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Transcriptomic and genetic studies identify NFAT5 as a
candidate gene for cocaine dependence
N Fernàndez-Castillo1,2,3, J Cabana-Domínguez1,2, J Soriano4, C Sànchez-Mora5,6,7, C Roncero5,7,8,9, L Grau-López5,7,8,9,
E Ros-Cucurull5,8,9, C Daigre5,7,8,9, MMJ van Donkelaar10,11, B Franke10,11,12, M Casas5,7,8,9, M Ribasés5,6,7,13 and B Cormand1,2,3,13

Cocaine reward and reinforcing effects are mediated mainly by dopaminergic neurotransmission. In this study, we aimed at
evaluating gene expression changes induced by acute cocaine exposure on SH-SY5Y-differentiated cells, which have been widely
used as a dopaminergic neuronal model. Expression changes and a concomitant increase in neuronal activity were observed after a
5 μM cocaine exposure, whereas no changes in gene expression or in neuronal activity took place at 1 μM cocaine. Changes in gene
expression were identified in a total of 756 genes, mainly related to regulation of transcription and gene expression, cell cycle,
adhesion and cell projection, as well as mitogen-activeated protein kinase (MAPK), CREB, neurotrophin and neuregulin signaling
pathways. Some genes displaying altered expression were subsequently targeted with predicted functional single-nucleotide
polymorphisms (SNPs) in a case–control association study in a sample of 806 cocaine-dependent patients and 817 controls. This study
highlighted associations between cocaine dependence and five SNPs predicted to alter microRNA binding at the 3ʹ-untranslated
region of the NFAT5 gene. The association of SNP rs1437134 with cocaine dependence survived the Bonferroni correction for multiple
testing. A functional effect was confirmed for this variant by a luciferase reporter assay, with lower expression observed for the
rs1437134G allele, which was more pronounced in the presence of hsa-miR-509. However, brain volumes in regions of relevance to
addiction, as assessed with magnetic resonance imaging, did not correlate with NFAT5 variation. These results suggest that the NFAT5
gene, which is upregulated a few hours after cocaine exposure, may be involved in the genetic predisposition to cocaine dependence.
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INTRODUCTION
Cocaine is a psychostimulant drug of abuse and its use has
become a public health problem worldwide. Cocaine’s pleasurable
and addictive effects are thought to be mediated mainly through
dopamine (DA), which is a key neurotransmitter in reward
pathways.1 Cocaine binds the DA transporter producing an
increase in DA concentration at the synapses and thus stimulating
neurons in brain regions involved in reward and reinforcement
behavior.1–3

Cocaine’s chronic and acute effects on gene expression have
been studied using a broad range of animal models and
experimental paradigms and procedures, including human post-
mortem samples.4,5 These studies have identified gene expression
changes in the brain related to diverse functional categories
including synaptic communication and neuroplasticity, receptors,
ion channels and transporters, cytoskeleton, extracellular matrix,
oligodentrocytes and myelin, mitochondrial function, apoptosis
and cell death, transcription factors and signal transduction.
Moreover, two important pathways have been found affected by
changes in gene expression: the mitogen-activated protein kinase

(MAPK) and the synaptic long-term potentiation signal transduc-
tion pathways.4,5

The repeated use of cocaine induces molecular and cellular
adaptations in the central nervous system, such as synaptic
changes and neuronal remodeling, and as the consumption
becomes chronic those adaptations become stable.6 Individual’s
genetic background and environment determine the initial
sensitivity to first drug exposure and how individual nerve cells
and circuits adapt to chronic drug exposure, which could establish
the development of addiction in some individuals but not others.7

Around 15–16% of cocaine users develop dependence, and
heritability for cocaine addiction has been estimated around
60–70%.8–10 Some of those genetic factors may lie in genes that
mediate acute and chronic cocaine’s effects, conferring initial
vulnerability to the establishment of drug-induced adaptations.
Compared with other drugs of abuse, relatively few association

studies have been performed on cocaine dependence, and little is
known about the genetic susceptibility to this psychiatric
disorder.11 Some association studies have focused on candidate
genes, especially on DA-related genes, the majority failing to
detect associations or showing controversial results. Only
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associations with two genes, CNR1 (cannabinoid receptor 1, brain)
and CHRNA5 (cholinergic receptor, nicotinic, alpha 5, neuronal)
have been replicated so far.11–13 Other studies have assessed
hundreds of single-nucleotide polymorphisms (SNPs) in multiple
genes within candidate systems, and two genome-wide associa-
tion studies have been reported in cocaine dependence,
identifying shared as well as specific associations in European
Americans and in African American populations.14–17

We aimed at discovering novel genes involved in the
susceptibility to cocaine dependence that could mediate its
effects. Under the hypothesis that sequence variants in genes
showing differential expression induced by cocaine may con-
tribute to cocaine dependence, and considering the essential role
that DA has in cocaine’s effects and addiction, we designed a two-
stage study by (i) identifying cocaine-induced changes in gene
expression in a dopaminergic neuron-like model (SH-SY5Y) using
microarray technology and (ii) subsequently considering differen-
tially expressed genes as potential candidates for cocaine
dependence, by assessing predicted functional SNPs in these
genes through a case–control association study.

MATERIALS AND METHODS
A brief description of the materials and methods is presented below. For
detailed information of all procedures see Supplementary Information.

Cell culture and cocaine treatments
SH-SY5Y cells (ATCC, LGC Standards, Middlesex, UK) were differentiated
with retinoic acid (Sigma-Aldrich Corporate, St. Louis, MO, USA) during
7 days at a final concentration of 10 μM supplemented on the media (50:50
Dulbecco's modified Eagle's medium:F12, 10% fetal bovine serum and 1%
P/S, Gibco, Life Technologies, Carlsbad, CA, USA). SH-SY5Y differentiation
was assessed by changes compatible with neuron-like morphology and
neurite outgrowth, expression of tyrosine hydroxylase as a dopaminergic
neuronal marker by western blot, and cell cycle analysis (Supplementary
Figure 1). Cytotoxicity of cocaine was assessed with XTT assays (Cell
Proliferation Kit II, Roche Life Sciences, Branford, CT, USA) at 0, 1, 5, 10, 15
and 20 μM of cocaine–HCl. The range of cocaine concentrations were
selected based on concentrations determined in human plasma and brain
in different studies.1,18–24 For gene expression analysis, cocaine treatment
was performed on differentiated SH-SY5Y cells at 0, 1 and 5 μM, selected on
the basis of a previous microarray study25 and the range observed in
cocaine abusers.19,21 After 30min of exposure, the medium was replaced
and cells were retrieved at 6 or 24 h.

Microarray and qRT-PCR experiments
RNA was isolated from nine dishes per condition (RNeasy Mini Kit, Qiagen,
Hilden, Germany) and pools of three dishes were hybridized to the
GeneChip Human Genome U133 Plus 2.0 Array (Affymetrix, Santa Clara, CA,
USA). Microarray data have been deposited in NCBI's Gene E
xpression Omnibus (GEO) and are accessible through GEO Series accession
number GSE71939 (http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc =
GSE71939).
For quantitative real-time (qRT-PCR) validation, we initially selected

genes showing differences in expression ⩾ 1.5-fold, a total of 143. From
those we considered genes included in representative enriched functional
categories, pathways or gene networks. Finally, we selected eight genes
based on their functions and possible involvement in mediating cocaine
effects and neuroadaptations, in which expression had not previously been
found to be altered by cocaine. Selected genes were validated using
qRT-PCR and further assessed in new experiments at different time points
(2, 4, 5, 6, 7, 8 and 10 h) after a cocaine acute exposure (0 vs 5 μM) with
three replicates per condition. We performed a relative quantification of
the results of the qRT-PCR experiments using glyceraldehyde-3-phosphate
dehydrogenase and hypoxanthine phosphoribosyltransferase (HPRT1)
expression for normalization.

Calcium imaging and neuronal activity monitoring
We used calcium imaging (Fluo-4-AM) to monitor changes in neuronal
activity in differentiated SH-SY5Y cells at 0, 1, 5 and 10 μM cocaine–HCl

exposure as previously described.26 Recordings were performed during
15 min per condition, assessing over eight replicates (160–240 active
neurons per condition).

Subjects
Seven genes showing differential expression profiles after an acute cocaine
treatment were selected to perform a case–control association study on
cocaine dependence. The clinical sample included 806 cocaine-dependent
subjects according to DSM-IV TR criteria (Diagnostic and Statistical Manual
of Mental Disorders, 4th edn, text revision) seeking treatment in the
'Addiction and Dual Diagnosis Unit' of Vall d’Hebron Hospital (Barcelona,
Spain) and 817 sex-matched healthy controls (see Supplementary Table 1
for details). The controls were recruited at the Blood and Tissues Bank of
Vall d’Hebron Hospital; none of them had injected drugs intravenously. All
individuals were Spanish and Caucasian, with the two last names (one from
each parent) of Spanish origin. All of them signed the informed consent,
previously approved by the Ethics Committee and were evaluated
according to the 'Addiction and Dual Diagnosis Unit' protocol.27 DNA
samples were isolated from peripheral blood. Population stratification was
previously discarded in our sample.15

SNP selection and genotyping
A total of 22 SNPs within seven candidate genes were selected based on
their predicted functional effect using the FuncPred software (http://
snpinfo.niehs.nih.gov/snpinfo/snpfunc.htm) and two additional SNPs at the
SEMA6D gene associated with substance dependence in a previous
genome-wide association study28 were also included in the assay. Finally,
23 SNPs were successfully genotyped with KASP technology with an
average genotype call rate of 98.2%, and further evaluated in a case–
control association study.

Functional evaluation of SNP effects on microRNA regulation using
a luciferase assay
The effect of SNPs showing consistent predictions on microRNA regulation
(using different software tools, see Supplementary Information) was
experimentally tested by a luciferase reporter system in HeLa and in SH-
SY5Y cells. The 3ʹ-untranslated regions containing both alleles of each SNP
were cloned in the pmirGLO Dual-Luciferase miRNA Target Expression
Vector (Promega, Madison, WI, USA) and cotransfected into HeLa and SH-
SY5Y cells with the corresponding microRNA cloned in a pCMV-MIR vector
(OriGene, Rockville, MD, USA). Luciferase expression was assessed using
the Dual-luciferase Reporter Assay System (Promega).

Neuroimaging genetics studies
The effect of NFAT5 SNPs on regional brain volumes was tested using
neuroimaging and genetic data of 1300 self-reported healthy adults from
the Dutch Cognomics Resource Brain Imaging Genetics (http://www.
cognomics.nl).29 Seven regions of interest known to be involved in drug
addiction30 (orbitofrontal cortex, prefrontal cortex, nucleus accumbens,
putamen, caudate nucleus, hippocampus and insula) were assessed in the
discovery sample (n= 645, scanned at 1.5 Tesla) and then in the replication
sample (n= 655, scanned at 3 Tesla; Supplementary Table 2).

Statistical analyses
We used the affy library to perform background correction, normalization
and summarization, considering the background method, the Robust
Multichip Average method and the median polish method, respectively.31

Genes were filtered by signal (threshold log2(40)), and the expression
profiles were compared using the limma library. We used DAVID
Annotation Tool32 for the functional enrichment clustering and the
Ingenuity Pathway Analysis v8.8 software (http://www.ingenuity.com/
products/ipa) for gene network and canonical pathway enrichment
analyses. WebGESTALT was used for microRNA-binding site enrichment
analyses considering upregulated and downregulated subsets of genes
separately.33

The minimal statistical power in the case–control association study was
estimated post hoc considering the SNP with the lowest minimum allele
frequency (MAF = 0.143) and assuming an additive model of inheritance,
with an estimated statistical power of 98% using the software Power
Calculator for Genetic Studies (http://sph.umich.edu/csg/abecasis/CaTS).
Analysis of Hardy–Weinberg equilibrium and the comparison of genotype
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frequencies between cases and controls under an additive model were
performed using the SNPassoc R package.34 Significant P-values were
adjusted for age. Bonferroni correction for multiple testing was applied
considering 22 independent tests (Po0.0022).
For cytotoxicity, qRT-PCR, calcium imaging and luciferase experiments,

differences between conditions were evaluated with the IBM SPSS
Statistics Software Version 22.0 (Released 2013; IBM, Armonk, NY, USA)
using a Mann–Whitney non-parametric U-test, as normality was rejected
using the Kolmogorov–Smirnov test (as expected, given the small number
of samples), and statistical significance was set at Po0.05. Brain volume
analyses were performed by linear regression using PLINK software (http://
pngu.mgh.harvard.edu/ ~ purcell/plink/).

RESULTS
Under the hypothesis that cocaine-induced gene expression
changes may highlight novel candidate genes predisposing to
cocaine dependence, we performed an in vitro study in a
dopaminergic neuron-like model to assess transcriptional changes
induced by cocaine. Subsequently, we tested those genes
showing differential expression as potential candidates for cocaine
dependence through a case–control association study.

Cocaine-induced changes in gene expression in SH-SY5Y cells
differentiated to dopaminergic neurons
SH-SY5Y cells differentiated to dopaminergic neurons
(Supplementary Figure 1) showed no cocaine cytotoxic effects at
any of the conditions under study (data not shown), and gene
expression experiments were conducted at 6 or 24 h after 30 min
of cocaine treatment at 0, 1 and 5 μM. After 6 h of an acute 30-min
exposure to 5 μM cocaine, 756 genes exhibited significantly altered
expression levels when compared to untreated cells (419
upregulated and 337 downregulated; Supplementary Table 3).
Analysis of functional group over-representation identified several
processes, including regulation of transcription, chromatin mod-
ification, focal adhesion and cell projection, and also neurotrophin
and MAPK signaling pathways, among others (Figure 1a). Gene
network construction showed a highly scored network (score = 34,
Figure 1b) involved in molecular transport, cellular development
and cell-to-cell signaling and interaction. The canonical pathways
'neuregulin signaling' and 'cyclic AMP response element-binding
protein (CREB) signaling in neurons' were also altered
(Supplementary Figure 2). The analysis of enrichment of
microRNA-binding sites identified miR-124a, with predicted
targets in 22 genes upregulated by cocaine (see Supplementary
Table 4). The validation assays of expression patterns at different
time points for eight genes showing expression differences ⩾ 1.5-
fold and involved in neuroadaptation, axon guidance, neuroplas-
ticity, neurite outgrowth, neurotrophin signaling pathway or
transcription regulation, confirmed increased expression around
6 h after cocaine exposure for ectodermal–neural cortex 1 (ENC1),
nuclear factor-activated T-cells 5 (NFAT5), E74-like factor 1 (ELF1),
protein phosphatase 1 regulatory subunit 9A (PPP1R9A), insulin-
like growth factor 2 mRNA-binding protein 3 (IGF2BP3) and
neuregulin 1 (NRG1), and decreased expression for semaphorin 6D
(SEMA6D) (Figure 2).
No differences in gene expression were observed in the

microarray experiments when cells were treated with 1 μM cocaine
or 24 h after exposure. In order to explain the lack of changes
observed at this concentration, we hypothesized that neuronal
activation may co-occur with transcriptional changes above a
specific threshold of cocaine concentration, and 1 μM cocaine may
not be sufficient to induce detectable changes in neuronal activity
nor in gene expression. For this purpose, we investigated neuronal
network activity by means of calcium imaging after exposure to
different cocaine concentrations (Figure 3a). We observed a
concentration-dependent progressive increase in neuronal
response and firing amplitude (Figures 3b and c). No changes in

the percentage of active neurons were observed when we
compared 0 and 1 μM cocaine treatment (22 and 26%, P= 0.44),
nor in the average number of firing/neuron (0.4 and 0.5 firings/
neuron, P= 0.40) (Figures 3d and e). Increases in active neurons
and a higher number of firings/neuron, however, were detected
after exposure to 5 μM (64%, P= 8.7e− 05; 1.4 firings/neuron,
P= 0.047) or 10 μM cocaine–HCl (67%, P= 1.5e− 06; 1.9 firings/
neuron, P= 3.6e− 03) compared to 0 μM (Figures 3d and e). The
absence of differences in neuronal activity below 1 μM correlates
with the lack of differences observed in gene expression at this
cocaine concentration.

Case–control association study on cocaine dependence
The seven genes that showed cocaine-induced expression
changes validated by qRT-PCR were subsequently considered as
candidates to contribute to cocaine dependence susceptibility.
Twenty-three potentially functional SNPs in genes showing
cocaine-induced changes in expression levels (NFAT5, ELF1,
PPP1R9A, SEMA6D and IGF2BP3) were subsequently followed-up
in a case–control association study of 806 cocaine-dependent
patients and 817 sex-matched healthy controls. All SNPs, except
for rs854524, not considered in the subsequent analyses, were
in Hardy–Weinberg equilibrium both in cases and in controls
(Supplementary Table 5).
The single-marker analysis showed that five SNPs in the 3ʹ-

untranslated region of the NFAT5 gene were associated with
cocaine dependence, and two of them (rs1437134 and rs7359336,
in high linkage disequilibrium) survived the Bonferroni correction
for multiple testing (Table 1; Supplementary Table 5;
Supplementary Figure 3). All five variants were predicted to alter
binding sites for microRNAs (Supplementary Figure 4) and two of
them, rs1437134 and rs11641233, were predicted to alter hsa-
miR-509 and hsa-miR-649 binding to the NFAT5 messenger RNA
by at least three different software tools. We subsequently focused
on these two SNPs and performed a luciferase reporter assay in
HeLa and SH-SY5Y cells. A significant decrease in gene expression
was observed for allele rs1437134G compared to allele
rs1437134A, both in HeLa and in SH-SY5Y cells (9 and 13%,
respectively; Figure 4). In the presence of the microRNA hsa-
miR-509, the decrease in gene expression shown by rs1437134G,
compared to rs1437134A, was more pronounced in both cell lines
(31% in HeLa and 21% in SH-SY5Y; Figure 4). In contrast, no effect
on gene expression was detected for rs11641233 in the presence
of hsa-miR-649 (data not shown).
Finally, as NFAT5 is a member of the NFAT protein family,

involved in axon guidance, and it is highly expressed in the
developing and adult brain, we tested possible effects of NFAT5
variation on brain volumes using brain imaging data. In this
way, we aimed at identifying potential mechanisms mediating
the effect of this gene on addiction risk. However, no
significant correlations were observed between brain volumes in
the regions of interest and any of the SNPs investigated
(Supplementary Table 6).

DISCUSSION
This study aimed at uncovering genes mediating cocaine’s effects
in an in vitro model that could eventually participate also in the
susceptibility to cocaine dependence. For this purpose, we first
identified genes showing differential expression under cocaine
exposure in a dopaminergic cell model, and we subsequently
investigated their possible role in the predisposition to cocaine
dependence by assessing functional common genetic variants
through a case–control study. The results of our experimental
design pointed at NFAT5, which is upregulated by cocaine and
bears functional risk variants for cocaine dependence.
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To our knowledge, this is the first study assessing gene
expression changes induced by cocaine in a dopaminergic cell
model, with dopaminergic neurons being the key of the reward
system and cocaine pleasurable effects. For this purpose, we used
the SH-SY5Y cell line differentiated with retinoic acid, which shows
neuron-like morphology, has increased DA content, expresses
neuronal and dopaminergic markers, has functional DA transpor-
ter, and features excitability, potential propagation and enhanced
dopaminergic neurotransmission.35–38

In vitro studies assessing the effect of cocaine exposure on
gene expression have previously been performed in neuronal

progenitor or fetal cells to study prenatal brain alterations, and
showed changes in immune and inflammatory responses, and
cell-death related genes.25,39,40 Under our experimental condi-
tions, changes in expression were detected for genes involved in
transcription, transport, cell cycle, cell projection and adhesion,
and MAPK and CREB signaling, which is in agreement with
previous gene expression studies after cocaine abuse performed
in humans and animals.4,5 Several genes showing differential
expression in our study were also found altered in previous
studies performed in human post-mortem samples and rat
models, including ADORA1 (adenosine A1 receptor), CALM2
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Figure 1. Gene expression changes caused by exposure to 5 μM cocaine in vitro after 6 h. (a) Representative over-represented biological
categories (Gene Ontology terms, GO) and pathways (Kyoto Encyclopedia of Genes and Genomes, KEGG) identified by DAVID software among
the differentially expressed genes. The number of genes with altered expression included in each category is indicated on the right side of the
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and red nodes in the pathway indicate the down- and upregulated genes, respectively, induced by 5 μM cocaine–HCl after 6 h.
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(calmodulin 2), GRIN1 (glutamate receptor, ionotropic, N-methyl
D-aspartate 1), LAMB1 (laminin beta 1) and SMN1 (survival of motor
neuron 1, telomeric; see Supplementary Table 3).41–46 We
detected the effect of cocaine exposure on SH-SY5Y cells at 6 h
after 5 μM cocaine treatment. This is different from a previous
study by Crawford et al.25 in human neuronal progenitor cells
showing gene expression changes 24 and 48 h after only 1 μM
cocaine treatment. The results of the transcription analysis
correlated with our calcium imaging experiments, a technique
previously employed in SH-SY5Y cells to assess caffeine and
carbachol effects,47 that revealed significant increases in neuronal
activity after exposure to 5 μM cocaine, but almost no activity
changes under 1 μM cocaine. This is consistent with previous
studies detecting cocaine concentrations in the caudate-putamen
of cocaine abusers in the range of 0.8–1.8 μM (average about 1 μM)
during the 30 min after an intravenous cocaine dose of 0.1 -
mg kg− 1,48 a dose that was not sufficient to produce a subjective
‘high’, rush and craving in humans;1 these were only observed at
higher intravenous doses (0.3 and 0.6 mg kg− 1, commonly used
by cocaine abusers). Thus, 1 μM cocaine in dopaminergic regions
of the brain (after a 0.1-mg kg− 1 dose) would not be enough to
produce those cocaine effects, which may correlate with our
findings obtained in neuronal activity and expression studies
in vitro.
Among the genes showing the most pronounced expression

changes after exposure to 5 μM cocaine, we selected some
showing functions that could potentially mediate cocaine effects

and participate in neuronal circuit remodeling and neuroadapta-
tions that lead to cocaine dependence. We succeeded in
validating expression changes for seven of the eight selected
genes, ENC1, NFAT5, ELF1, PPP1R9A, SEMA6D, IGF2BP3 and NRG1,
whose expression had not previously been described to be altered
after exposure to cocaine. ENC1 (NRP/B) is primarily expressed in
neurons and encodes an actin-binding protein that induces
neurite outgrowth and has a role in nervous system development
and differentiation.49,50 PPP1R9A is also expressed in neurons; it
encodes Neurabin-1, a synaptic protein that controls neuronal
actin cytoskeleton and reorganization and is involved in neurite
formation.51,52 Semaphorin 6D, encoded by SEMA6D, is involved in
axon guidance, and SNPs in this gene have previously been
associated with substance dependence in a genome-wide
association study.28,53,54 Other semaphorins have also been found
upregulated by cocaine in animal and human studies.44,55 IG2BP3
is involved in neuronal differentiation and Neuregulin1, encoded
by NRG1, is a signaling protein that mediates cell-to-cell
interactions, neuronal survival, synaptic maturation and main-
tenance, growth cone dynamics and trafficking of neurotransmit-
ter receptors.56,57 Both ELF-1 and NFAT5 encode transcription
factors that have been studied mainly in lymphoid cells and
immune response. ELF-1 binds to the EBS elements of NFAT1,
another NFAT family member.58

We subsequently considered these seven genes, which could
mediate cocaine’s effects and neuroadaptations, as candidates
for participating in the susceptibility to cocaine dependence.
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neuron for the different conditions, highlighting the much higher neuronal activity at 5 and 10 μM cocaine. Significant differences compared
to 0 μM cocaine are indicated. *Po0.05 and **Po0.01. Error bars indicate s.d.
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Functional SNPs in these genes, selected as potential risk factors
for this phenotype, were assessed in our Spanish sample of
cocaine-dependent patients and controls. Our case–control
association study with common genetic variants pointed to five
SNPs in NFAT5 as risk factors for cocaine dependence, with
rs1437134 surviving the Bonferroni correction for multiple testing
and showing evidence of functional effects on gene expression.
The risk allele for cocaine dependence, rs1437134G, determined a
decreased NFAT5 expression, an effect that was more pronounced
in the presence of the microRNA hsa-miR-509 in the two cell lines
tested. Previous studies support a link between the effects of
cocaine and microRNAs. Cocaine chronic exposure resulted in
increased Ago2 messenger RNA and protein in the striatum (a key
brain region involved in addiction), and consequently an
alteration of microRNA expression levels.59 Also, cocaine admin-
istration induced expression changes in a wide range of
microRNAs in dopaminergic neurons in the striatum.60 A subset
of these microRNAs upregulate genes known to influence the
motivational properties of cocaine in mice, such as Bdnf, FosB and
Cdk5r1.60 Additional evidence suggesting that cocaine may exert
its effects on gene expression through the regulation of the
microRNA machinery was also found in our study, as an
enrichment of predicted binding sites for miR-124a was observed
among the list of genes found upregulated by cocaine. Interest-
ingly, miR-124a has previously been reported to be down-
regulated in SH-SY5Y cells after exposure to cocaine and in the
mesolimbic dopaminergic system after chronic cocaine
administration.61,62

Our expression and case–control association studies suggest
that NFAT5 may contribute to the vulnerability to cocaine
dependence, which is in agreement with previous evidence
suggesting that cocaine-induced activation of gene expression
may be partially mediated by NFAT-dependent transcription.63

Transcription regulated by NFAT is shown to be induced by DA
receptor stimulation. Cocaine triggers striatal NFAT4c nuclear
translocation, possibly through a DA increase in the synaptic cleft
produced by this drug.63 Interestingly, NFAT5 was present in the
gene network identified, and NFAT canonical pathways were
significantly over-represented in our gene expression study
(Figure 1b; Supplementary Figures 2 and 5), which means that
several genes regulated by NFAT or encoding related proteins are
also differentially expressed after cocaine exposure. The NFAT
family is involved in axonal growth and guidance by calcineurin/
NFAT signaling pathway. NFAT5 (also known as TonEBP), however,
differs from the other family members, as it does not have the
calcineurin-binding domain.64,65 It has been involved in regulating
response to osmotic stress and hypertonicity in several cell types,
including T cells, kidney and neurons, and its activation also
upregulates its own transcription.64,66–69 It is highly expressed in
the brain at embryonic stages, but little is known about its
function in the brain.66,70 Interestingly, a recent study suggests
that NFAT5 could participate in DA synthesis and secretion in renal
proximal tubule cells.71 If NFAT5 is involved in DA neurotransmis-
sion in the brain, genetic variants within this gene may predispose
to cocaine dependence through changes in DA activity. This
would be in agreement with ‘the reward deficiency syndrome’
hypothesis, which postulates that hypodopaminergic activity
predisposes to cocaine addiction.72

Considering all these data, NFAT5, a transcription factor, could
be an important mediator of cocaine’s effects by activating NFAT-
dependent transcription as well as dopaminergic activity. Cocaine
might activate NFAT5 nuclear translocation, as it was shown for
another member of the NFAT family,63 being responsible for
cocaine-induced changes in gene expression, including its own
upregulation. It is thus tempting to speculate that genetic variants
impacting NFAT5 will cause an effect on the expression of relevant
downstream genes and on DA activity, which could eventually
contribute to cocaine dependence phenotypes.Ta
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This study should be viewed in terms of several strengths and
limitations. Some strengths are as follow: (i) through a compre-
hensive hypothesis-free study, we have identified variants in a
gene that seem to have a functional impact and that may
participate in cocaine dependence; (ii) gene expression changes
detected with microarrays were validated and are consistent with
other studies; (iii) the clinical sample was evaluated by members
of the research team in a single hospital following the same
clinical assessment; (iv) all individuals, cases and controls, were
Spanish, Caucasian and from the same small geographical area in
Barcelona, Spain. Some limitations of the study, however, should
be recognized: (i) cocaine effects on gene expression and
neuronal activity were performed in a dopaminergic neuron-like
model, from a tumor cell line, and thus they may differ from those
taking place in the brain; (ii) the limited number of replicas in the
microarray study may have prevented us from identifying existing
differences in gene expression; (iii) in the association study, SNPs
in the candidate genes were not selected under genetic coverage
criteria, and thus, other variants not tested by us may be involved
in cocaine dependence predisposition; (iv) cocaine dependence

was not discarded in the control sample, which could lead to false-
negative findings in our association study; (v) the SNPs found
associated were not assessed in a replication sample; (vi) the
functional effect of SNPs on microRNA regulation was studied
in vitro with a reporter system and overexpressing the microRNAs,
and may differ considerably from real conditions; (vii) we had a
large sample for the neuroimaging genetics study, but we only
tested few brain phenotypes, based on earlier findings on regions
of interest to addiction rather than testing brain-wide effects.
To sum up, our data indicate that cocaine-induced changes in

gene expression occur in differentiated SH-SH5Y cells a few hours
after exposure to the drug, which are related to regulation of
transcription and gene expression, cellular movement and
neuronal adaptations. These changes occur at 5 μM cocaine,
a concentration that increases neuronal activity and firing.
Additional evidence suggests that a common functional variant
in one of the genes showing increased expression after cocaine
exposure, rs1437134 in NFAT5, may contribute to cocaine
dependence. However, further genetic and functional studies of
NFAT5 are needed to confirm its role in cocaine dependence.
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