
[200, 269, 317, 394] and thus forms part of Tau’s physi-
ological role. For binding to microtubules, consecutive 

phosphorylation of Tau is required, one to allow efficient 
phosphorylation of the second ‘primed’ site [152]. How-
ever pathologically, hyperphosphorylation of Tau has 
been associated with the formation and growth of neu-
rofibrillary tangles, as specific phosphorylation sites have 
been shown to readily enhance fibril formation [98].

Aggregation of tau
In the characteristic pathway leading to the formation 
of neurofibrillary tangles in AD, hyperphosphorylated 
monomeric Tau forms small soluble granular structures 
known as oligomers. These oligomers have been sug-
gested to act as toxic species which form part in AD 
pathogenesis [55, 284, 345, 452]. Oligomers are seen as 
an intermediate structure, capable of inducing a confor-
mational change in monomeric Tau which is then able to 
attach to the oligomeric structure. The latter then leads to 
the formation of stacked β-sheet-rich strands which grow 
to form insoluble paired helical filaments (PHFs) which 
consequently amalgamate into large NFTs [129, 164, 
250]. It has been shown that PHF-like Tau can lead to 
loss of synaptic contacts which is known to occur in hip-
pocampal neurons of hibernating animals but reversed 
upon awakening [15]. Hyperphosphorylation of Tau has 
also been reported to occur in mice suffering from hypo-
thermia during anaesthesia [351]. Thus, the pathogenic 
versus protective role of larger, insoluble structures, that 
are less neurotoxic than soluble oligomers but confine 
intracellular space and prevent intracellular trafficking 
[213] as they grow in size, is still an ongoing debate in the 
field.

Pathological tau
How oligomeric Tau forms is still unclear. Potential path-
ways leading to Tau oligomerisation include Tau release 
from microtubules, poly-anionic induction factors, or 
uptake into low pH compartments [21, 231, 307]. As 
neuronal activity has been shown to increase the rate of 
Tau pathology [476], it is possible that activity-dependent 
pathways may also mediate its aggregation. This could be 
an age-dependent mechanism whereby neuronal activ-
ity over time causes the formation of pathological Tau 
species, and their propagation. Alternatively, high levels 
of network activity [355], lysosomal dysfunction [315], 
or cell death such as induced by traumatic brain injury 
[320, 376] may result in a higher concentration of Tau 
being released into the extracellular space. The latter then 
leads to endocytic uptake and aggregation of Tau at low 
pH [307]. Tau has been shown to cause membrane dis-
ruption allowing it to leak from endo/lysosomes [57]. It 
is also thought that the impaired endosomal sorting com-
plex required for transport (ESCRT) III protein activity 
permits a leakage of Tau from endo/lysosomes into the 

Fig. 1  Tau is differentially expressed as six isoforms that contain 
multiple structural domains for diverse protein–protein interactions. 
a Alternative splicing of exons 2 and 3 (E2, E3) determines the 
N-terminus region, whereas exon 10 (E10) determines the number of 
repeat (R) regions and gives rise to 3R or 4R Tau. Overall six isoforms of 
Tau exist with their expression dependent upon age and anatomical 
location. b The N-terminus region of Tau is involved in membrane 
interactions and has been shown to bind to synaptic vesicles [44, 
265, 301]. The microtubule binding repeat regions bind and stabilise 
microtubules [260]
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cytosol [68]. Selectively, vulnerable cells may act as the 
primary site of aggregation. Tau released by these cells 
may consequently be propagated along synaptically-
connected networks whereby they recruit endogenous 
Tau and result in AD symptoms only after several years 
in the brain of an AD patient [26, 134, 135, 167, 183, 226, 
347]. Tau uptake through muscarinic receptors can alter 
calcium ion (Ca2+) homeostasis [157]. Many of the Tau 
uptake mechanisms are further increased upon phospho-
rylation [218, 304] or neuronal activity, which, along with 
how synaptic pathological Tau can perturb activity, will 
be discussed in the next sections [246, 303, 416, 462]. Tau 
is also able to form membrane pore-like amyloid struc-
tures (annular protofibrils) similarly to those seen by 
α-synuclein and Aβ, which have been suggested to allow 
uncontrolled release of aggregates, ions, or vesicles [50, 
105, 252, 253, 343].

Oligomeric forms of Tau have been shown to impair 
synaptic function, the latter being an early marker pre-
ceding fibril formation, synaptic loss, axonal retraction 
and cell death [123, 241, 284, 297, 345, 353, 491]. Tau is 
also present at lower concentrations in the somatoden-
dritic compartments, often considered as the loss of its 
physiological function as it requires the detachment of 
Tau from microtubules [200, 338]. Tau has previously 
been found in pre- and post- synaptic compartments of 
healthy human volunteers and AD patients, but in AD 
patients it is primarily found in its ubiquitinated and 
phosphorylated form [124, 438]. Pre- and post- synap-
tic forms of Tau pathology have been described with-
out a clear mechanistic link between the two [200, 353, 
503]. Since Tau is able to accelerate spine formation and 
dendritic elongation, and is involved in memory path-
ways [230, 391, 392, 496] it has recently been discussed 
whether Alzheimer’s disease may be described as a physi-
ological to pathological shift of synaptic Tau function 
[200, 301].

Activity‑dependence of tau pathology in the hippocampus
The release of soluble Tau from neurons, both in  vivo 
and in vitro, can be regulated by neuronal activity, and is 
suggested to be a physiological process. It is not known 
whether Tau released by neurons is monomeric or oli-
gomeric [355, 476, 484]. Wu et  al. [476] investigated 
whether neural activity could increase the rate of the 
progression of Tau pathology by increasing the activity-
dependent release of Tau to synaptically-connected neu-
rons. To test this hypothesis, cells that expressed mutant 
P301L hTau aggregates were stimulated with picrotoxin 
and approximately 45% of the stimulated cells were 
shown to have internalised Tau as compared with 20% 
of unstimulated cells. Similar results were seen in  vivo, 
where hippocampal cells that were optogenetically 

stimulated for 20  days showed greater accumulation 
of Tau in cell bodies, and increased hippocampal cell 
layer atrophy compared to unstimulated animals [476]. 
The study did, however not include experiments to link 
increased pathology with behavioural deficits related 
to AD to see whether neuronal stimulation and the Tau 
pathology it induced also caused an earlier or more pro-
nounced behavioural phenotype. From the study above, it 
was also unclear whether neuronal stimulation was driv-
ing Tau seed formation or whether it only increased their 
propagation through synaptically connected cells.

The direct relationship between neuronal activity and 
Tau pathology still needs to be determined. From recent 
research it seems likely that there is a feedback mecha-
nism whereby neuronal activity causes increased Tau 
pathology, which in turn alters neurotransmission, and 
feeds forward to further Tau aggregation and propaga-
tion. Interestingly, Amyloid β (Aβ) induced hyperexcit-
ability has also been linked to catalysing Tau pathology 
[378]. Bright et  al. [46] showed such a relationship that 
includes a link with Aβ production. Neuronal hyper-
activity, which is able to regulate increased Tau transla-
tion and extracellular Tau secretion [235, 355], has been 
shown to increase Aβ production. Both Aβ and Tau have 
been related to neuronal hyperexcitability, and Tau has 
been linked to pro-convulsive effects [49, 53–55, 100, 
175, 187, 200, 244, 311, 339, 374, 375]. The high fre-
quency activity that occurs in the hippocampal formation 
for learning and memory, as for other activities, such as 
spatial exploration or sleep for example, may explain an 
increase in pathology reaching these networks and thus 
the increased vulnerability of hippocampal cells. How-
ever, studies showing network hypoactivity also exist [55, 
290] and therefore more research is required to reconcile 
the role of Tau on neuronal activity and how this may 
affect memory impairment during the course of AD.

Relating tau pathology to models of memory 
impairment
Synapses were first hypothesised to be the primary site of 
memory simultaneously with their discovery by Ramón 
y Cajal (1894). The most well established model for 
activity-dependent synaptic strengthening was discov-
ered when Lømo [278] found evoked responses to high 
frequency stimulation in the hippocampus that lasted for 
hours. Certain forms of neuronal activity, including the 
high frequency stimulation used by Lømo [278], result in 
the influx of Ca2+ ions into synapses. Ca2+ ions act as a 
2nd messenger for phosphorylation-dependent signalling 
cascades, causing neurotransmitter release, structural 
plasticity of the cytoskeleton, and the incorporation or 
alteration of ion channels and their subunits. These alter-
ations ultimately feedback to maintain an increased and 
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sustained Ca2+ conductance and is known as long-term 
potentiation (LTP). Alongside LTP, its counterbalance 
that is induced by low frequency stimulation to decrease 
conductivity of synapses, long-term depression (LTD), 
was also discovered [423]. LTP and LTD have been heav-
ily studied in the hippocampus where they may underlie 
declarative learning and memory [308, 312, 76]. Impair-
ment to hippocampal-dependent memory function is 
seen as early symptom of AD, and correlates with Tau 
pathology in the hippocampus [16, 17, 42].

The next question that had to be addressed was which 
molecular mechanisms had occurred to maintain the 
enhanced synaptic response during LTP? Though a con-
troversial field, three mechanisms have consistently 
shown to be important for the induction of LTP (Fig. 2). 
(1) The pre-synaptic mechanism increases the prob-
ability of neurotransmitter release by upregulating the 
number of release sites, or the concentration of cleft 
glutamate. (2) Post-synaptic mechanisms increases the 
single-AMPA receptor-conductance on binding gluta-
mate, either by increasing their opening probability, or 
prolonging their mean open-time through phosphoryla-
tion or exchange of subunits. (3) An additional post-syn-
aptic mechanism increases channel numbers by inserting 
receptor-containing vesicles into the plasma membrane, 
or by lateral diffusion of extrasynaptic regions [34]. The 
reversal of these mechanisms can instigate LTD. It needs 

to be noted here that both, LTP and LTD remain a means 
to model memory, and do not necessarily equate to 
human hippocampal memory. However, the above mech-
anisms involve cytoskeletal restructuring for controlling 
synaptic volume, for stabilising active zone synaptic den-
sities, and for cycling and tethering of vesicles or proteins 
via cell membrane endo- and exocytosis or via recycling 
vesicles. Increased import of proteins into synapses, or 
local translation [84, 215], is also required. As the latter 
mechanisms are involved in memory formation, we thus 
think that LTP and LTD are a relevant model to study 
certain aspects of memory formation. Indeed, evidence 
that Tau can influence any of these mechanisms, either 
physiologically or in pathological conditions, would pro-
vide a direct molecular to behavioural link of how Tau 
may lead to memory impairment.

Tau may directly influence LTP and LTD. Tau knock-
out ameliorates Aβ induced deficits in LTP. Aβ oligomers 
show a fairly consistent impairment in LTP and enhance-
ment of LTD [249, 402, 460]. Endogenous wild-type Tau 
expression, but not the N296H FTLD mutant form, is 
required for Aβ dependent impairment of LTP [453], and 
impairment of LTP by Tau or Aβ oligomers is dependent 
upon amyloid precursor protein expression [360, 464].

However, studies have shown varying effects depend-
ent on age, disease model, and protocol used when 
understanding how Tau may alter electrophysiological 

Fig. 2  Key processes by which Tau could interfere with LTP induction to directly cause symptoms of memory impairment. Processes include 
channel activation or gating function for Ca2+ ion entry, pre-synaptic vesicle cycling, post-synaptic vesicle cycling for subunit exchange and 
channel insertion, recruitment of receptors tethered at extra synaptic sites, and cytoskeletal restructuring to coordinate these mechanisms and to 
control the synaptic volume
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properties of cells. Table  1. summarises how the effects 
of Tau on electrophysiological measurements have a 
large degree of variability depending upon the methods 
applied. The most consistent finding appears to be that 
exogenous oligomeric Tau impairs LTP, with monomeric 
Tau having no effect [123, 251, 352, 360, 434]. Fá et  al. 
[123] showed that a 20 min treatment of CA3-CA1 hip-
pocampal neurons with oligomeric 4R2N Tau before 
induction of LTP caused a marked reduction in LTP 
expression without affecting basal synaptic transmission. 
On the contrary, 4R1N monomeric Tau did not reduce 
LTP. Polydoro et al. [352] predicted that Tau impairs the 
induction rather than the expression of LTP as high fre-
quency but not theta burst stimulation failed to induce 
LTP in a hTau mouse model. Another study in rTgP301L 
mice expressing mutant Tau showed an impairment to 
both basal transmission and LTP [190] consistent with 
two similar studies using P301S or hTau mice [352, 491]. 
One study has even shown improved cognitive perfor-
mance and LTP in the dentate gyrus of young Tau-P301L 
mice, and suggested hyperphosphorylation of Tau to be 
the pathogenic cause of synaptic impairment [37]. Many 
other studies have also linked Tau pathology to poor cog-
nitive performance at a behavioural level [14, 205, 365, 
393, 435, 440], and the suppression of Tau expression 
with an amelioration of symptoms [391, 435].

In the studies listed in Table 1, no attempt was made to 
explain the molecular mechanism of how Tau impaired 
LTP. The relationship between Tau pathology and these 

activity-dependent mechanisms (Fig.  2) therefore 
requires further explanation. Very different results for 
how different forms of Tau can alter the electrophysiol-
ogy of neurons can be seen in Table  1. One suggestion 
for the variation between models is the location and 
concentration of Tau expression, and the mutation site 
for the different forms of mutant Tau used. An example 
of mutations in different domains resulting in opposite 
electrophysiological functional effects is A152T [242] at 
the N-terminus projection domain, versus K280del in the 
second microtubule-binding repeat domain [316, 373]. 
A152T expressing mice show increased basal transmis-
sion with increased glutamate release, without changes 
to synaptic plasticity [92]. Mice overexpressing K280del 
show reduced basal transmission with reduced pre-syn-
aptic vesicles, and impaired synaptic plasticity [91]. This, 
however, does not address how wildtype Tau in Alzhei-
mer’s disease functions. An additional cause of variability 
may be when different Tau isoforms contribute differ-
entially to pathology, though the relationship is unlikely 
to be so simple, for example 0  N and 1  N Tau result in 
similar electrophysiological phenotypes (Table  1, [190, 
491, 503]. Different isoforms of Tau have different roles 
in dendrite and spine formation, and it has been argued 
that the pathological mis-sorting of Tau, from the axon, 
is dependent on the level of specific Tau isoforms, though 
this may also just be driven by overexpression [444, 496]. 
It is possible that these opposing phenotypes may arise 
from different binding affinities of various forms of Tau 

Table 1  The changes to basal transmission and LTP measured in different mouse models expressing endogenous mutant, human 
or wildtype Tau. Results show the large amount of variation dependent upon the method applied, but exogenous oligomeric Tau is 
consistently impairing LTP

Study Model and Tau expression Basal transmission LTP

Boekhoorn et al. [37] 9-week Tau-P301L mice. 2 × expression level as compared with endogenous 
Tau (controlled for in wildtype); Under Thy1 promoter

No change Increase

Schindowski et al. [393] G272V and P301S (Thy22) mice. 4–sixfold expression level as compared with 
endogenous Tau; Under Thy1.2 promoter

Reduced No change

Hoover et al. [190] TgP301L mice. ∼13-fold-expression level as compared with endogenous Tau; 
Under CaMKII promoter

Reduced Impaired induction

Yoshiyama et al. [491] P301S (PS) mice. 3–fivefold expression level as compared with endogenous 
Tau (controlled for in wildtype); Under mouse prion (MoPrP) promoter

Reduced Impaired induction

Polydoro et al. [352] hTau mice. Expression not determined but higher than endogenous levels; 
Under Tau promoter

Reduced Impaired

Koch et al. [236] Human AD patients N/A Impaired. Reversal 
of LTP toward LTD

Fá et al. [123]
Lasagna-Reeves et al. [251]
Puzzo et al. [360]

Oligomeric exogenous Tau and wildtype mice No change Impaired

Maeda et al. [284] hTau-A152T mice. Three–fivefold expression level as compared with endog-
enous Tau; Under CaMKII‐tTA promoter

Increased No change

Decker et al. [92] hTau- A152T mice Increased No change
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(such as mutant, phosphorylated, or other conformers or 
isoforms of Tau) to synaptic proteins, such as, for exam-
ple, the vesicular protein synaptogyrin-3 [92, 93, 276, 
301, 503].

The binding of tau to synaptic vesicles
In the pre-synaptic compartment, exocytosis of synap-
tic vesicles containing neurotransmitter is vital for the 
transmission of nerve impulses from the ‘pre-’ to ‘post-’ 
synaptic neuron via chemical synapses. To maintain 
a sustained release of neurotransmitters during peri-
ods of high synaptic activity, such as required for some 
forms of plasticity, a trafficking cycle occurs which can 
combine clathrin mediated endocytosis (CME) and the 
engagement of reserve pools of vesicles (for a review see 
[431]. The mediation of stages of this cycle are also highly 
Ca2+-dependent often due to Ca2+-dependent phospho-
rylation of synaptic proteins [94].

Tau is capable of mediating toxicity specifically via 
interactions with synaptic vesicle proteins and the pre-
vention of vesicle release. Mutant (R406W, V337M or 
P301L) or phosphorylated Tau immobilises synaptic 
vesicles by preventing their release from F-actin. This 
reduced vesicle motility was hypothesised to occur 
through a mesh of immobilised vesicles formed by a 
crosslinking of the N-terminus of Tau with synapto-
gyrin-3 and its proline-rich and microtubule-binding 
domain binding to F-actin networks [136, 177, 194, 503]. 
The reduced vesicle mobility could be rescued by knock-
down of synaptogyrin-3 or by depolymerisation of F-actin 
bundles [301, 503]. Deficits from this dysfunction, such 
as decreasing excitatory junction potential (EJP) ampli-
tudes, are not seen from low frequency (0.2 Hz) stimula-
tion that employ the recycling pool of vesicles for release, 
but only following high frequency (e.g. 10  Hz) stimula-
tion requiring the reserve population of vesicles. Under 
high frequency stimulation, normal levels of release can-
not be maintained and therefore result in impaired syn-
aptic transmission. This work showed that this pathology 
only occurred with mutant FTLD or hyperphosphoryl-
ated Tau as opposed to wildtype Tau, which showed less 
synaptic colocalisation. However, it was also suggested 
that the formation of Tau multimers may also permit 
Tau to immobilise vesicles [503]. The above results are 
comparable to results on studies related to α-synuclein, 
which have shown that α-synuclein is equally capable to 
immobilise synaptic vesicles by aggregation [103, 461, 
503]. As mentioned in Table  1, opposing effects of Tau 
have also been observed when measuring vesicle release 
probability. An increased release probability was shown 
to occur in 16 month-old mice expressing P30lL Tau in a 
subset of cells from the entorhinal cortex using a Tet-OFF 

system (rTgTauEC, [89, 353]. If mutations, phosphoryla-
tion or different conformations of Tau can alter its bind-
ing affinities with synaptic proteins, it could change the 
release probability of synaptic vesicles or influence the 
timing of other pathways required for the coordination 
of synaptic plasticity. Phosphorylation is known to alter 
binding properties and localisation of multiple other 
synaptic proteins including synapsin-1 [309], dynamin-1 
[75], assembly of complexes to mediate Ca2+-dependent 
exocytosis [488], and post-synaptic AMPAR (α-amino-
3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor) 
and NMDAR (N-methyl-D-aspartate receptor) subunits 
[180, 298]. An interesting question arises from Tau’s abil-
ity to bind synaptic vesicles as to whether it is acting as a 
static tether and scaffolding protein, or has an active role 
in a mechanism at the synaptic compartment.

Tau in the vesicle cycle of synaptic compartments
Bioinformatic analysis of Tau-interacting proteins based 
on co-immunoprecipitation studies by Liu et  al. [276] 
show that many of these proteins are enriched in classes 
related to membrane trafficking and transportation, 
or metabolic activity (Fig.  3a). The functional annota-
tion chart shows that these genes can be split into two 
functional groups with the highest enrichment scores 
(Fig.  3b). These clusters are related to metabolism and 
transport, and to synaptic processes. This suggests that 
Tau may have a role in membrane trafficking assisting 
in stabilising or transporting proteins. In the synapses, 
this could relate to processes such as CME and activity-
dependent trafficking of membrane or proteins to sup-
port plasticity.

Clathrin mediated endocytosis is important for the 
internalisation of extracellular material and maintain-
ing membrane homeostasis to balance exocytosis. CME 
requires the coordination of many endocytosis-related 
proteins for the formation of complexes at retrieved 
clathrin-coated pits on the membrane surface after cal-
cium-dependent calcineurin is activated by neural activ-
ity [211, 478, 479]. At the pre-synaptic compartment, 
CME is the main mechanism through which the synaptic 
vesicle pool is replenished during physiological activity 
at the hippocampal synapse [162]. In neurons, it is esti-
mated that ∼90% of all clathrin vesicles are involved in 
retrieval of synaptic vesicles [147]. At the post-synaptic 
compartment, CME regulates activity‐dependent endo- 
and exocytic trafficking of receptors [404]. CME is essen-
tial for activity-dependent AMPAR internalisation and 
LTD, and can therefore be upregulated by factors that 
induce synaptic depression such as NMDAR activation 
[12, 28, 114, 268, 288].
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Postulating synaptic roles of Tau based on binding 
studies
To help us to better interpret the spatial distribution 
of these proteins, Fig. 4 shows proteins that have func-
tional roles inside synaptic compartments, and have 
been shown to be capable of binding to monomeric 
Tau by co-immunoprecipitation studies [276]. Many of 
these proteins appear to be related to clathrin-medi-
ated endocytosis, and vesicle cycling pathways in syn-
apses. These proteins have been mapped onto pathways 
that occur in the synaptic compartments to come up 

with a potential role of endogenous Tau which subse-
quently may become impaired during the progression 
of AD pathogenesis (Fig. 4). It is important to note that 
while the binding partners of Tau have been described, 
the functional roles of these interactions have not been 
experimentally proven to be directly linked to Tau and 
must therefore be seen as discussion points. GluA2 and 
AMPARs are not known to be direct binding partners 
of Tau but have been added as a potential candidates, 
as Tau may modulate the latter by indirect interactions 
with PICK1 (Protein interacting with C kinase) [370]. 
The full list of synaptic proteins that Tau is capable of 
binding to, are listed in Supplementary Table 1. 

Fig. 3  Bioinformatics analysis of Tau-interacting proteins suggests roles in scaffolding and transport with high enrichment at synapses and cell 
junctions. a Protein analysis through evolutionary relationships (PANTHER; [306] of proteins that bind Tau based on a co-immunoprecipitation 
study [276]. The proteins were classified according to their protein class. b Database for annotation, visualisation, and integrated discovery (DAVID 
GO annotation analysis [195, 196]. The two functional gene groups with the highest enrichment scores are shown for the 68 genes included in the 
annotation analysis
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Transferrin, AP2 and dynamin‑1; possible role of tau 
in early stages of CME
Constitutive CME is required for plasma membrane 
protein and lipid turnover, endocytosis of activated 
growth-factor receptors, low-density lipoprotein and 

iron-saturated transferrin uptake [48, 79, 302]. Tau is 
capable of binding transferrin [276], which binds Fe3+ 
ions prior to clathrin-mediated uptake into cells via 
transferrin receptors. Transferrin receptor clustering 
is important for the initiation of clathrin coated pits for 

Fig. 4  A schematic of possible roles of endogenous Tau in synaptic plasticity. The figure shows proteins that have been found to interact with Tau 
(though not necessarily functionally). Many of these proteins appear to map to clathrin-mediated endocytosis pathways that relate to synaptic 
vesicle trafficking in the pre-synaptic compartment (a) or receptor trafficking in the post-syanptic compartment (b) and are vital for synaptic 
transmission. Image based on data from [276]. Tau is not known to directly bind PICK1, GluA2, though there is an NMDA-dependent interaction 
of this complex with phospho-Tau [370]. These proteins are therefore added to the figure in order to highlight specific pathways that have been 
previously mentioned in the literature [434]
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the earliest stages of CME to occur [275, 277]. Transfer-
rin receptors are therefore also important for activity-
dependent AMPAR internalisation that is dependent on 
CME and required for LTD as they recruit AP2 (adaptor 
protein 2). Tau is able to bind AP2, the protein responsi-
ble for clathrin pit formation [406, 448]. Loss of transfer-
rin receptors also reduces LTP [264]. In the pre-synaptic 
compartment, following neuronal stimulation with KCl, 
Tau has been shown to relocate to the plasma mem-
brane and to colocalise with, though not evidently bind, 
synaptic vesicle protein CSPɑ/DnaJC5 (Cysteine String 
Protein- ɑ) [503]. CSPɑ regulates endocytosis by bind-
ing dynamin-1, another protein capable of binding Tau 
that is involved in activity-dependent CME of synaptic 
vesicles through vesicle scission [126, 127, 386, 478, 479, 
497].

PICK1 makes NMDAR-dependent interactions 
with endocytic proteins AP2 and dynamin. Following 
NMDAR stimulation, PICK1–AP2 interactions cluster 
AMPARs at endocytic zones, and PICK1 can polymerize 
dynamin-1 to undergo AMPAR endocytosis [130]. The 
preference of different Tau isoforms to bind to the pro-
teins shown in Liu et al. [276] can be seen in Supplemen-
tary Table 1 [237].

Possible role of Tau in SNARE complex formation 
and exocytosis: syntaxin‑1, synaptobrevin, NSF
CSPɑ is also essential for the high Ca2+-sensitivity of 
exocytosis as it mediates the release of anchored synap-
tic vesicles by formation of the Ca2+-sensitive SNARE 
complex (Fig.  4a; [65]. Like Tau, CSPɑ can bind synap-
totagmin, and proteins involved in the SNARE complex 
including syntaxin-1 and synaptobrevin [121, 330, 400, 
477]. SNARE complex assembly requires SNAP-25 (Sol-
uble NSF Attachment Protein) and syntaxin-1 to bind 
to synaptobrevin to exert sufficient force for membrane 
fusion to occur and to release the vesicle contents into the 
synaptic cleft [417]. This assembly is disrupted in CSPɑ-
deficient mice [403]. CSP-KO in itself can induce neuro-
degeneration, and in Drosophila prevents the release of 
neurotransmitters and causes early death [386, 451, 507].
as CSPɑ is thought to induce the required structural con-
formation of SNAP-25 and prevent its degradation by 
the ubiquitin proteasome system (UPS), which degrades 
excess or damaged proteins [403] Tau is also able to 
bind the protein required for SNARE disassembly, NSF 
(N-ethylmaleimide sensitive fusion protein) (Fig. 4, [276, 
417]. The role that CSP may play in Tau-mediated neu-
rodegeneration is being questioned following the find-
ing that CSP expression is downregulated in tauopathy 
models at timepoints that correspond to impaired synap-
tic function. In these models, CSPɑ was also found to be 

neuroprotective, whereby increased expression reduced 
neuronal loss [445].

CSPɑ/DnaJC5 bound to Hsc70 releases Tau from syn-
apses in what is believed to be a physiological, activity-
dependent mechanism [131]. It will be interesting to 
determine whether CSPɑ loss in tauopathies also reduces 
activity-dependent Tau release [355], and whether this 
leads to a clear phenotype. Other DnaJ proteins complex 
with Hsc70 for disaggregation [141, 331] or degradation 
[207] of aggregated proteins. Aggregated proteins can 
directly block CME through competition for Hsc70 [492]. 
It has been suggested that CSP may act as a chaperone 
to allow continuous and long-term use of proteins in the 
synaptic vesicle cycle [125].

ɑ‑synuclein and 14–3‑3ζ
The fatal phenotype caused by CSPɑ, that prevents vesi-
cle release, is rescued by overexpression of ɑ-synuclein 
[66]. ɑ-synuclein is another pre-synaptic protein thought 
to have a role in the synaptic vesicle cycle including 
endocytosis [454], reclustering [327], and mobility [398, 
461] but is found in Lewy body aggregates seen in Par-
kinson’s disease (for an overview on ɑ-synuclein induced 
synaptopathy see [45]. Tau can bind to both ɑ-synuclein 
and β-synuclein [204, 276]. Co-morbid ɑ-synuclein or 
Lewy-related pathology occur in more than 50% of AD 
brains, and ɑ-synuclein and Tau have synergistic effects 
on each other’s aggregation [145, 169, 272]. ɑ-synuclein 
and Tau are thought to form a membrane-bound com-
plex with the actin cytoskeleton. Destabilisation of the 
cytoskeleton or the A30P ɑ-synuclein mutation linked to 
early-onset Parkinson’s disease reduces the formation of 
this complex [118, 243, 340]. ɑ-synuclein can also induce 
Tau phosphorylation at serine 262 to cause unbinding 
from actin and microtubules, and has been shown to be 
essential for Aβ42-induced Tau toxicity [56, 198, 204].
ɑ-synuclein shares functional homology with the highly 

conserved regulatory 14–3–3 proteins that are able to 
bind both ɑ-synuclein and Tau [276, 337]. Tau has also 
been found capable of binding to the zeta isoform of 
14–3-3 proteins (14–3-3ζ), which are enriched in the 
hippocampus, especially in synapses, and thought to be 
involved in learning and memory pathways [27, 88, 276, 
293, 412, 466]. Overexpression of 14–3-3ζ increases Tau 
phosphorylation at serine 262, actin unbinding, and 
depolymerisation of microtubules through the same 
pathway as ɑ-synuclein, and consequently leads to the 
degradation of synaptophysin by the UPS [204, 364]. 
14–3-3 is also capable of phosphorylation-dependent 
binding to CSPɑ/DnaJC5 [359], and plays a role in prim-
ing exocytosis and enhancing vesicle release through 
structural rearrangements of the actin cytoskeleton [64, 
382]. Alternatively, 14–3-3ζ can coordinate, together 
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with other DnaJ-Hsc70 complexes, the resolubilization of 
heat-aggregated proteins [486].

V‑ATPase
14–3–3ζ has an ATPase activity and helps to regulate 
vacuolar-type H+-ATPase (V-ATPase) activity [1, 5, 367]. 
Tau is able to bind to V-ATPase subunit A, required for 
the acidification of intracellular compartments for main-
taining synaptic vesicle proton gradients, protein sort-
ing, and receptor-mediated endocytosis. Loss of this 
protein impairs late stage exocytosis of synaptic vesicles. 
Mutations in V-ATPase subunits can cause epilepsy and 
parkinsonism [168, 240], cognitive impairment, and neu-
rodegeneration [110].

Cytoskeletal plasticity: cofilin, troponomyosins and septin 
7
Another interaction 14–3–3ζ can mediate, in concert 
with CaMKII (Ca2+/calmodulin-dependent protein 
kinase II) and in opposition with Ca2+/calmodulin-acti-
vated phosphatase calcineurin, is the dephosphoryla-
tion and activation of the actin organising protein cofilin 
[229, 500]. Tau can directly bind cofilin, CaMKII and cal-
cineurin [273, 276, 490]. Cofilin can compete with Tau 
for tubulin binding which has been suggested to cause 
microtubule instability and promote tauopathies through 
increasing free Tau available for fibril formation [473]. 
The ability of both cofilin and Tau to bind to tubulin and 
actin suggests that they coordinate cytoskeletal plastic-
ity pathways. Ca2+ entry through NMDARs can cause 
the indirect dephosphorylation and activation of cofilin 
through calcineurin. This causes cofilin to enter synaptic 
compartments and depolymerise F-actin to cause spine 
shrinkage. Overactivation of this pathway during stress 
can cause the transient cofilin-actin rod response that 
bundles actin and releases ATP. This response can occur 
in Alzheimer’s disease causing long-term F-actin bundles 
in axons and neurites [19, 287, 323]. In Tau-P301S mice, 
activated cofilin is also required for tauopathy, reduced 
synaptic integrity (as shown by depleted drebrin and syn-
aptophysin, and LTP deficits; these deficits were rescued 
in mice having a 50% reduction in cofilin concentrations 
[473]. This reduction in cofilin also rescued loss of syn-
aptic proteins and impairment to LTP in APP/PS1 mice 
[472]. Cofilin is important for spine dynamics during LTP 
and LTD, as well as for AMPAR trafficking, for example, 
following chemical induction of LTP, activated cofilin 
results in increased surface AMPARs [69, 165, 504].

Tropomyosin is another actin-associated protein that 
stabilises F-actin and that Tau is capable of binding to 
in  vitro [276]. Tropomyosin recruits cofilins to F-actin 
and they help to determine the structure of pre-synaptic 

F-actin and the stiffness of the pre-synaptic membrane 
[31, 51, 430].

Septins are seen as the fourth filament protein in neu-
rons alongside actin, tubulin, and neurofilaments. They 
help regulate synaptic vesicle trafficking and neurotrans-
mitter release [296], and septin 7 interacts with the exo-
cyst complex [193]. Septins can bind with actin during 
various stages of CME and endosomal sorting, which is 
required for the maintenance of mature synapses, and 
synaptic plasticity such that septin 7 expression is up-
regulated during spatial memory formation [117, 457]., 
which is impaired in AD. In dendrites, septin 7 binds to 
the membrane of hippocampal neurons to regulate den-
drite branching and spine morphology but it can also 
prevent the lateral diffusion of membrane proteins out 
of spines [122, 481]. Following phosphorylation, septin 
7 stabilises post-synaptic density (PSD) protein PSD95 
during spine maturation [483]. Several septins are also 
found in NFTs [232].

Ca2+‑dependent interactions: calcineurin, GAP‑43/
neuromodulin, neurogranin, neurochondrin, calmodulin, 
CaMKII, and CaMKv
Further to calcineurin activating cofilin, Tau is capable of 
binding calcineurin, GAP-43/neuromodulin, neurogra-
nin, neurochondrin, calmodulin, CaMKII, and CaMKv 
(calmodulin kinase-like vesicle-associated), which have 
been shown to interact at synapses [36, 87, 266, 276, 349, 
415, 490]. Calcineurin has long been known to regulate 
activity-dependent cytoskeletal remodelling; it is able to 
dephosphorylate Tau to polymerise and stabilise micro-
tubules opposite to CaMKII [159]. Overexpression of Tau 
or Aβ oligomers have been shown to increase the acti-
vation of calcineurin [384, 487]. Calcineurin inhibition 
however, can rescue spine density and plasticity deficits 
in AD model mice [63, 366, 384]. Calcineurin can regu-
late the available concentration of calmodulin at the pre-
synaptic compartment through dephosphorylation of 
GAP-43, which also causes actin capping [40, 178, 256]. 
GAP-43 can cause presynaptic membrane changes, and 
is thereby involved in neurotransmitter release, endo-
cytosis [329], synaptic vesicle recycling, LTP, and spa-
tial memory formation [96]. GAP-43 has a high affinity 
for calmodulin at low Ca2+ concentrations, sequestering 
calmodulin at the cell membrane until Ca2+ influx occurs 
[11]. Tau helps maintain this cytoplasmic concentration 
of calmodulin available through Ca2+-dependent binding 
to prevent it from entering the nucleus [24, 415]. Calmo-
dulin is important for the activation of CaM-dependent 
kinases. CaMKII has been shown to phosphorylate Tau 
at sites including serine 262 that promotes microtubule 
unbinding [411] and is thought to be involved in the for-
mation of fibrillar Tau [179, 490]. CaMKv is upregulated 
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following AMPAR activity to cause actin rearrangement, 
and is said to be the ‘convergence point for the transduc-
tion of Ca2+ signals to the neuronal cytoskeleton’ [266]. 
The calmodulin/calcineurin pathway has also been show 
to directly modulate endocytosis through dephosphoryl-
ation of endocytic proteins including dynamin-1 [74, 75, 
433].

MBP
Myelin basic protein (MBP) is the second most abun-
dant protein in the central nervous system. Like Tau, 
MBP is an intrinsically disordered protein with multi-
ple isoforms, and can be differentially phosphorylated 
suggesting that it has a role in neuronal signalling. Like 
Tau, MBP is also capable of binding tropomyosin, actin, 
microtubules, calmodulin, and clathrin [39, 106, 314, 
358]. As MBP can act as a clathrin adaptor protein, it 
has been suggested that it may form a bridge between 
clathrin-coated vesicles and microtubules [358]. MBP 
can also polymerise, bundle and crosslink actin fila-
ments and microtubules, and act as a tether for SH3-
domain proteins to lipid membranes (such as for the 
SH3-domain of Fyn-kinase) [38, 39, 188]. Although Tau 
is able to bind MBP, Tau and MBP appear to have analo-
gous roles in neurons versus oligodendrocytes, respec-
tively. MBP is important for formation and stabilisation 
of the cytoskeleton in oligodendrocytes [113, 138]. MBP 
forms prion-like aggregates, in parallel to the accumula-
tion of insoluble and phosphorylated Tau, and can occur 
due to reduced cholesterol levels and other lipids that 
cause MBP-membrane unbinding [133, 285, 470]. Like 
Tau, MBP can aggregate due to polyanionic factors such 
as lipids or lysosomal glycosaminoglycan (GAG) proteins 
[146].

Fyn
A small amount of Tau is found in dendrites and spines 
under physiological conditions and can be phosphoryl-
ated following NMDAR activation [317]. Phospho-Tau 
can facilitate the interaction of Fyn kinase, PSD95 and 
NMDARs to stabilise their position in the postsynaptic 
density [160, 201, 255, 313, 317]. The interaction of Tau 
and Fyn was previously predicted to cause the transloca-
tion of Tau to cholesterol-rich lipid rafts to act as a signal-
ling protein [259]. The entry of Tau into synapses is also 
thought to regulate the activity-dependent transportation 
of synaptic proteins, including Fyn kinase, GluA1 and 
PSD95 [225, 317]. Transport of PSD proteins is required 
to allow synaptic plasticity [115, 425]. At the postsyn-
aptic density, this complex has been implicated as the 
mechanism of Aβ -induced excitotoxicity caused during 
AD pathology through overactivation of NMDARs and 
phosphorylation of Tau at tyrosine 18 (Y18) [313, 389]. 

Y18 is also associated with the formation of insoluble Tau 
aggregates [47, 258]. Tau knockout has been shown to be 
neuroprotective by ameliorating Aβ-induced excitotoxic-
ity, by causing the exclusion of Fyn from the post-synap-
tic compartment and by destabilisation of PSD-95 [200, 
201]. Another recent paper has shown that post-synaptic 
FTLD-mutant Tau causes aberrant Fyn nanoclustering in 
hippocampal dendritic spines [338]. Fyn knockout causes 
impairments to LTP and spatial learning in mice, this is 
specific to Fyn as opposed to other nonreceptor tyrosine 
kinases [163]. Other than being linked with excitotoxic-
ity, the phosphorylation of Tau at serine 396 has also 
been shown to be required for hippocampal LTD [370]. 
Although the exact mechanism was not described, it was 
shown that Tau is necessary for an activity-dependent 
molecular interaction between GluA2 and PICK1, both 
of which are required for the internalisation or stabili-
sation of intracellular pools of AMPARs [170, 280, 370, 
443]. GluA2 subunits in AMPARs render them Ca2+ 
impermeable [52, 186, 418]. The GluA2 subunit can also 
bind NSF and AP2 for stabilisation versus internalisation 
[99, 262, 332, 336, 419, 480]. As NSF and AP2 binding 
sites on GluA2 overlap, they are thought to elicit differ-
ent functions, which may explain the complexities of 
AMPAR trafficking [262]. As well as its involvement in 
the GluA2-PICK1 interaction, Tau has also been shown 
capable of binding to NSF and AP2 by co-immunoprecip-
itation studies [276]. The function of this binding may be 
related to NMDA-induced trafficking of AMPARs from 
synapses, whereby Tau deficiency results in reduced 
GluA2 subunits in the postsynaptic density during chem-
ical LTD [434]. GluA2 also regulates metabotropic gluta-
mate receptor-dependent LTD (mGluR-LTD) through a 
pathway involving cofilin-mediated actin reorganisation 
[506].

Tau can bind several proteins, interact with, or is 
directly involved in various stages of CME and synaptic 
trafficking, the proteins of which are also genetic risk 
factors for AD. These include the top three genetic risk 
factors, APOE [428], BIN1 [67, 217] and PICALM [174, 
248]. Similarly, many genetic risk factors for AD have 
been linked to CME though these proteins may not be 
known to directly bind to Tau, and will therefore be dis-
cussed in more detail (Fig. 5).

Possible roles of synaptic Tau based on interactions 
with proteins identified as genetic risk factors 
in Alzheimer’s disease
Another hint that CME may be closely associated with 
AD pathology comes from genetic mutations that can 
lead to late onset Alzheimer’s disease (LOAD) includ-
ing PICALM [174, 248], EXOC3L2 (Exocyst complex 
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component 3-like 2; [335, 401], BIN1 [217], MEF2 (myo-
cyte enhancer factor-2; [61], KIBRA [83], RIN3 (Ras and 
Rab Interactor 3; [217], and Sorla [379]. Figure  5 illus-
trates how these genetic risk factor proteins may further 
interact with pathways involved in synaptic plasticity, or 
with the proteins previously discussed in Fig. 4.

PICALM
Picalm is an adaptor protein required for clathrin-
mediated endocytosis by directly binding to clath-
rin, phosphatidylinositol, and AP2 to help form 
clathrin-coated pits on the cell membrane [109, 305, 
441]. Overexpression or degradation of Picalm blocks 
endocytosis, and has also been related to the extent 

Fig. 5  The genetic risk factors for Alzheimer’s disease are involved in synaptic plasticity. Proteins that have genetic links to AD (italicised) are 
mapped into the pathways described for proteins that are capable of binding to Tau. Proteins used to demonstrate the pathway but that do not 
bind directly to Tau (purple) or are known genetic risk factors (italicised) are also shown
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of Tau pathology [7, 8, 228, 385, 441]. Picalm may be 
involved in CME-mediated uptake of Tau species and 
is also found bound to fibrillar Tau [6, 475]. Increased 
concentrations of calpain-cleaved Picalm are found in 
the AD brain, which has been hypothesised to impair 
endocytic function in AD [6].

APP
Genetic mutations in the Amyloid precursor protein 
(APP), from which the fragment Amyloid-beta (Aβ1-42) 
arises, can be a direct cause of AD [149]. APP is only 
partially processed at the cell surface but requires CME 
for further processing and its synaptic activity-depend-
ent release [73, 239, 247, 455]. APP has functional roles 
in regulating spine density whereby overexpression or 
knockdown of APP causes an increased or reduced num-
ber of spines, respectively [261]. Aβ can cause dysregu-
lation of intracellular Ca2+ concentrations [13, 244], and 
synaptic depression, thought to occur by aberrant traf-
ficking and excessive removal of AMPARs [166, 191]. 
This could induce LTD through NMDA receptor- and 
metabotropic glutamate receptor-mediated signaling 
[166, 281]. APP has been shown to bind to Tau [199] 
without any known role, a functional link between 
these proteins however occurs via Fyn kinase. As previ-
ously discussed, both Tau and Aβ have been related to 
neuronal excitability, however memory deficits, excito-
toxic seizures, and seizure-induced premature mortal-
ity of mice overexpressing the Swedish mutation of APP 
(APPSwe) was reduced when nonreceptor tyrosine kinase, 
Fyn, was unable to enter post-synaptic compartments 
due to the expression of a truncated form of Tau [200]. 
For review on Aβ and trafficking see Perdigão et al. [346]. 
For reviews on synaptic mechanisms of Tau pathology 
see [107, 346].

BIN1, RIN3 and CD2AP
BIN1 is involved in endocytosis by binding to clathrin and 
AP2 during early endosome formation, and in the exocy-
tosis of vesicles from recycling endosomes to the cell sur-
face [57, 397]. Loss of BIN1 causes impaired presynaptic 
vesicle distribution and release, reduced synaptic density 
due to membrane trafficking, and an altered presynaptic 
protein clustering [381]. In the postsynaptic compart-
ment, this loss also causes reduced surface expression 
of the GluA1 AMPAR subunit in the post-synaptic com-
partment and altered AMPAR-mediated synaptic trans-
mission [397]. Overall, BIN1 knockout leads to deficits in 
synaptic transmission, and impaired spatial memory con-
solidation at the behavioural level [381]. Tau reduction 
has also been shown to reduce network hyperexcitability 
mediated by BIN1-interactions with L-type voltage-gated 
calcium channels (LVGCCs) [458]. BIN1 can rearrange 

the actin cytoskeleton and stabilise Tau-induced actin 
bundles [108]. BIN1 and Tau colocalise at the actin 
cytoskeleton [421] as has also be shown for BIN1 with 
the genetic risk factor protein RIN3 [217, 383] to medi-
ate receptor-induced endocytosis and transport of vesi-
cles from the plasma membranes to early endosomes 
[212]. BIN1 and RIN3 are both able to bind CD2AP (CD2 
associated protein), a protein found in cases of sporadic 
AD [185, 324, 328, 383, 439]. This interaction has been 
related to regulating cholesterol, which has been linked 
to AD through genetic risk factors involved with choles-
terol homeostasis [62, 295], and increased incidence of 
AD in hypercholesterolemia [295, 341, 407]. In Drosoph-
ila, loss of the CD2AP ortholog, cindr, causes a combina-
tion of endocytic and exocytic synaptic defects including 
impairments of synaptic vesicle recycling and release 
[334, 408] and enhanced Tau-induced neurodegenera-
tion [408]. Loss of cindr causes defects in endocytosis as 
shown by depression of synaptic responses during high-
frequency stimulation, as mutants are unable to sus-
tain synaptic vesicle release [30, 173, 237]. It is thought 
that impairment to synaptic vesicle endocytosis may be 
through the ability of CD2AP to link the binding of clath-
rin and actin via cortactin [282, 334, 499]. CD2AP also 
binds actin, whereby its loss of function stabilises F-actin 
[210, 469]. Exocytosis of vesicles is also affected by cindr 
having a role in presynaptic Ca2+ homeostasis. This is 
thought to occur through binding 14–3-3ζ to regulate the 
UPS for activity-dependent proteostasis to control the 
degradation of proteins involved with plasticity [334]. It 
is possible that Tau influences this pathway as 14–3-3 can 
increase Tau aggregation and co-immunoprecipitation 
studies have shown that Tau can bind to 14–3-3ζ, though 
the functional relevance of this remains to be determined 
[182, 276]. The UPS has an important role in endocytosis, 
protein trafficking, the size of post-synaptic potentials 
and the formation of long-term memory [202, 422, 502]. 
Alpha-synuclein, synaptophysin, syntaxin1, SNAP-25, 
synapsin1, GluA2, PSD95 and plasma membrane calcium 
ATPase (PMCA) have been identified as pre-synaptic 
targets for the UPS [29, 71, 78, 283, 334, 344, 403, 471]. 
AMPAR subunits are targets for degradation by the UPS 
for LTD induction following uptake by CME [115]. This 
occurs through ubiquitination of PSD-95 which other-
wise acts as tether for AMPARs and shields them from 
degradation [78]. Burbea et  al. (2002) hypothesize that 
there is an intricate link between ubiquitination, clathrin-
mediated endocytosis and UPS degradation, suggesting 
activity-dependent ubiquitin-conjugation of AMPARs 
to influence AMPARs at synapses [344]. Unregulated 
deubiquitination of synaptic proteins can also result in 
synaptic overgrowth and blocked release of synaptic vesi-
cles [102]. Like Picalm, Bin1 and CD2AP depletion can 
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cause impaired vesicle recycling or release and result in 
an accumulation of Aβ and other proteins inside of early 
endosomes [450]. This may also influence the aggregation 
of Tau, which is promoted at low pH inside of endolyso-
somal compartments [307].

MEF2C
MEF2C is a transcription factor that regulates hip-
pocampal-dependent learning and memory through the 
control of dendritic spine density, miniature excitatory 
postsynaptic currents (mEPSCs) frequency, probability 
of vesicle release, and activity-dependent AMPAR traf-
ficking through its presence in the pre- and post- synap-
tic compartments [20, 77, 221, 368]. MEF2C is therefore 
important for activity-dependent refinement of synaptic 
connectivity in homeostatic plasticity [20].

EXOC3L2
EXOC3L2 is a component of the exocyst, involved in the 
exocytosis of vesicles containing hormones, extracellu-
lar components, membrane lipids, and for the regulation 
of the readily releasable pool of synaptic vesicles via the 
binding of NSF and SNARE proteins including syntaxin1 
[189, 354]. The activity-dependent addition of membrane 
to the synapse via the exocyst is required for synaptic 
plasticity [442]. The exocyst interacts with postsynaptic 
density proteins to regulate NMDAR and AMPAR traf-
ficking and exocytosis at the postsynaptic membrane 
[143, 390]. Overall, the exocyst acts as an integrator 
between the secretory pathway and cytoskeleton, includ-
ing septins, actin, and microtubules, to localise vesicles to 
release sites [192, 436, 456].

KIBRA
KIBRA is enriched in brain regions involved with mem-
ory such as the hippocampus and cortex, where it is 
found in the perinuclear and somatodendritic regions of 
neurons, particularly at postsynaptic densities. KIBRA 
acts as a postsynaptic scaffold protein that connects the 
cytoskeleton with signalling molecules [208]. KIBRA is 
capable of binding activity-dependent AMPAR regula-
tors including NSF, PSD-95, PICK1, GluA1, GluA2 and 
GRIP1 (Glutamate receptor-interacting protein 1), and 
is involved in AMPAR recycling, through its ability to 
bind with the exocyst complex [286, 380]. By binding the 
exocyst, KIBRA can direct PKMζ (Protein kinase Mzeta), 
a brain-specific variant of PKCzeta that plays impor-
tant roles in memory formation, to required locations 
which is why it has been hypothesised to be a ‘synaptic 
tagging’ protein [489]. PKMζ is necessary and sufficient 
for enhanced synaptic transmission during LTP mainte-
nance and acts by increasing the number of postsynaptic 
AMPARs [270, 271]. PKMζ, but not other PKC isoforms, 

has been found in NFTs in brain regions specifically 
involved with memory loss in AD, whereas they are not 
found in NFTs of control brains without memory impair-
ment [85]. As KIBRA is involved in AMPAR recycling, 
knockdown of KIBRA results in an increase of AMPAR 
recycling following NMDAR internalisation [286]. This 
mechanism is impaired by Tau in AD. Acetylated forms 
of Tau seen in AD brains (K274 and K281) promote 
memory loss by preventing the recruitment of KIBRA 
into post-synaptic compartments, causing impaired 
activity-dependent postsynaptic actin remodelling and 
AMPAR insertion [447].

PTK2B
PTK2B encodes Pyk2 (proline-rich tyrosine kinase 2), a 
susceptibility factor for AD [248]. Fyn kinase can acti-
vate Pyk2, which then binds and phosphorylates Tau 
[59, 263, 361]. Pyk2 interacts with NMDARs, dependent 
upon binding PSD95, to phosphorylate NR2 subunits and 
increase receptor conductance during the induction of 
LTP [238, 399, 463]. Pyk2 binding to PSD95 is activity-
dependent as it requires activation of calmodulin by Ca2+ 
(Fig.  5, [25]. Pyk2 is fundamental to synaptic dysfunc-
tion triggered by Aβ as mice lacking Pyk2 were protected 
from synapse loss and memory impairment [388].

LDLR and ApolipoproteinE
The LDLR (low density lipoprotein receptor) has been 
linked to AD both through direct mutations and through 
interaction with ApoE (apolipoprotein E), the high-
est genetic risk factor for LOAD [81]. LDLR is involved 
in cholesterol uptake via CME. Cholesterol is essential 
for the maintenance of mature synapses to increase the 
number of synaptic vesicles and release sites, and overall 
release efficacy [148, 410]. Another low density lipopro-
tein receptor found at the postsynaptic density, LRP1, has 
been found to be the major receptor for monomeric or 
oligomeric Tau uptake, and can also cause age-depend-
ent synaptic loss and neurodegeneration in a knockout 
mouse model [80, 275, 277, 300, 369]. Oligomeric hyper-
phosphorylated Tau can bind and be released from cells 
by HSPGs prior to binding LRP1 [80, 218, 304]. Apolipo-
protein E deficient mice show heparan sulfate-enhanced 
low density lipoprotein (LDL) aggregates that are taken 
up by LRP1, causing cholesteryl ester accumulation in 
macrophages and production of atherosclerotic plaques 
[267, 289]. LRP1 is also responsible for the endocytosis 
and degradation of Aβ, or Aβ-ApoE complex, whereby 
amyloid pathology is enhanced by the APOE4 allele, 
dependent upon LRP1 uptake [90, 214, 437]. Alongside 
this, LRP1 is involved in the endocytosis of APP, which is 
required for its processing of Aβ peptides [234].
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The ApoE type 4 allele, the highest genetic risk factor 
for AD [81], causes impaired vesicle cycling to the cell 
surface resulting in intracellular cholesterol accumula-
tion [181, 428]. This impaired cycling also traps AMPARs 
and NMDARs clustered with ApoE receptors inside of 
endocytic vesicles, causing synaptic dysfunction [70]. 
Aβ is capable of regulating the surface expression versus 
endocytosis of NMDARs, potentially through disruption 
to their binding with PSD95 [377, 414]. Impaired cycling 
by ApoE4 is thought to exacerbate Aβ induced endocy-
tosis of AMPA and NMDARs, and ApoE4 knock-in mice 
show increased sensitivity to the blockade of LTP by oli-
gomeric Aβ and by failing to restore Reelin signalling [70, 
414, 449]. In a pathway suggested by Durakoglugil et al. 
[112], Aβ competes against nonreceptor tyrosine kinase 
signalling, predominantly by Fyn kinase, over activation 
or antagonism of the Reelin pathway. In the absence of 
phosphorylation, the microtubule binding region of Tau 
is capable of binding ApoE3 but not ApoE4, [429]. ApoE4 
also increases Tau-mediated neurodegeneration as com-
pared with other alleles or knockout of ApoE, which is 
neuroprotective [405].

There are many genetic risk factors linked to AD that 
involve proteins required for CME, vesicle cycling or 
exocytosis. Alongside PICALM, BIN1, and Apolipopro-
tein E, which directly bind Tau, a number of proteins link 
genetic risk factor proteins with synaptic proteins capa-
ble of binding Tau and which are linked to vesicle cycling 
pathways [67, 276, 421]. Such proteins, recurring through 
this review, may include AMPARs, 14–3-3ζ, NSF, PSD95, 
Fyn kinase and clathrin itself. Many of the proteins which 
are able to bind Tau, or are related to LOAD and familial 
AD, also bind to the actin cytoskeleton and may there-
fore act as a linker between structural and signalling roles 
required for synaptic plasticity and memory mechanisms.

Tau as a linker between CME, vesicle trafficking, 
and the cytoskeleton
Tau is able to simultaneously bind actin and micro-
tubules, and induce the polymerisation of actin along 
microtubule tracks [116]. As Tau has been linked with 
physiological and pathological actin structures, it is 
worth discussing how these cytoskeletal arrangements 
may link with CME and previously discussed synaptic 
trafficking mechanisms.

CME is intricately linked to actin dynamics though the 
exact stage, location and function of these associations in 
mammalian cells have been strongly debated. It appears 
that actin is involved with the invagination of membrane 
and late stages of CME [139]. Actin has been suggested to 
play structural role and mechanical roles in exerting force 
during scission and constriction steps required for vesicle 
endo- and exocytosis [203, 363, 413]. Actin is the main 

cytoskeletal component of synaptic compartments and 
spines, and is thought to facilitate the cytoarchitectural 
changes required for synaptic plasticity [60, 104, 299].

Actin has also been suggested to have an active role in 
the segregation of vesicle populations to determine their 
retention or release at the membrane surface [72]. In the 
pre-synaptic compartment, loss of F-actin integrity has 
shown impairment to synaptic vesicle release or recycling 
in multiple studies [409, 459, 501]. This greatly reduces 
the number of synaptic vesicles in the stimulated con-
dition due to the inability to retrieve vesicles from the 
plasma membrane [409]. Stabilisation of F-actin by phal-
loidin also prevents neurotransmitter release [32, 350]. 
Pre-synaptically, the bundling and stabilisation of actin 
by phalloidin are far more dramatic following the induc-
tion of action potentials, which cause the assembly of 
filamentous actin fibres, tethered with vesicles, from the 
endocytic zone to the periphery of the vesicle pool [409]. 
This may be similar to the effects seen when Tau is shown 
to cause increased resistance to depolymerising drugs by 
directly stabilising actin [136]. Decreased actin dynamics 
through actin bundling has previously been associated 
with senescence, whereas knockdown of the actin bun-
dling protein SM22/transgelin increases longevity [161].

F-actin also determines the mobility of receptors 
between the cell surface and the cytoplasm [2]. In the 
post-synaptic compartment, F-actin stabilises receptors 
in dendritic spines, whereby its disruption decreases the 
number of NMDAR and AMPAR clusters. In hippocam-
pal neurons, post-synaptic actin depolymerisation causes 
AMPAR endocytosis, similar to that induced by gluta-
mate [2]. By contrast, stabilisation of F-actin can inhibit 
AMPAR internalisation [2]. The specific linker proteins 
that allow F-actin to facilitate these functions are not 
fully known. Much is still poorly understood about how 
CME and its role in vesicle cycling and plasticity links 
with actin and its mechanical and structural roles within 
the synaptic compartments. A number of proteins are 
responsible for actin dynamics, including the previously 
discussed proteins tropomyosin, cofilin, and adducin. 
Alongside the better known pathology of Aβ plaques and 
neurofibrillary tangles seen in AD, actin-depolymeriz-
ing factor (ADF)/cofilin-actin rods can also occur [310] 
which may be precursors to Hirano bodies, actin-rich 
inclusions that contain tropomyosin, Tau, and cofilin, 
among other proteins [140, 146].

As Tau is capable of binding the filament proteins sep-
tin7, tubulin and actin, Tau may act like a Velcro that 
reversibly positions structures into place for signalling 
pathways and to restructure proteins depending on the 
levels of synaptic activity. This role may balance the level 
of proteins available for function versus their degrada-
tion through cleavage by calpain and the UPS. This has 
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already been discussed for the protein synapsin1, how-
ever numerous other proteins including actin, cortactin, 
NMDAR and AMPAR subunits, PSD95, SNAP-25, GAP-
43, and GRIP are either targeted to scaffolding proteins 
such as PSD95 for stabilisation, or else marked by cleav-
age or ubiquitination for degradation [9, 33, 78, 348, 357, 
457, 474, 494]. Reduced post-synaptic glutamate recep-
tor localisation was proposed to be due to a depletion of 
PSD95 in the post-synaptic compartment, resulting in 
smaller postsynaptic densities following a reduction or 
mutation of Tau [325, 465]. The UPS is only responsible 
for the local degradation of a subset of synaptic proteins, 
and its function is regulated by synaptic activity or neu-
ral growth factors (NGF) to adjust the concentration of 
proteins important for synaptic function. This activity-
dependent or NGF-dependent UPS function can thereby 
feedback to regulate neurotransmitter release and syn-
apse elimination [206, 254, 372, 422].

The role of Tau trafficking, its link to endocytosis, 
cholesterol and the cytoskeleton
A question that emerges from the above findings is 
whether the presence of Tau at different locations in the 
cells are due to internal Tau translocations or due to Tau 
being released into the extracellular space and its re-
uptake by neighbouring neurons. There have been many 
reports on Tau trafficking and its uptake mechanism. 
It is thus interesting to note that several endocytosis-
related pathways are involved in Tau trafficking and thus 
may explain why Tau pathology is linked to these differ-
ent pathways (for a review see [50]. Furthermore, there 
are several studies emerging highlighting the role of the 
extracellular and intravesicular environment on protein 
misfolding involving high sodium, zinc, and calcium 
ion concentrations and solvents [319, 426, 426], low pH 
[307], presence of glucosaminoglycans [227, 321] to name 
a few. Recent studies [80, 369] also highlights another 
potentially important factor, namely cholesterol. Cho-
lesterol has long been seen as a player in AD and many 
other neurodegenerative diseases, such as PD, Nieman 
Pick’s disease Type C (NPC) and ALS (for a review see 
[294]. The increased membrane-associated cholesterol 
concentration in the brains of patients with sporadic AD 
correlates with the disease severity [86, 291, 482]. In age-
ing neurons cholesterol is mainly taken up by endocyto-
sis, as opposed to cell-autonomous cholesterol synthesis 
[137], and thus extracellular Tau and cholesterol may 
end up in the same endosomal compartment. Increased 
accumulation of Tau and cholesterol in endosomes may 
interfere with the WASH complex, similar to what has 
been observed in VPS35 (vacuolar protein sorting 35) 
related to PD [495], and thus affect the actin skeleton and 

endosome-lysosome networks [97, 154, 155]. Impaired 
cholesterol transport would not only reduce cholesterol 
being supplied to other organelles such as the mitochon-
dria and the plasma membrane and lipid rafts, but also 
reduce the number of synaptic vesicles being formed.

Conclusion
In AD, Tau is commonly discussed with regards to pre-
synaptic [301, 503] versus post-synaptic [200] pathol-
ogy, though little emphasis is put on mechanisms that 
may target common plasticity pathways such as synap-
tic protein and lipid trafficking, and vesicle cycling. In 
this review paper, we have highlighted synaptic proteins 
that Tau is capable of binding to, or genetic risk factor 
proteins, and mapped these to pathways that relate to 
plasticity mechanisms that would directly link Tau with 
impaired memory, a primary symptom of AD [23]. It is 
also important to note that changes to memory mecha-
nisms occur even as a result of healthy ageing. In general, 
it has been shown that in older animals LTP is less robust 
and requires stronger input whereas LTD is enhanced 
[22, 318, 333, 446]. AD pathology may further hijack 
these mechanisms leading to symptoms of dementia.

A small amount of Tau has been detected at synapses 
under physiological conditions. Due to the activity-
dependence of Tau translocation to synapses, it has been 
hypothesised that Tau may have a supporting struc-
tural role during development and plasticity [190, 132, 
317, 392, 434, 438]. Tau has been suggested to coordi-
nate microtubule and actin dynamics to allow structural 
alterations during activity, as Tau binds F-actin with 
a physiological function [136, 177, 493]. Tau has been 
found to be capable of binding to a number of proteins 
with roles associated with clathrin-mediated endocytosis 
(Fig. 4). It is plausible that Tau acts as either a tethering 
protein between vesicles, similarly to synapsin, at least 
during pathological conditions [301]. This binding may 
occur with microtubules, septin, actin-mediated mecha-
nisms, or HSPG extracellular matrix for either supply-
ing, stabilising, or transporting components required 
for plasticity. Phosphorylation-dependent mechanisms 
that change protein interactions and synaptic scaffold-
ing may become impaired in pathways leading to NFTs 
[317]. Synaptic vesicles and exocyst cycling, and receptor 
targeting may be impacted during Tau pathology. Post-
synaptic roles in Tau pathophysiology have been related 
to AMPAR or NMDAR localisation, trafficking or func-
tioning [92, 190, 200, 313, 434, 465]. Hoover et al. [190] 
showed, using rTgP301L mice, that Tau mutation or 
hyperphosphorylation impaired trafficking or anchoring 
of AMPARs and NMDARs. Multiple indirect mecha-
nisms of NMDAR or AMPAR-dependent impairment 
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have been shown through changes to import Fyn kinase, 
PSD95, and KIBRA proteins into post-synaptic compart-
ments [200, 447, 465].

Based on recent evidence from the literature, we 
hypothesise that Tau serves as a scaffold to bind the 
cytoskeleton and to regulate its interactions with key syn-
aptic targets, particularly in coordinating CME at both 
the pre- and post- synaptic compartments. A similar role 
for Aβ in CME and clathrin-dependent membrane and 
protein trafficking pathways, which is known to affect 
synaptic vesicle endocytosis and exocytosis, has already 
been posited in AD [223, 346, 485], in schizophrenia 
and bipolar disorder [396]. Aβ42 oligomers are known 
to directly interact with Syntaxin 1a [485] Synaptophy-
sin [387], or indirectly interfere with dynamin through 
NMDAR activation [222, 224], and Synapsin1 [274, 292, 
342]. Although we have listed many possible pathways 
by which Tau may mediate its role at the synapse based 
on its binding ability, not all of these may have functional 
relevance or be directly related to AD pathology. These 
pathways may however highlight the intricacies of the 
dysfunction that may occur, or at least show the com-
plexity of the etiology and progression of AD.

Outstanding questions
Does Tau have physiological roles in the pre- and/
or post-synaptic compartments for pathways related 
to vesicle cycling and protein trafficking for plasticity, 
or is its localisation in synaptic compartments purely 
pathological?

What is the phenomenon that causes the conversion of 
monomeric to multimeric Tau species? Does Tau aggre-
gation impair any physiological roles of synaptic Tau and 
if so how and at what point(s) during the aggregation 
pathway? Is pathology to pathways involving physiologi-
cal Tau directly responsible for memory impairment seen 
in AD?

At what stage does pathological phosphorylation of 
Tau occur and how does this deter from physiological 
phosphorylation pathways and normal function?

Is the presence of Tau at different locations in cells 
due to internal Tau translocations or due to Tau being 
released into the extracellular space and its re-uptake 
by neighbouring neurons? And therefore, how does the 
extracellular environment and Tau uptake into the endo/
lysosomal pathway affect Tau location and pathology?

Of the proteins discussed in this review as being capa-
ble of binding Tau, which of these interactions have func-
tional roles inside of neurons? Are these interactions 
affected by multimeric Tau and could they be therapeuti-
cally targeted?
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