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Chronic thromboembolic pulmonary disease (CTEPD) with or without pulmonary hypertension (PH) occurs
when thromboemboli in pulmonary arteries fail to resolve completely. Pulmonary artery obstructions due to
chronic thrombi and secondary microvasculopathy can increase pulmonary arterial pressure and resistance
leading to chronic thromboembolic PH (CTEPH). Mechanical interventions and/or PH medications can improve
cardiopulmonary haemodynamic, alleviate symptoms, and decrease mortality risk. Imaging is pivotal throughout
the CTEPD management journey, spanning diagnosis, treatment planning, and assessing treatment outcome.
With just computed tomography (CT) pulmonary angiogram and right heart catheterisation, an experienced
multidisciplinary team can determine surgical candidacy in most cases. Dual energy CT, lung subtraction iodine
mapping CT, and dynamic contrast-enhanced magnetic resonance imaging (MRI) offer comparable sensitivities
with ventilation-perfusion scintigraphy in diagnosing CTEPD. Pulmonary angiogram with digital subtraction
angiography although considered the gold standard for assessing thrombi extent and vasculature morphology is
now mostly used to assess targets for balloon pulmonary angioplasty. Advancements in CT modalities and
innovative MRI metrics offer better insight into CTEPD management but are limited by the availability of
technology and expertise. Learning from current artificial intelligence application in medical imaging, there is
promise in tapping the wealth of data provided by CTEPD imaging through automating cardiopulmonary and
vascular morphology analysis.

haemodynamic, patients’ functional status and survival [4-6]. Me-
chanical interventions are also carefully considered with discussion on
risk and benefit for selected CTEPD patients without PH to improve
symptoms [2]. Imaging plays a vital role in all aspects of the CTEPD
management pathway, from diagnosis and making treatment decisions,
to assessing treatment outcome.

Patients usually enter the CTEPD diagnostic process with a combi-
nation of non-specific persistent cardiopulmonary symptoms post-acute
pulmonary embolism (PE). Clinical suspicion with consideration of risk
factors is essential as about 25 % of CTEPH diagnoses are not preceded

1. Introduction

Chronic thromboembolic pulmonary disease (CTEPD) results from
incomplete resolution of thromboemboli in the pulmonary arteries.
Chronic thrombi leading to fibrotic obstructions and secondary micro-
vasculopathy can cause an increase in pulmonary arterial pressure and
resistance [1]. Pulmonary hypertension (PH) is currently defined as
mean pulmonary arterial pressure (mPAP) of >20 mmHg and pulmo-

nary vascular resistance (PVR) of >2 Wood units as rest [2]. When
chronic thrombi and secondary microvasculopathy lead to PH this is
termed as chronic thromboembolic pulmonary hypertension (CTEPH)
[1]. If left untreated, CTEPH can lead to right heart failure and death [3].
Fortunately, the CTEPH multimodal treatment era has been a success
story with pulmonary endarterectomy (PEA), balloon pulmonary an-
gioplasty (BPA), and PH medical therapies improving pulmonary

with a clear history of acute PE [7,8]. Determining pulmonary perfusion
defects with a perfusion imaging modality or direct visualization of
chronic thrombi with computed tomography pulmonary angiogram
(CTPA) is recommended as the initial step in radiographic diagnosis [2,
9,10]. Echocardiogram is usually performed in most centres which may
precede other imaging modalities to evaluate for features of PH. Patients
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Abbreviations

BPA balloon pulmonary angioplasty

CT computed tomography

CTEPD  chronic thromboembolic pulmonary disease

CTEPH chronic thromboembolic pulmonary hypertension

DCE dynamic contrast-enhanced

LSIM lung subtraction iodine mapping

MDT multidisciplinary team

MRI magnetic resonance imaging

PA-DSA selective pulmonary angiography with digital
subtraction angiography

PEA pulmonary endarterectomy
PH pulmonary hypertension
V/Q ventilation-perfusion

with a combination of persistent symptoms and evidence of perfusion
defects or chronic thrombi on imaging will proceed to right heart
catheterisation (RHC) for the gold-standard cardiopulmonary hemody-
namic measurements. Further imaging assessment of vascular lesions to
establish treatment approach is critical for patient selection for PEA
and/or BPA. Patients with CTEPD without PH should have cardiopul-
monary exercise testing which provides valuable insight to the under-
lying pathophysiology of dyspnoea and exercise intolerance to aid in the
decision for mechanical intervention. After mechanical treatment, pa-
tients should have further imaging to reassess effects of the intervention
[9]. Fig. 1 shows the diagnostic and management approach in CTEPD.

Delays in diagnosing CTEPD are common, contributed to by a
knowledge gap of clinicians and the imaging community [8-11]. In this
article, we review the role of imaging modalities to evaluate pulmonary
vascular CTEPD features focusing on CT, ventilation-perfusion (V/Q)
scintigraphy, selective pulmonary angiography with digital subtraction
angiography (PA-DSA) and magnetic resonance imaging (MRI) in cur-
rent practice. The strengths, challenges, and advances in these imaging
modalities for: diagnosis, evaluation of treatment strategy and follow-up
post intervention will be discussed. Additionally, we review the poten-
tial beneficial role of artificial intelligence (AI) to leverage the data
provided by imaging in CTEPD.

2. CTEPD features

Features of chronic thrombi reflects the organization and partial
recanalization of acute thrombus after at least 3 months of therapeutic
anticoagulation [2,12]. Fig. 2 shows an illustration of intravascular
features in CTEPD.

CTEPD characteristics on imaging can be classified into direct and
indirect vascular features, parenchymal features, and cardiac features on
summarized in Table 1 [9,10,12,13].

3. Computed tomography
3.1. Computed tomography pulmonary angiography

Multidetector CT are now widely available and allow quick high
quality CTPA which provides excellent spatial and temporal resolution
of the pulmonary vasculature and lung parenchyma [9]. The advantage
of CTPA is the direct visualization of chronic thromboembolism
providing a vascular blueprint of location and anatomic extent. CTPA
offers excellent proximal chronic thromboembolism delineation to
assess suitability and planning for PEA in pulmonary arteries with a
diameter of 10-40 mm by an experienced CTEPH multidisciplinary team
[2,8-10,14]. Therefore, equipped with only CTPA and RHC, diagnosis of
CTEPD and decision for PEA can be made for patients with proximal
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distribution of the chronic clots.

3.1.1. CTEPD features on CTPA

Direct intravascular features seen includes laminated eccentric
filling defects due to thrombus adherence to the vessel wall, webs/slits/
bands in the pulmonary artery, chronic total occlusions (pouch or
tapered lesions, and amputated vessels) and calcified thrombus (Fig. 2
and Table 1) [2,8-10,12-14]. These contrast with acute PE which are
most frequently situated in the middle of the vessel, particularly at
bifurcation points, with no evidence of vascular remodelling. When
assessing CTPA in patients with acute PE, it is vital to look for signs of
existing CTEPD in order to formulate management decisions [15,16].
Pulmonary arterial morphology including vessel tapering and
post-stenotic dilatation can also be visualised in CTEPD.

Mosaic attenuation of the pulmonary parenchyma is commonly
found in CTEPH. Heterogeneous lung parenchyma attenuation illus-
trates hypo-perfused lung due to vascular obstruction in areas of
decreased attenuation and normal/increased perfusion in areas of
normal/increased attenuation [13,17]. Reduced vascular calibre in the
regions of hypoattenuation is a useful marker of vascular disease. In
CTEPH this is due to the primary vascular occlusion and remodelling,
but this can also occur in obstructive airway disease where the vascular
remodelling is a secondary phenomenon. Assessment of the airways for
thickening/dilation is thus important to help distinguish between these
two entities.

Features of chronic thrombi and pulmonary artery morphology are
similar in CTEPD without PH and in CTEPH. However, indirect vascular
features including main pulmonary artery dilatation, tortuous vessels,
and bronchial arteries dilatation point towards CTEPH [9,12,13,17].
Additionally, cardiac features of increased right to left ventricle ratio
and tricuspid regurgitation with retrograde contrast in the inferior vena
cava and the hepatic veins provide clues suggesting PH.

Sensitivity and specificity in detecting CTEPH depends on the loca-
tion of chronic thromboembolism and varies between studies. In a meta-
analysis the pooled sensitivity and specificity were 88 % and 90 % (total
arteries), 95 % and 96 % (main and lobar arteries) and 88 % and 89 %
(segmental arteries) respectively [18]. Fig. 3 show features of CTEPD
and PH on CTPA.

3.1.2. Challenges with CTPA in CTEPD

CTPA interpretation to identify CTEPD features requires an experi-
enced and trained radiologist to avoid falsely low sensitivity. In a study
assessing the original reports of CTPA with visible features of CTEPH,
only 26 % of the original radiology reports diagnosed CTEPH, with 63 %
describing pulmonary arterial abnormalities in isolation with no
mention of PH or CTEPH, 53 % reporting signs of PH, and 6 % doc-
umenting mosaic attenuation [11]. Multiple conditions mimic CTEPD
imaged on CTPA including pulmonary vasculitis, fibrosing mediastinitis,
pulmonary artery sarcoma and congenital pulmonary artery abnormal-
ities, further highlighting the importance of an experienced CTEPH
multidisciplinary team for decision-making [2,9,10].

Distal subsegmental pulmonary artery disease can be difficult to
identify therefore potentially resulting in underestimation of CTEPD clot
burden on CTPA alone [10]. In these cases, mosaic perfusion pattern
provides a valuable clue indicating possible CTEPD. Current guidelines
states that even a negative high quality CTPA does not exclude CTEPH
during the diagnostic process as visualization of distal subsegmental
pulmonary artery disease can be missed [2,9,10,14]. Therefore, perfu-
sion imaging such as planar V/Q or V/Q single-photon emission
computed tomography (SPECT) should be considered where there is a
high pre-test probability (such as in the presence of PH or mosaic
attenuation) despite a normal CTPA.

A relevant concern of CTPA is radiation during image acquisition and
measures should be taken to minimise exposure. The European Associ-
ation of Nuclear Medicine (EAMN) reported a higher effective radiation
dose of CTPA (4-20 mSv) compared to V/Q scans (1.2-2 mSv) to
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Fig. 1. Diagnostic and management approach in chronic thromboembolic pulmonary disease (CTEPD).

*Current practice.
**Can be considered as alternative according to local expertise/experience.
***In context with pulmonary hemodynamic measurements and symptoms.

BPA: balloon pulmonary angioplasty, CT: computed tomography, CPET: cardiopulmonary exercise test, DCE: dynamic contrast-enhanced, LSIM: lung subtraction
iodine mapping, MDT: multidisciplinary team, MRI: magnetic resonance imaging, PEA: pulmonary endarterectomy, PH: pulmonary hypertension, V/Q: ventila-

tion-perfusion

diagnose PE [19]. Use of modern CT using third-generation dual-source
CT systems, high pitch acquisitions, low-kVp tailored to the patient, and
iterative/machine learning based reconstruction can all aid in lowering
radiation dose [20]. The use of iodinated contrast can be a limiting
factor in patients with allergy, severe renal disease, or thyroid
dysfunction. CTPA also requires intravenous access and precise timing of
contrast administration to ensure peak pulmonary arterial contrast
enhancement during imaging acquisition. Furthermore, to reduce mo-
tion artifact, coordinated breath holding (3-5 s) is required which can be

challenging in some patients.

3.2. Dual energy computed tomography (DECT)

DECT is of great interest for a potential ‘one-stop CTEPD imaging
modality’ for diagnosis and planning treatment approach. DECT brings
together the advantages of CTPA and perfusion imaging in a single im-
aging modality by providing evaluations on parenchymal perfusion,
acute vs chronic pulmonary thromboembolism, pulmonary vasculature
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Fig. 2. Chronic thromboembolic pulmonary disease intravascular features.

Table 1
Vascular, parenchymal, and cardiac features seen on CTEPD imaging in current
practice.

Direct vascular CTEPD features (CTPA,
MRI, and PA-DSA)

Obtuse angles between thrombi and
vessel wall

Intimal irregularities

Laminated thrombus

Webs, bands, slits

Thrombus calcification

Pulmonary artery narrowing,
attenuation and amputation
Post-stenotic dilatation

Main pulmonary artery dilatation
Tortuous pulmonary arteries
Bronchial artery dilatation®

Mosaic attenuations”

Perfusion defect”

Dilated right heart chambers
Increased right to left ventricle ratio
Interventricular septal flattening
Tricuspid regurgitation

Indirect vascular CTEPH features (CTPA,
MRI, and PA-DSA)

Parenchymal CTEPD features (CTPA,
DECT, LSIM and V/Q scan)
Cardiac CTEPH features (CTPA and MRI)

CT: computed tomography, DECT: dual-energy CT, LSIM: lung subtraction
iodine mapping, MRI: magnetic resonance imaging, PA-DSA: pulmonary
angiogram with digital subtraction angiography, V/Q: ventilation-perfusion.

# Not on PA-DSA.

> CTPA.

¢ DECT, LSIM and V/Q scan.

morphology, and lung parenchyma changes [2,8,14]. Regional iodine
distribution maps offer qualitative perfusion assessment which gives an
advantage over CTPA where subtle webs and distal disease may be
overlooked [9,10,12]. These show good agreement with perfusion maps
from V/Q scans.

Suitability of DECT for surgical planning is shown by its high
sensitivity (92-100 %) in predicting proximal disease (main and lobar
pulmonary artery) which is comparable to post-PEA level of disease by
the surgical Jamieson classification [21]. However, the extent of
perfusion defects seen on DECT fails to be associated with the level of
disease based on surgical classification.

3.2.1. Challenges with DECT in CTEPD

It Is important to note when interpreting DECT that unlike V/Q scan,
iodine perfusion mapping can also show parenchymal perfusion through
systemic collaterals shunts beyond the occluded pulmonary arteries
depending on the acquisition phase [9]. Therefore, false negative results
can ensue if perfusion mapping is performed with a high level of
enhancement of the aorta when systemic collaterals will also be
opacified.

The use of DECT in clinical practice is currently limited due to a
combination of limited availability and expertise. It requires either dual
source CT scanners, or third generation scanners with rapid kV switch-
ing capabilities, or spectral imaging. As a result, outside of specialised
cardiothoracic centres, qualitative assessment of DECT perfusion map-
ping is less widely utilised [22]. There are similar limitations in DECT as
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Fig. 3. Chronic thromboembolic pulmonary disease features on CTPA 3A: CTEPD without PH patient with extensive left main pulmonary artery chronic thrombi
with intimal irregularity and obtuse angle (light blue arrow). Note the non-dilated main pulmonary artery. 3B: CTEPD without PH patient with pulmonary artery
web/band (red arrow). Note the normal right to left ventricle ratio. 3C: CTEPH patient with dilated right heart chambers with flattening of the interventricular
septum (purple arrow) and pulmonary artery web/band (red arrow). 3D: CTEPH patient with calcification (yellow arrow) in extensive occluding proximal chronic
thrombi, irregular intimal contour with obtuse angle (light blue arrow) and dilated main pulmonary artery (orange arrow). 3E: CTEPH patient with mosaicism with
areas of hypo-attenuation and vascular pruning in region of vascular obstruction (green arrow) and normal/hyper-attenuation in region without vascular obstruction
(dark blue arrow). 3F: CTEPH patient with dilated bronchial artery (white arrow) and dilated main pulmonary artery (orange arrow). (For interpretation of the
references to color in this figure legend, the reader is referred to the Web version of this article.)

encountered with CTPA including exposure to radiation, need for pre-
cise contrast administration timing, and patients’ ability for
breath-holding to reduce motion artifacts. While DECT results in a
higher initial radiation dose, this can be offset by a reduced need for
second line V/Q scans which incur a second dose of radiation.

3.3. Lung subtraction iodine mapping CT (LSIM-CT)

LSIM-CT can provide color-coded iodine distribution maps compa-
rable to DECT [2]. LSIM-CT involves performing a non-contrast CT
followed by CTPA resulting in higher contrast-to-noise ratio than DECT
and improvement of image quality. As LSIM-CT is a post-processing
technique, it is available on a wider range of scanners, potentially
resulting in lower cost and ability to scale up availability/usage
compared to the hardware required for DECT. As LSIM-CT involves two
CT imaging, this result in higher radiation exposure than only per-
forming CTPA and can result in misregistration of perfusion defects if

different levels of breath hold occur between the two scans. Despite this,
LSIM-CT is more accurate in diagnosing CTEPH than CTPA alone [23].

3.4. Follow up CT post mechanical intervention

Clearance of proximal chronic thrombi can be evaluated on CTPA
after patients undergo PEA. Improvement of pulmonary perfusion can be
evaluated on DECT and LSIM-CT after mechanical intervention but is
utilised mostly post-PEA [9,22]. Iodine perfusion mapping on CT has
also been shown to be useful in post-BPA assessment with high sensi-
tivity and specificity (92 % and 99 %) comparable to PA-DSA [9,22,24].
Fig. 4 shows clearance of chronic thrombi and improvement of perfusion
on CT.

3.5. CT scoring for CTEPD

The CT severity score and CT obstruction index to quantify degree of
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Fig. 4. CT pulmonary angiogram and dual energy CT pre and post pulmonary endarterectomy. 4A: CT pulmonary angiogram pre-PEA shows occluded pulmonary
arteries (red arrows). 4B: CT pulmonary angiogram shows patent pulmonary arteries post-PEA which were previously occluded (green arrows). 4C: Dual energy CT
pre-pea shows parenchymal perfusion defect in areas of occluded pulmonary arteries (red arrows). 4D: Dual energy CT shows improved parenchymal perfusion
corresponding with patent pulmonary arteries post-pea (green arrows). (For interpretation of the references to color in this figure legend, the reader is referred to the

Web version of this article.)

arterial obstruction on CTPA has been widely described in acute PE [25,
26]. Use of these scores to quantify vascular obstruction in CTEPH have
shown muted success [27,28]. Abozeed et al. attempted to qualitatively
score the clot burden on CT and perfusion defect on CT iodine perfusion
mapping in CTEPH. They showed the combined clot burden and
perfusion defect score correlated with invasive hemodynamic mea-
surements [29]. However, there are challenges in compiling the pre-
diction of CTEPH severity and quantitatively describing chronic thrombi
volume by location on CT for clinical application. This is contributed by
poor interobserver agreement on level of disease at segmental and
subsegmental level, and in the heterogenous CTEPH features seen on
CTPA [30]. Furthermore, possible microvasculopathy in CTEPH is
difficult to account for on CT.

4. Ventilation-perfusion scintigraphy

V/Q scintigraphy remains an integral imaging modality to rule out
CTEPD in the early stages of the PH diagnostic algorithm [2,9,10]. The
major limitation when V/Q scan suggests CTEPD is that further imaging
in a different modality will eventually be required to assess extent of
vascular lesions and pulmonary vascular anatomy to guide treatment
approach [9,19].

4.1. CTEPD features on V/Q scintigraphy

CTEPD results in mismatched wedge-shaped perfusion defect where

there is preserved ventilation but absent perfusion within a lung
segment on V/Q scan. Most studies on sensitivity and specificity in
diagnosing CTEPH had extrapolated criteria of positive V/Q scan from
acute PE. Le Pennec et al. showed that the optimal threshold of 2.5
segmental mismatched perfusion defects on V/Q scans in CTEPH pro-
vided a sensitivity of 100 % and specificity of 94.7 % [31]. Fig. 5 shows
mismatched perfusion defect on V/Q SPECT with low dose CT.

It is important to keep in mind that there is no correlation between
the degree of perfusion defects on V/Q scan and hemodynamic severity
of CTEPH [32]. Furthermore, perfusion defects seem to decrease in a
longitudinal study in severe unoperated CTEPH despite worsening right
ventricular function [33]. A holistic approach with good -clinical
judgement in the interpretation of V/Q scans is essential to ensure low
rates of nondiagnostic reports in comparison to the use of probabilistic
scores [19].

4.2. Challenges and strengths of V/Q scintigraphy

Planar V/Q scan which is 2-dimensional can underestimate mis-
matched perfusion defects with “shine-through masking” due to the
superposition of abnormal areas of perfusion over regions with normal
perfusion [8,19]. As a result, 3-dimensional multiplanar V/Q imaging
with SPECT is now considered preferable as it can overcome some of the
limitations with 2-dimensional planar V/Q scans [10,14]. V/Q SPECT
initially showed better ability in detecting obstructed segments
compared to now older 4 to 64-slice CTPA [34]. However, the overall
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Fig. 5. Ventilation-perfusion single-photon emission computed tomography (SPECT) with low dose CT 5A: CT showing mosaicism with areas of hypo-attenuation
and vascular pruning in region of vascular obstruction (green arrow) and normal/hyper-attenuation in region without vascular obstruction (blue arrow). 5B: V/Q
SPECT showing perfusion defect (red arrows). 5C: V/Q SPECT showing mismatched perfusion defect (red arrows) with preserved ventilation. (For interpretation of
the references to color in this figure legend, the reader is referred to the Web version of this article.)

sensitivity and specificity of V/Q SPECT, planar V/Q and CTPA with
second-generation dual-source CT scanner was later shown to be similar
[35]. To provide better specificity in CTEPD diagnosis particularly in
patients with other lung diseases, V/Q SPECT or perfusion only SPECT
can be combined with low dose CT [19,36].

V/Q scan has the advantage of not requiring breath holding although
limited movement during V/Q scan imaging acquisition is recom-
mended [37]. Additionally, as contrast is not required, patients with
severe renal impairment or contrast allergy can benefit from a V/Q scan
as the initial imaging modality for diagnosis of CTEPD. Although ra-
diopharmaceuticals half-life needs to be considered, precise adminis-
tration timing is not necessary as in other imaging modalities.

4.3. Follow up V/Q scintigraphy post mechanical intervention

V/Q scan can assess improvement in perfusion defect post-PEA but is
not as frequently used post-BPA [38]. Hyper-perfusion may be visualised
on V/Q scan post-PEA in areas of reperfusion (hypo-perfused pre-PEA)
and with relative photopenia in areas of previously normal perfusion
pre-PEA. Perfusion post-PEA on V/Q scan will however tend to appear
more homogeneous with time. As with utilizing V/Q scan for CTEPD
diagnosis, imaging in another modality will ultimately be required if
further mechanical intervention is deemed necessary.

5. Selective pulmonary angiography with digital subtraction
angiography

PA-DSA was considered the reference standard in diagnosis and
visualizing the pulmonary vasculature for surgical candidacy in CTEPD.
However, PA-DSA is no longer routinely required in the assessment of
CTEPD patients, particularly for PEA suitability, with the emergence of
high-quality CTPA showing comparable or superior sensitivity and
specificity [2,8,10,13]. PA-DSA is still required to determine suitability
and viable targets for BPA. In practical terms, admission for RHC pro-
vides the perfect opportunity to perform PA-DSA concurrently using the

same introducer sheath.
5.1. CTEPD features on PA-DSA

PA-DSA features of CTEPD reflect the remodelling and partial
recanalization of chronic thrombi and its effect on pulmonary vascular
morphology (Fig. 2 and Table 1). The suggested description of these
features during PA-DSA are: ring-like stenosis (type A), bands or webs
(type B), subtotal occlusion (type C), total occlusion (type D), and
tortuous lesions (type E) [39]. As in CTPA, these features of chronic
thrombi are similar in CTEPD without PH and in CTEPH.

PA-DSA features can also provide guidance in predicting outcome of
mechanical intervention in CTEPH. Ring-like stenoses and web lesions
result in higher success with lower complication rates, while total oc-
clusions result in the lowest success rate, and tortuous lesions are
associated with higher complication rates in BPA [39]. In addition, poor
subpleural perfusion at <1.5 cm from the lateral pleura in all segments
during the capillary phase of PA-DSA can predict distal pruning typical
of microvasculopathy, resulting in worse PEA outcome with higher
surgical mortality and postoperative PVR [40]. Similarly, in inoperable
CTEPH, poor subpleural perfusion in the capillary phase of PA-DSA is a
predictor of BPA failure with mean pulmonary arterial pressure (mPAP)
> 30 mmHg and a reduction in PVR of <30 % [41].

5.2. Challenges with PA-DSA in CTEPD

Limitations of PA-DSA includes involving an invasive procedure
although considered safe even in severe CTEPH, possible contrast-
induced nephrotoxicity in patients with severe renal insufficiency and
motion artifact if patients are unable to efficiently breath-hold.
Furthermore, there is higher radiation exposure compared to non-
invasive radiological CTEPD imaging and is more resource intensive
[22,42].
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5.3. Follow up PA-DSA post mechanical intervention

PA-DSA concurrently with RHC remains the most frequently used
imaging modality to assess potential targets for BPA [9,22]. As the
number of BPA procedures can potentially continue provided there are
accessible vascular lesions, the consensus-recommended hemodynamic
goal is mPAP <30 mmHg [6]. PA-DSA additionally allows immediate
visualization and improvement of regional pulmonary artery iodine
concentrations pre- and post-BPA. Fig. 6 shows PA-DSA pre and post
BPA.

6. Magnetic resonance imaging

The value of MRI is in evaluating right ventricular (RV) function and
morphology, which is considered the reference standard cardiac imag-
ing to assess PH severity of various aetiologies including CTEPH [8,9,13,
14]. The diagnosis of CTEPD requires time-resolved dynamic
contrast-enhanced MRI (DCE-MRI) to assess pulmonary parenchymal
perfusion and MRI pulmonary angiography (MRPA) to evaluate the
presence and distribution of perfusion defects and pulmonary vascular
morphology.

6.1. CTEPD features on MRI

There has been varying reporting of DCE-MRI performance in iden-
tifying CTEPH, but larger studies determined good sensitivity. MRPA
identifies the same features of chronic thrombi and pulmonary arterial
morphology in CTEPD as in CTPA. MRPA can better recognise pulmo-
nary artery stenosis, post-stenosis dilatation and complete obstruction
compared to 64-slice CTPA [43]. In contrast, CTPA is superior to MRPA
in identifying pulmonary wall adherent chronic thrombi and
intra-luminal webs and bands. MRPA has also been found to be poorer in
identifying subsegmental disease compared to CTPA and PA-DSA [44].

6.2. Challenges and strengths of MRI

The advantage of DCE-MRI/MRPA is its capability in assessing
vascular abnormalities without subjecting patients to ionizing radiation
or requiring the use of iodine-based contrast agents. However, DCE-
MRI/MRPA is susceptible to motion and respiratory artifacts poten-
tially compromising image fidelity. MRI also requires relatively longer
acquisition durations. Patient related limitations include claustro-
phobia, ferromagnetic objects, and breath-holding. Additionally, use is
currently limited due to requiring appropriate expertise and experience
in the complex image acquisition, post-processing, and diagnostic

Fig. 6. Selective pulmonary angiography with digital subtraction angiography.
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interpretation [10,14]. Furthermore, DCE-MRI/MRPA for CTEPH is
currently considered as not cost-effective [10].

7. Advances in CTEPD imaging
7.1. CT

7.1.1. Dual energy CT

Qualitative assessment of iodine distribution mapping defect on
DECT to evaluate pulmonary perfused blood volume (PBV) shows cor-
relation with invasive RHC measurements [45]. This can be further
improved with automated quantification of PBV using DECT
post-processing software to provide non-invasive insight to CTEPH
severity [46,47]. However, lack of standardised protocols for consistent
and reproducible PBV images acquisition and prospective validation
limits its use to quantitatively describe CTEPH severity [14].

7.1.2. Cone-beam CT and C-arm CT

Advanced CT modalities/techniques allows higher spatial resolution
and ability to better delineate distal CTEPH lesions [8-10,14].
Cone-beam CT (CBCT) and C-arm CT (CACT) are acquired with an
angio-suite C-arm and catheter directed iodinated contrast into the main
pulmonary artery [22]. CBCT provides better enhancement of the pul-
monary arteries resulting in more web-like stenoses detection compared
to 64-slice multidetector CTPA [48]. CBCT/CACT also provide enhanced
information on vascular structure and subsegmental lesions compared to
PA-DSA alone for BPA planning [22,49]. Additionally, CBCT/CACT can
be used to mark BPA targets to provide a 3-dimensional vascular road
map in combination with real-time fluoroscopy allowing better guid-
ance of complex pulmonary vascular anatomy [50]. However, CBCT is
invasive, susceptible to motion artifacts and does not provide
high-quality imaging of lung parenchyma [22]. Furthermore, avail-
ability is a significant limiting factor.

7.1.3. ECG-gated CTPA

ECG-gated CTPA allows clearer vascular imaging with less pulsation
artifacts and require less effective radiation dose [8,14]. ECG-gated
320-slice CTPA therefore can provide improved sensitivity and speci-
ficity, 97 % (main and lobar arteries) and 86 % and 95 % (segmental
arteries), in diagnosing CTEPH [51].

7.2. MRI

Quantitative measurement of perfusion on DCE-MRI have shown
promise and correlates with PBV on DECT [52]. Quantitative perfusion

PA-DSA pre-BPA (6A) and reperfusion of pulmonary artery (red arrows) post-BPA (6B).



H. Ghani et al.

by evaluating pulmonary blood flow (PBF) on DCE-MRI illustrates
regional improvement post-PEA in the lower lobes which correlates with
6-min walk distance [53]. Similarly, quantitative PBF on DCE-MRI
demonstrates improvement post-BPA and correlates with NTproBNP
and MRI-derived hemodynamic measurements [54]. However, MRI
features as non-invasive alternative to RHC are still not sufficiently
reliable for translation to clinical use due to small number of comparable
studies, small cohorts, paucity of prospective studies, and delays be-
tween MRI and invasive RHC [8,10,14].

7.3. Cardiac imaging

Cardiac imaging with MRI can provide metrics on cardiac remodel-
ling and reverse remodelling in CTEPD [8,9,14,53]. This is in addition to
echocardiogram routinely used for screening of PH. However, it is out of
the scope of this review.

8. Artificial intelligence in CTEPD imaging-current evidence and
prospects

Applying Al in medical imaging entails leveraging machine learning
(ML) algorithms and methodologies to analyse images for assisting in
the interpretation, diagnosis, and treatment of diverse diseases and
conditions. Al is already used widely in medical research especially in
cancer imaging [55]. ML allowing less interobserver variation and
efficient automatic segmentation has even seen some success in trans-
lation to clinical application [56]. These successes provide a
stepping-stone and precedence that perhaps ML can be applied on
medical imaging in CTEPD and PH in general.

ML can be used for automated segmentation of pulmonary vessels
with differentiation of arteries and veins. It can also help in quantifying
pulmonary vascular morphology on CTPA. Automated segmentation
and assessment of pulmonary vessels on CTPA have shown that lower
arterial and venous small vessel volume, higher large arterial volume
and increased pulmonary artery tortuosity can be used to distinguish
between pulmonary arterial hypertension (PAH) and patients without
PH [57]. Similarly, small-vessel volume fraction, vascular density, ar-
tery to vein volume ratio of the larger vessels and pulmonary artery
tortuosity can differentiate CTEPH from patients without PH [58]. Pienn
et al. has also recently used ML on CTPA in a mixed PH cohort to
demonstrate arteries over veins ratio with diameters between 6 and 10
mm correlated with PH prognostic markers [59]. Of particular interest is
the capitalization of automated segmentation of pulmonary vessels by
ML to demonstrate improvement of pulmonary arterial blood distribu-
tion in PAH patients treated with seralutinib (an inhaled
platelet-derived growth factor receptor, colony stimulating factor 1 re-
ceptor and c¢-KIT inhibitor undergoing Phase 3 clinical trial) on CT [60].
Knowledge acquired through these ML-based automated segmentation
and pulmonary vascular morphology assessment on CTPA, which were
mostly in PAH cohorts, could potentially be transferred to CTEPD.
However, this will require robust research methodology and prospective
validation.

The automation of cardiac MRI measurements in PH patients has
evolved significantly in recent years but have not been validated in
CTEPH [61,62]. However, there is a significant gap in harnessing ML for
automated assessment of DCE-MRI/MRPA which is of value in CTEPH
diagnosis and decision-making.

Application of ML in CTEPD research has challenges including being
a relatively rare disease resulting in small single centre cohorts, diffi-
culty in assessing heterogeneity of vascular lesions, defining poor
treatment outcome, and evaluating microvasculopathy. With current
advances and acceptance of value in ML, this is the optimal time for
further research on CTEPD imaging on large cohorts with prospective
validation. Of particular interest is the ML-based CTPA features evalu-
ation to non-invasively assess treatment outcome and residual PH. An
automated mapping on location and volume of chronic thrombi can aid
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in treatment approach decisions. Additionally, analysing medical im-
aging data with the help of ML to better describe differences in pul-
monary vascular morphology between various PH aetiologies are also
intriguing.

9. Conclusion

Imaging in CTEPD is crucial for diagnosis, evaluating treatment
approach and assessing treatment outcomes. Utilizing only CTPA and
RHC, most patients can be accurately diagnosed with CTEPD/CTEPH,
facilitating the decision-making process regarding PEA by an experi-
enced multidisciplinary team. Efficiency and enhanced diagnostic pre-
cision can be attained by consolidating the spatial and temporal
resolution from CTPA and perfusion imaging into a unified imaging
modality by employing DECT or LSIM-CT. While the advantages of these
imaging modalities have been acknowledged, their utilization is
currently constrained by limited availability. V/Q scan remains a useful
imaging modality in the early stages of the diagnostic algorithm for
ruling out CTEPD in the presence of a normal or poor quality CTPA.
However, alternatives including DECT, LSIM-CT, DCE-MRI offering
similar sensitivities can be considered according to local experience and
expertise. While PA-DSA performed concurrently with RHC may now be
less essential for determining PEA candidacy, it remains critical and
efficient in evaluating feasibility for BPA.

Advanced imaging modalities/techniques and innovative interpre-
tation offers better insight into CTEPD management and has the po-
tential to offer non-invasive holistic follow-up. However, utilization of
these advances is limited due to perceived and genuine challenges
including access, cost, lack of expertise and in some cases need for
multicentre prospective trials. Leveraging AI/ML for automated seg-
mentation and description of cardiopulmonary and vascular
morphology have already shown potential to unlock the wealth of in-
formation provided by medical imaging. These automated quantifica-
tion by harnessing ML models have the potential to revolutionize CTEPD
diagnosis by reducing interobserver variation and streamline decision-
making but requires robust prospective validation.
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