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Abstract
Electroacupuncture (EA) is considered to have potential antidiabetic effects; however, the role of the pancreatic intrinsic 
nervous system (PINS) in EA-induced amelioration of type 2 diabetes (T2DM) remains unclear. Therefore, we investigated 
whether EA at ST25 exerts any beneficial effects on insulin resistance (IR), inflammation severity, and pancreatic β cell 
function via the PINS in a rat model of a high-fat diet-streptozotocin (HFD/STZ)-induced diabetes. To this end, Sprague 
Dawley rats were fed with HFD to induce IR, followed by STZ (35 mg/kg, i.p.) injection to establish the T2DM model. After 
hyperglycemia was confirmed as fasting glucose level > 16.7 mmol/L, the rats were treated with EA (2 mA, 2/15 Hz) for 
the next 28 days. Model rats showed increased serum glucose, insulin, IR, and TNF-α levels with a concomitant decrease 
in β cell function. Microscopy examination of the pancreas revealed pathological changes in islets, which reverted to near-
normal levels after EA at ST25. EA improved islet cell morphology by increasing islet area and reducing vacuolation. EA at 
ST25 decreased transient receptor potential vanilloid 1 (TRPV1) and increased substance P (SP) and calcitonin gene-related 
peptide (CGRP) expression. Subsequently, insulin secretion decreased and impaired pancreatic endocrine function was 
restored through the TRPV1 channel (SP/CGRP)-insulin circuit. EA increased choline acetyltransferase and neuropeptide Y 
expression and controlled inflammation. It also enhanced the cocaine and amphetamine-regulated transcript prepropeptide 
expression and promoted glucagon-like peptide-1 secretion. Additionally, the electrophysiological activity of PINS during 
acupuncture (2.71 ± 1.72 Hz) was significantly increased compared to the pre-acupuncture frequency (0.32 ± 0.37 Hz, P 
< 0.05). Thus, our study demonstrated the beneficial effect of EA on β cell dysfunction via the PINS in rat models of HFD-
STZ-induced T2DM.
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Introduction

The prevalence of type 2 diabetes mellitus (T2DM) has 
been rapidly increasing worldwide. According to the latest 
reports, the total number of patients with diabetes in main-
land China is estimated to be 129.8 million [1]. T2DM is 
strongly associated with obesity [2] and characterized by 
progressive pancreatic β cell dysfunction [3], accompanied 
by insulin resistance (IR) [4]. IR contributes to impaired 
glucose homeostasis and type 2 diabetes [5, 6]. Pancreatic β 
cell dysfunction is central to the pathogenesis of type 2 dia-
betes [7]. Preserving β cell function during the development 
of obesity and IR would limit the development of type 2 
diabetes [8]. Meanwhile, being overweight increases the risk 
of metabolic disease; more than a third of the Chinese popu-
lation has prediabetes [9]. Recent studies have demonstrated 
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that acupuncture could regulate lipid metabolism disorder 
[10] and improve glucose tolerance (IGT) [11], which is 
beneficial to the prevention and treatment of T2DM. Acu-
puncture is effective in the management of various metabolic 
disorders such as hyperglycemia and overweight by altera-
tion of the sympathetic nervous system and insulin signal 
defects [12]. Acupuncture has been practiced in East Asian 
countries to relieve a variety of illnesses and is now widely 
accepted worldwide [13]. It can facilitate weight control by 
regulating the nervous, endocrine, and digestive systems 
[14]. It might also be useful in reducing blood glucose levels 
in patients with T2DM [15] and improving insulin sensi-
tivity [16]. When combined with metformin, the treatment, 
including electroacupuncture (EA) at ST25, can be used as 
an insulin sensitizer to effectively manage the risk of T2DM 
and obesity [17]. While recent studies confirmed that EA 
alone can also attenuate blood glucose. EA could effectively 
ameliorate adipose accumulation of obese men [18]. Stimu-
lating bilateral ST25 could effectively regulate fasting blood 
glucose, insulin, and lipid metabolism [19]. EA might be an 
alternative for managing islet function and treating T2DM. 
However, the mechanisms by which acupuncture regulates 
islet functions remain to be elucidated.

A potential mechanism for the hypoglycemic effect of 
acupuncture is a neuroendocrine pathway involving cross-
talk among the endocrine, nervous, and immune systems. 
EA modulates distinct sympathetic pathways. Acupuncture 
at body surface points can mediate the activities of a vari-
ety of somatosensory, autonomic, and target organ reflex 
pathways. Therefore, EA may influence changes in systemic 
metabolism. We have previously confirmed that EA at ST25 
can regulate the activity of glucose-inhibited neurons and 
improve lipid metabolism disorders [20]. However, the local 
related neurological changes of the pancreas and the onset 
mechanism of EA in T2DM are still unclear. Recent work 
suggests that the pancreatic intrinsic nervous system (PINS) 
is involved in glucose homeostasis, insulin sensitivity, and 
pancreatic β cell function, and thus the pathogenesis of dia-
betes [21]. It suggested that the intrinsic nervous system 
is one of the neural mechanisms of acupuncture regulating 
blood glucose.

Intrapancreatic ganglia constitute a complex informa-
tion-processing center that contains various neurotransmit-
ters and forms an endogenous neural network, which has a 
major influence on pancreatic endocrine function; those neu-
rotransmitters including choline acetyltransferase (ChAT) 
and neuropeptide Y (NPY) control inflammatory status, 
cocaine, and amphetamine-regulated transcript (CART-PT) 
to promote the secretion of glucagon-like peptide-1 (GLP-1) 
and a promising axis in TRPV1 channel (SP/CGRP)-insulin 
circuit [22].

EA can control the inflammatory status and have a posi-
tive significance for the management of T2DM. EA at ST25 

reduced patients’ inflammation levels, thereby improving 
insulin sensitivity [23]. While the spinal sympathetic axis 
evoked by 3 mA EA at ST25 can suppress splenic inflamma-
tion [24]. The vagus nerve splits in the celiac ganglion, giv-
ing rise to the postganglionic splenic nerve that terminates 
in the spleen [25]. The spatial resolution of the sensations 
that can be elicited from the viscera is relatively vague and 
can be fully explained by the segmental width of the afferent 
inflow from each viscus. Similar neuromeric segments are 
also present in the pancreas [26, 27]. ST25 is innervated by 
T10 [28], whose ganglion segment partially overlaps with 
the pancreas (innervated by T5-T11 [29, 30]). EA at ST25 
can reduce pancreatic inflammation via restraint inflamma-
tory factor and NK-κB [31]. The balance of pro- and anti-
inflammatory factors in pancreas can be ameliorated by 
EA at ST25 [32]. Consequently, we hypothesized that EA 
at ST25 will lead to a hypoglycemic effect through neural 
regulation of pancreatic endocrine secretion. We tested this 
hypothesis in the study presented here.

Materials and Methods

Establishment of the Experimental Animal Model

The use of a combination of a high-fat diet (HFD) and a low 
dose of streptozotocin (STZ) has been shown to effectively 
establish a rat model of diabetes that mimics the metabolic 
characteristics of common T2DM in humans [33]. Seven-
week-old Sprague Dawley (SD) rats were supplied by the 
model animal research center of the Nanjing University of 
Chinese Medicine (No. 1100112011052760, under grant 
SCXK(JING)2016-0006). The experimental rats were main-
tained in a controlled environment (conditions: 12-/12-h ± 
1-h light/dark cycle; temperature, 22 ± 2 °C; relative humid-
ity 60% ± 5%). The animals were raised in individual cages 
with ad  libitum access to food and water and randomly 
numbered. They were divided into three groups: the model, 
EA, and control groups, with six animals each. T2DM was 
induced by administering a high-fat diet and low-dose STZ 
(HFD-STZ). The model and EA groups were fasted for 16 
h and intraperitoneally (i.p.) injected with STZ (Sigma-
Aldrich, St. Louis, MO, USA) dissolved in freshly prepared 
citrate buffer (0.1 mol/L, pH 4.2) at a dose of 35 mg/kg. 
Random blood glucose levels were measured 48 h after 
STZ injection. Rats with a random blood glucose level of 
>16.7 mmol/L and kept for 2 weeks were considered rats 
with T2DM. Weight, food intake, and random blood glucose 
levels were recorded weekly. Random blood glucose levels 
were monitored weekly by collecting blood from the tail 
vein and analyzing it with a glucometer (Roche Diagnos-
tics, Mannheim, Germany). To induce IR, the model and EA 
groups were placed on an HFD [34] consisting of 58% fat, 
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25% protein, and 17% carbohydrate, as a percentage of total 
kcal upon arrival, which was maintained for the duration 
of the study. The control group was fed a standard normal 
chow diet. The remaining non-T2DM rats in the model and 
EA groups were killed by cervical dislocation. The sched-
ule of the experimental procedures is shown in Fig. 1. All 
the experiments were performed per the Principles of Labo-
ratory Animal Care and the Guide for the Care and Use 
of Laboratory Animals published by the National Science 
Council, China (under grant 202006A016).

Blood and Tissue Sample Collection

At the end of the experiment (week 12), the rats fasted for 
12 h and anesthetized with isoflurane. Blood samples were 
drawn from the orbital sinus and centrifuged at 3000 rpm 
for 15 min at 4 °C. The separated serum was stored at −80 
°C for further procedures. The pancreas and duodenum were 
quickly removed, rinsed, and stored at −80 °C or fixed in 
10% paraformaldehyde solution. The metabolic metrics 
including fasting serum insulin, hemoglobin A1c, leptin, and 
GLP-1 levels and those of the pro-inflammatory cytokines 

including tumor necrosis factor-alpha (TNF-α), interleukin 6 
(IL-6), and IL-1β, and anti-inflammatory cytokines such as 
interleukin 10 (IL-10) in the serum were determined using 
rat ELISA kits (Nanjing Jiancheng Bioengineering Institute 
Co., Ltd.) according to the manufacturer’s instructions.

Antibodies

Membranes were blocked and probed with primary and sec-
ondary antibodies according to the manufacturers’ suggested 
concentrations. The primary antibodies used are listed in 
Table 1. The secondary antibodies used were anti-rabbit 
IgG, HRP-linked antibody (1:2000, Cell Signaling Technol-
ogy), and anti-mouse IgG, HRP-linked antibody (1:2000, 
Cell Signaling Technology).

Measurement of Random Blood Glucose Levels

Random blood glucose levels were recorded weekly using 
an Accu-Chek glucometer (Roche Diagnostics, Mannheim, 
Germany). Animals were free to eat and drink. Homoeostasis 

Fig. 1  Schedule of the experi-
mental procedures. EA, elec-
troacupuncture; ST25, acupoint 
Tianshu; STZ, streptozotocin; 
HbA1c, glycated hemoglobin; 
IVGTT, intravenous glucose 
tolerance test

Table 1  Primary antibodies used and their respective concentrations

Antibody Species Dilution Source

Transient receptor potential vanilloid 1 (TRPV1) Mouse 1:1000 Abcam
Choline acetyltransferase (ChAT) Rabbit 1:1000 Abcam
PGP9.5 Rabbit 1:1000 Abcam
Calcitonin gene-related peptide (CGRP) Rabbit 1:1000 Abcam
Neuropeptide Y (NPY) Mouse 1:1000 Santa Cruz
Substance P(SP) Rabbit 1:1000 Affinity Biosciences
Cocaine and amphetamine-regulated transcript (CART-PT) Rabbit 1:2000 Signalway Antibody
GAPDH Rabbit 1:10,000 Cell Signaling Technology
Vinculin Rabbit 1:2000 Abcam
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model assessment (HOMA) was used to estimate basal β 
cell function (HOMA-β) and insulin resistance (HOMA-IR). 
HOMA-β was calculated as follows: 20 × fasting insulin 
(FINS)/fasting plasma glucose (FPG)—3.5. HOMA-IR was 
calculated as FPG × FINS/22.5 [35].

Intravenous Glucose Tolerance Test

Acute insulin secretory response was measured by per-
forming the intravenous glucose tolerance test (IVGTT). 
Overnight, fasted rats from all the groups were subjected 
to an oral glucose tolerance test in the last week of the 
experimental period. The blood glucose levels were moni-
tored at 0, 30, 60, 90, and 120 min by using an Accu-Chek 
glucometer (Roche Diagnostics, Mannheim, Germany) 
after intraperitoneal administration of 2 g/kg b.w./rat glu-
cose as an aqueous solution [36].

Hematoxylin and Eosin Staining

Hematoxylin and eosin (HE) staining was performed 
according to standard histological protocols. After being 
carefully isolated, the pancreas was fixed in 4% paraform-
aldehyde and embedded in paraffin wax. Then, 8-μm-thick 
sections were obtained with a rotary slicer (Leica, Ger-
many) and mounted on slides. HE staining was performed 
under a light microscope (Olympus, Japan) to visualize 
pathological changes.

Western Blot Analysis

Pancreas tissue (200 mg in weight) was obtained from the 
animals under anesthesia (0.8 g/kg urethane, i.p.) after 12 
h of fasting. The tissue (100 mg) was placed in 1 mL of 
lysis buffer consisting of protease inhibitor and RIPA buffer 
(Thermo Fisher Scientific), homogenized, and centrifuged 
at 14,000 rpm for 30 min. After that, protein concentrations 
were measured with the BCA Protein Assay Kit (Thermo 
Fisher Scientific). Then, 20 μg of protein from each sample 
was resolved electrophoretically on sodium dodecyl sulfate-
polyacrylamide gel (12% of separation gel and 5% of con-
centration gel). Electrophoresis was performed at 70 V for 
0.5 h and 110 V for 1 h. The protein bands were transferred 
to polyvinylidene difluoride membranes using Trans-Blot 
Turbo Transfer System (Bio-Rad). Bovine serum albumin 
(5%) was added for 2 h to block the membranes. Thereaf-
ter, each membrane was further blocked using 5% bovine 
serum albumin for 1 h and then washed with Tris-buffered 
saline containing Tween (TBST). The primary antibodies 
were diluted as listed in Table 1. The tissues were incu-
bated with each antibody at 4 °C for 16 h overnight. Then, 

the membranes were rewashed with TBST and incubated 
with the secondary antibodies. After incubating with the 
corresponding secondary antibodies at 28 °C for 1 h, the 
membranes were analyzed by enhanced chemiluminescence 
detection. The gray values of the immunoreactive protein 
bands were quantified using Image J (NIH, Bethesda, MD, 
USA).

Immunofluorescence Staining

Frozen sections were used for immunofluorescence (IF) 
staining. Pancreas tissue was fixed in 4% paraformal-
dehyde overnight and dehydrated in 30% sucrose in 0.1 
M PBS (Biosharp Life Sciences, China) at 4 °C. After 
embedding in optimal cutting temperature compound, 
the pancreas tissue was sliced into 10-μm-thick sections 
and mounted on slides. The sections were then blocked 
in 0.2% Triton X-100 (Sigma-Aldrich (Shanghai) Trading 
Co., Ltd.) for 10 min and permeabilized in Sea BLOCK 
Blocking Buffer (Thermo Fisher Scientific, USA) for 1 h. 
They were then incubated with primary antibodies against 
insulin (1:100, SAB) overnight at 4 °C, followed by incu-
bation with secondary antibodies Alexa Fluor 488 (goat 
anti-rabbit, 1:500, Abcam, Cambridge, UK), Alexa Fluor 
594 (goat anti-mouse, 1:500, Abcam, Cambridge, UK), or 
Alexa Fluor 405 (Goat anti-rabbit, 1:500, Abcam, Cam-
bridge, UK) for 1 h at 37 °C. Different combinations of 
secondary antibodies were used to obtain optimal images. 
Finally, the tissue sections were covered by coverslips 
after washing them with 0.1 M PBS. Images were obtained 
by a fluorescence microscope (Olympus BX60 Darkfield 
DIC Metallurgical Microscope, Japan).

Recording of Electrophysiological Activity in PINS

In order to obtain the discharge of the pancreatic intrinsic 
nervous system, the rats were anesthetized with isoflurane 
inhalation (2–5%) via a precision vaporizer (RWD Life Sci-
ence Co., Ltd., Shenzhen, China). The depth of anesthe-
sia was assessed by the absence of corneal and hind paw 
withdrawal reflexes. A laparotomy incision of approxi-
mately 3 cm was made in the skin just to the right of the 
abdomen midline. Dissection of the longitudinal muscle 
with adherent myenteric plexus has been dissected from 
the duodenum, leaving intact the connective tissue between 
the bowel and pancreas [37]. The pancreatic nerves run 
along the splenic artery and superior and inferior pancre-
atic arteries [38, 39]. The branch of the pancreatic intrinsic 
nerve was separated and connected to the positive electrode 
(PFA-Coated Platinum, A-M Systems, USA, 772000). The 
reference electrode was attached to the surrounding tissue. 
The experimental rats are placed in Faraday cages to shield 
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them from electromagnetic interference signals. To avoid 
signal interference, only the electrodes that touch the nerves 
were exposed [40]. Spikes were recorded using a pream-
plifier (A-M Systems, Carlsborg, WA, USA; band-passing: 
10–1000 Hz, sampling frequency: 20,000 Hz, and amplifica-
tion: 1000-fold) and connected to a biosignal acquisition and 
analysis system (Microl 1401-3, CED, UK). The data were 
analyzed with Spike2 software.

Acupuncture Intervention

EA refers to the application of a pulsating electrical cur-
rent to acupuncture needles for acupoint stimulation [41]. 
The rats in the EA group received EA treatment on bilat-
eral ST25 (Tianshu, located 5 mm lateral to the intersection 
between the upper 2/3rd and the lower 1/3rd in the line join-
ing the xiphoid process and the upper border of the pubic 
symphysis) after gas anesthesia with isoflurane (2–5%). 
Meanwhile, the same anesthesia was administered to rats 
in the model group but without performing EA. For the 
EA group, two stainless steel acupuncture needles (Hwato, 
20162270970, Suzhou, China) of 0.2 mm in diameter were 
inserted at a depth of 5 mm into the ST25 acupoint. EA at 
ST25 was conducted with the HANS-100A (Han Acuten, 
WQ1002F, Beijing, China) apparatus set to a current of 2 
mA and a frequency of 2/15 Hz. All acupuncture procedures 
were performed by an experienced and licensed acupunctur-
ist: 30 min a day for 6 days a week, 1 week a course, over 
four continuous courses of treatment.

Data Analysis

Data from all the experiments are expressed as mean ± 
standard error values. Paired t-test was used for comparison 
before and after EA intervention, and an independent t-test 
was used for comparison between the two different groups. 
Multiple group comparisons were conducted using one-way 
ANOVA. All data analyses were performed using SPSS 22.0 
software (IBM Corp., Armonk, NY, USA), and GraphPad 
Prism 8.0 (GraphPad Inc., La Holla, CA, USA) was used for 
data analysis. p < 0.05 was considered to indicate statistical 
significance.

Results

EA at ST25 Can Decrease Blood Glucose Level 
and Weight and Improve IVGTT 

The model group’s blood glucose level was higher than 
that of the control group (P < 0.05) from the second week 
and continued to increase, as shown in Fig. 2a. The model 
group’s weight was lower than the control group from the 
fifth week (P < 0.05), as shown in Fig. 2b. The hypergly-
cemia and the high body weight of the model group were 
maintained during the treatment, which lasted for 4 weeks. 
The blood glucose level and weight gain in the EA group 
decreased from the second week of treatment. These changes 
were statistically significant in comparison with those in the 
model group (P < 0.05). Moreover, these effects persisted 
for 3 weeks until the end of the experiment.

Fig. 2  a Random blood glucose 
levels of rats during the experi-
ment. b Weight of rats during 
the experiment. c Area under 
the curve (AUC) for the IVGTT 
test. d IVGTT test results 
after treatment. Results were 
expressed as mean ± SEM (n = 
6). Data were analyzed by one-
way ANOVA; paired t-test was 
used for comparison before and 
after EA intervention; *p < 0.05 
vs. control, #p < 0.05 vs. model
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The glucose tolerance test was more sensitive than FPG 
alone in diagnosing T2DM. FPG or random blood glucose 
levels could not be used as a comprehensive measure of gly-
cemic control. Intravenous glucose tolerance test (IVGTT) 
was performed at the end of week 8 (the last week before 
EA treatment) as well as week 12 (the last week of the 
experiment) to show the curative effect of EA. Addition-
ally, the area under the curve (AUC) for the IVGTT test was 
computed as a measure of total glucose exposure. Figure 2c 
reveals that 4 weeks of EA improved glucose tolerance in 
rats. The AUC of the EA group was significantly lower than 
that of the model group (P < 0.05). For the EA group, the 
AUC after treatment was smaller than that before EA (P 
< 0.05, not labeled). Moreover, a small rise in the AUC in 
the model group was also observed, which suggests that the 
condition of the untreated rats continued to deteriorate. Fur-
thermore, Fig. 2d shows the results of the IVGTT after treat-
ment. The blood glucose level in the EA group decreased 
from 60 to 120 min and was lower than that in the model 
group (P < 0.05).

EA at ST25 Improved Insulin Sensitivity 
and Controlled Inflammatory Status

The maintenance of normal blood glucose levels is critical 
for the body to function properly. Markers of carbohydrate 
metabolism, such as glucose and insulin, are strongly associ-
ated with health problems in HFD-STZ rats. Data showing 
a comparison of β cell function and IR among groups can 
be found in Fig. 3. Insulin plays a key role in controlling 
blood glucose levels. The FPG and insulin of the model rats 

were significantly higher than that in the control rats (P < 
0.01, Fig. 3a and b). EA at ST25 resulted in a decrease in 
FPG and insulin in comparison with the values in model rats 
(P < 0.01). Accordingly, HOMA-IR of the model rats was 
significantly higher than that in the control rats (P < 0.01, 
Fig. 3c), while EA at ST 25 led to a decrease in HOMA-IR 
when compared to model rats (P < 0.01). Remarkably, the 
HOMA-β of the model rats was much lower than in the con-
trol rats (P < 0.01, Fig. 3d). However, the EA group showed 
a higher HOMA-β than the model group (P < 0.01). Thus, 
the glucose metabolism of rats was normalized to a degree 
after EA but did not completely recover.

For decades, hemoglobin A1c (HbA1c) has remained the 
standard biomarker for glycemic control [42]. The HbA1c 
level of the model rats was higher than that in the control 
rats (P < 0.01, Fig. 3e). EA at ST25 decreased the HbA1c 
level in comparison with that in model rats (P = 0.114). 
Leptin, a hormone secreted from adipose tissue, plays a key 
role in energy balance and feeding behavior through neu-
ronal regulation. Both leptin deficiency and leptin resist-
ance are associated with the development of obesity [43]. 
The leptin level in the model group was higher than that 
in the control group (P < 0.01, Fig. 3f), while the leptin 
level in the treatment group was lower than that in the model 
group (P < 0.01). GLP-1 is a peptide hormone secreted from 
enteroendocrine L-cells into the hepatic portal circulation 
in response to ingestion of nutrients [44]. The GLP-1 level 
in the model group was lower than that in the control group 
(P < 0.01, Fig. 3g), while the GLP-1 level in the treatment 
group was higher than that in the model group (P < 0.01). 
T2DM is a polygenic disease with a low-grade inflammatory 

Fig. 3  Comparison of β cell function and insulin resistance among 
groups. Fasting plasma glucose, FPG (a), fasting serum insulin, INS 
(b), HOMA-IR (c), HOMA-β (d), hemoglobin A1c, HbA1c (e), 
leptin, LEP (f), glucagon-like peptide-1, GLP-1 (g), tumor necrosis 

factor-α, TNF-α (h), IL-1β (i), and IL-10 (j). Results were expressed 
as mean ± SEM (n = 6). Data were analyzed by one-way ANOVA. 
*p < 0.05 vs. control, #p < 0.05 vs. T2DM
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component. TNF-α is an inflammatory cytokine produced 
by various cells, including immune cells and epithelial cells 
[45]. Interleukin-1β (IL-1β) has been reported to contribute 
to β cell failure, and therapies targeting IL-1β have shown 
encouraging progress, albeit with diverse results in different 
clinical trials [46]. TNF-α and IL-1β of the model group 
were significantly higher than that of the control group (P 
< 0.05, Fig. 3h and i). EA at ST25 resulted in a decrease in 
TNF-α and IL-1β compared to model rats (P < 0.05). IL-10 
is an anti-inflammatory cytokine that is known to suppress 
effector T cell responses and limit inflammation [47]. IL-10 
level in the model group was lower than that in the control 
group (P < 0.05, Fig. 3j). The IL-10 level in the treatment 
group was higher than that in the model group (P < 0.05).

Restoration of Islet Morphology Through Pancreatic 
Intrinsic Nervous System by EA

Histological analysis was performed to observe islet mor-
phology (Fig. 4). The pancreatic islet area of normal control 
rats revealed a normal architecture without any β cell dam-
age. The morphology of islets showed a preserved round 
shape in the control group (Fig. 4a and d). In contrast, HFD-
STZ-induced diabetic rats showed moderate damage and 
swelling of pancreatic β cells (Fig. 4b and e). Hyperglycemia 
led to marked changes in islet morphology [48]. The edges 
were irregular, the islet area was decreased, and the cells 
contained significantly more vacuoles. The islet shape was 
regular in the EA group (Fig. 4c and f). The morphology of 
islets in the ST25 group closely resembled that of the intact 
islets. EA improved the islet cell morphology by increasing 
the islet area, reducing vacuolation compared to those of 
the model group.

The pancreatic intrinsic nervous system was damaged 
during T2DM (Fig. 5h and k). The pan-neuronal marker pro-
tein gene product 9.5 (PGP9.5) was first examined by WB 
to explore the hypoglycemic effect of electroacupuncture 
at ST25 through neural regulation of pancreatic endocrine 
secretion. The expression of PGP9.5 in the pancreatic tis-
sue of the model rats was significantly lower than that in the 
control rats (P < 0.05, quantification of PGP9.5 was checked 
by WB and is shown in Fig. 6). EA at ST25 resulted in an 
increase in PGP9.5 expression in comparison with model 
rats (P < 0.05). These findings were validated with the 
results of another experiment as described below (Fig. 6).

More research has been performed to identify specific 
neurotransmitters that can be modulated through EA at 
ST25. Additionally, the levels of ChAT, CGRP substance 
P (SP), NPY, and CART-PT expression decreased in the 
model group (P < 0.05), indicating PINS remodeling. The 
expression of these neurotransmitters improved after EA 
at ST25, as shown in Fig. 6.

Pancreatic Endocrine Function Was Restored 
Through the TRPV1‑(SP/CGRP)‑β Cell Circuit

For further investigations, we also observed the expression 
of neural markers of sensory neurons has been observed, 
too. We focused on the expression of CGRP and SP since 
they can be regulated through transient receptor poten-
tial vanilloid 1(TRPV1) [49]. On the basis of the findings 
obtained with the observation of insulin in rat pancreas, 
we further evaluated the results of immunofluorescence 
staining and identified the expression of TRPV1 and 
insulin in rat pancreas to explore the neural regulation 
of pancreatic endocrine secretion through EA (Fig. 7a). 
In comparison with the model control group, the model 

Fig. 4  Representative HE and 
IF images of the pancreas. 
Green arrowheads show islets. 
Red arrowheads represent 
vacuoles. DAPI stained the 
nuclei (blue), and the green 
immunofluorescence represents 
the insulin. Islets were observed 
under a microscope (×400 
magnification). Scale bar = 
50 μm. The three groups share 
scale bars
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Fig. 5  Representative IF images 
of the pancreas. DAPI stained 
the nuclei (blue), while the red 
immunofluorescence repre-
sents the insulin, and the green 
immunofluorescence represents 
the PGP9.5. The yellow color 
in the merged pictures indicates 
co-expression. Islets were 
observed under a microscope 
(×400 magnification). Scale 
bar = 50 μm. The three groups 
share scale bars

Fig. 6  The effect of EA on pan-neuronal marker protein gene product 9.5 (PGP9.5), ChAT, NPY, and CART-PT expression. GAPDH was used 
as an internal reference protein, *p < 0.05 vs. control, #p < 0.05 vs. model
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group showed an increased fluorescently stained area of 
TRPV1 and a reduced area in the EA group. Quantification 
of TRPV1, CGRP, and SP in rat pancreas was performed 
by WB and shown in Fig. 7b.

Electrophysiological Activity of PINS Before/After 
ST25 Acupuncture

In order to clarify the connections between ST25 and 
PINS, we then examined discharges of the PINS in nor-
mal rats. The activity of PINS during MA (2.71 ± 1.72 
Hz) was significantly increased compared to the pre-MA 
frequency (0.32 ± 0.37 Hz, P < 0.05, Fig. 8a). The ana-
tomical location of PINS is shown in Fig. 8b.

Discussion

T2DM is characterized by IR combined with progressive 
pancreatic β cell failure [50], which can be moderated by 
acupuncture. The abnormal glycolysis process can affect 
lipid metabolism disorder, forming a vicious cycle [51], 
causing and aggravating oxidative stress, nerve damage, 
and other pathological changes [52]. In patients with diet-
induced obesity, excess metabolites and lipid consumed 
in the diet result in high levels of circulating leptin, and 
the dysregulated leptin signaling maintains adipocyte 

hypertrophy and obesity [53]. Exogenous GLP-1 infu-
sion increased plasma GLP-1 concentrations and caused 
a transient, but non-sustained, suppression of glucagon 
[54]. EA at ST25 can reduce HOMA-IR and increase 
HOMA-β. Specifically, after EA at ST25, the levels of 
fasting blood glucose, insulin, and glycated hemoglobin 
were all lower than those in the model group, while the 
level of GLP-1 increased. CART stimulates intestinal 
glucagon in a pathway independent of the known GLU 
Tag and STC-1 pathways [55] and increases  Ca2+ signal 
transduction in the islet [56] in addition to altering islet 
β cells morphology [57]. Thus, the CART system may be 
an emerging therapeutic target for T2DM. In conclusion, 
as a GLP-1 regulator, CART can indirectly participate 
in the glucose metabolism of the pancreas. Additionally, 
EA at ST25 elevated the expression of leptin, as shown 
in Fig. 3, and leptin can also independently lower blood 
glucose levels [58].

EA had differential effects on metabolic markers in the 
HFD-STZ-induced rat model of T2DM. These effects may 
be explained neuroanatomically by variations in the seg-
mental innervation of tissues at these locations [59, 60]. The 
acupuncture treatment reduced the HbA1c level significantly 
in comparison with that in the sham-acupuncture group 
[61]. The effectiveness of acupuncture in treating diseases 
related to IR had been reported, and acupuncture had an 
advantage over control groups in decreasing fasting blood 
glucose (FBG) and fasting insulin levels [62, 63]. Preventive 

Fig. 7  a Immunofluorescence 
staining and identification of 
TRPV1 (green) and insulin 
(blue) expression in the rat 
pancreas. Islets were observed 
under a microscope (×400 
magnification); b The effect of 
EA on the expression of vanil-
loid 1 (TRPV1), CGRP, and SP. 
Vinculin was used as an internal 
reference protein. *p < 0.05 vs. 
control, #p < 0.05 vs. model
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Fig. 8  The effect of manual acupuncture at Tianshu (ST25) acupoint 
on the activity of PINS. a Waveform of PINS discharge by MA at 
ST25. b The anatomical location of PINS. The blue line represents 
PINS, which travels from the duodenum to the pancreas. The red 

lines show the blood vessels between the pancreas and duodenum 
(modified from Zoucas E 1996). MA, manual acupuncture; PINS, 
pancreatic intrinsic nervous system
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acupuncture is beneficial for the control of STZ-induced 
hyperglycemia in rats [64]. EA intervention can significantly 
protect islet function and improve the FBG level in T2DM 
via regulation of thyroid hormone and phosphatidylinositol 
signaling [65].

As mentioned before, PINS constitute a complex infor-
mation-processing center that includes various neurotrans-
mitters and forms an endogenous neural network, which has 
an important influence on pancreatic endocrine function. 
PGP and multiple neurotransmitters have been shown to be 
upregulated by EA at ST25, suggesting adaptive changes in 
pancreatic-related nerves and transmitters. Those phenom-
ena provided a neurophysiological basis for the onset of EA.

Chronic inflammation is closely related to pancreatic β 
cell damage [66]. EA at ST25 ameliorated the inflamma-
tory state, contributing to the restoration of pancreatic β 
cell morphology (Fig. 4). Consistent with Ma’s research 
[16], the expression of NPY can explain the related experi-
mental effects, including the anti-inflammatory effects. In 
addition, the changes in NPY expression over time showed 
the anti-inflammatory effect of EA at ST25, which can be 
observed in Fig. 3. In terms of inflammatory markers, the 
expression of TNF-α and IL-1β was decreased, while the 
expression of anti-inflammatory IL-10 was increased. The 
accumulation of pro-inflammatory factors can disturb the 
balance of apoptosis [67] and inhibit cell growth [68]. The 
anti-inflammatory effect of EA also indirectly protected β 
cells from apoptosis. Additionally, low-frequency electri-
cal stimulation of the efferent vagal nerve fibers is thought 
to possess anti-inflammatory properties and can activate 
the “cholinergic anti-inflammatory reflex” [69]. ChAT is 
the most suitable factor for monitoring cholinergic neurons 
[70]. The increased expression of these neurotransmitters 
was consistent with the inflammatory activity, which verified 
the anti-inflammatory effect of EA at ST25.

Further explanation of our study focuses on the restora-
tion of pancreatic endocrine function by EA at ST25 through 
the TRPV1 channel (SP/CGRP)-β cell circuit. The TRPV1 
channel is highly expressed on sensory nerve fibers innervat-
ing the pancreas [71]. TRPV1 can be upregulated by high 
glucose levels [72], as observed in our study (Fig. 7b). It 
confirmed that TRPV1 was involved in the regulation of 
glucose. The pancreas receives sensory innervation, and 
its axon endings are sensitive to capsaicin and can release 
CGRP locally, which can induce diabetes [73].

In rodent models of T2DM, TRPV1 signal transduction 
is activated, and SP and CGRP release is increased chiefly. 
SP can inhibit glucose-induced insulin release and reduce 
glucose uptake, and thus improve insulin resistance [74]. 
However, we found that the expression of SP decreased in 
HFD-STZ-induced T2DM rats as the islets showed ill-condi-
tioned patterns. This conclusion is consistent with Razavi’s 
assertion [75]. SP is one of the vital sources of pancreatic 

duct proliferation [76]. Pancreatic duct cells show the physi-
ological characteristics of stem cells, which are differenti-
ated into islet β cells [77]. Low levels of SP will lead to 
the proliferation of β cells and change glucose homeostasis 
[78]. Additionally, SP inhibits insulin secretion at low levels 
and promotes it at high levels [79]. In addition to TRPV1-
expressing neurons, SP/CGRP also exists in islet cells and 
inhibits the release of insulin levels by β cells [80, 81]. Col-
lectively, β cell activity was out of control as a result of 
deficient SP and CGRP.

Under physiological conditions, the functioning of 
TRPV1 will be affected by β cells. Chemical ablation of 
TRPV1 neurons can affect the function and quantity of 
islet β cells and improve glucose metabolism, indicating 
that β cells are vital targets of TRPV1 neurons [82]. The 
decrease in SP and CGRP can further activate the TRPV1 
receptor through a positive feedback loop. However, there 
is a physiological limit to the expression level of TRPV1 
receptors [32]. TRPV1 receptors degenerate after over-
stimulation, and although they remain at a high level, their 
sensitivity to stimulation decreases. SP/CGRP lacks the 
activation of the corresponding receptors, so it presents a 
low-level pathological state. Eventually, insulin will accu-
mulate excessively, leading to the development of IR. This 
kind of TRPV1 channel (SP/CGRP)-β cell circuit balance 
disorder can lead to hyperinsulinemia, induce systemic IR, 
and disrupt glucose homeostasis.

In this study, we found that EA at ST25 could remarkably 
reduce IR and partially restore β cell function in T2DM rats. 
Further analysis showed that ST25 stimulation restores vital 
pancreatic functions regulated by PINS, regardless of pan-
creatic health, with transmitters such as NPY playing a criti-
cal role in this effect. Therefore, the significantly decreased 
HOMA-IR caused by stimulation at ST25 may be mediated 
via nervous innervation of the acupoint areas and imply the 
role of the PINS. WB and IF analyses showed that protein 
expression of PGP9.5 returned to nearly control levels after 
EA stimulation at ST25.

However, the islets of Langerhans make up only about 
2% of the mass of the pancreas, so extrapolating the results 
from the whole pancreas to the endocrine pancreas is dif-
ficult. Although TRPV1 and CGRP/SP are of substantial 
significance in the treatment of T2DM [59], the neuroen-
docrine communication mechanism formed by TRPV1 and 
CGRP/SP is still unclear and needs further study.

Conclusions

Current therapeutic strategies to manage hyperglycemia 
do not halt (or reverse) disease progression and may even 
cause undesirable adverse effects and comorbidities on 
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their own [83], while treatment with insulin, sulfonylureas, 
and glinides may lead to weight gain [84]. EA at ST25 can 
reduce the body weight of T2DM rats and improve glu-
cose metabolism. Using a high-fat-fed, STZ rat model that 
shows the metabolic characteristics of human T2DM, our 
study tested the hypothesis that EA at ST25 would repair 
the pancreas after STZ injury through neural regulation of 
the pancreatic intrinsic nervous system.
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