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Microglia cells are the major orchestrator of the brain inflammatory response. As such, they are traditionally studied in various
contexts of trauma, injury, and disease, where they are well-known for regulating a wide range of physiological processes by their
release of proinflammatory cytokines, reactive oxygen species, and trophic factors, among other crucial mediators. In the last
few years, however, this classical view of microglia was challenged by a series of discoveries showing their active and positive
contribution to normal brain functions. In light of these discoveries, surveillant microglia are now emerging as an important
effector of cellular plasticity in the healthy brain, alongside astrocytes and other types of inflammatory cells. Here, we will review
the roles of microglia in adult hippocampal neurogenesis and their regulation by inflammation during chronic stress, aging,
and neurodegenerative diseases, with a particular emphasis on their underlying molecular mechanisms and their functional
consequences for learning and memory.

1. Microglia: The Resident Immune
Cells of the Brain

Microglia were first described in 1919 by the Spanish neu-
roanatomist Pı́o del Rı́o Hortega, a disciple of the renowned
Santiago Ramón y Cajal, almost half a century later than
neurons and astrocytes and just before oligodendrocytes
[1]. This delayed appearance into the neuroscience arena is
still apparent today, as microglia remain one of the least
understood cell types of the brain. Traditionally, microglia
were simply considered as “brain macrophages” controlling
the inflammatory response during acute insults and neurode-
generative conditions, and only recently was their unique
origin revealed. Indeed, microglia were shown to derive from

primitive myeloid progenitors of the yolk sac that invade
the central nervous system (CNS) during early embryonic
development (reviewed in [2]). In contrast, circulatingmono-
cytes and lymphocytes, as well as most tissue macrophages,
derive from hematopoietic stem cells located initially in the
foetal liver and later in the bone marrow [3]. In the adult
brain, the microglial population is maintained exclusively by
self-renewal during normal physiological conditions [2]. As
a consequence, microglia are the only immune cells which
permanently reside in theCNS parenchyma, alongside neural
tube-derived neurons, astrocytes, and oligodendrocytes.

These past few years, unprecedented insights were also
provided into their extreme dynamism and functional
behaviour, in health as much as in disease. Indeed, microglia
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were revealed to be exceptional sensors of their environment,
responding on a time scale of minutes to even subtle vari-
ations of their milieu, by undergoing concerted changes in
morphology and gene expression [4, 5]. During pathological
insults, “activated” microglia were particularly shown to
thicken and retract their processes, extend filopodia, prolif-
erate and migrate, release factors and compounds influenc-
ing neuronal survival (such as proinflammatory cytokines,
trophic factors, reactive oxygen species (ROS), etc.), and
phagocytose pathogens, degenerating cells and debris, thus
providing better understanding of their roles in orchestrating
the inflammatory response [6]. These abilities as immune
cells are also recruited during normal physiological condi-
tions, where “surveillant” microglia further participate in
the remodeling of neuronal circuits by their phagocytic
elimination of synapses and their regulation of glutamater-
gic receptors maturation and synaptic transmission, among
other previously unexpected roles [7–9], in addition to
their crucial involvement in the phagocytic elimination of
newborn cells in the context of adult neurogenesis [10].

Our review will discuss the emerging roles of microglia
in adult hippocampal neurogenesis and their regulation by
inflammation during chronic stress, aging, and neurode-
generative diseases, with a particular emphasis on their
underlying molecular mechanisms and their functional con-
sequences for learning and memory (Figure 1).

2. A Brief Overview of
Adult Hippocampal Neurogenesis

Adult hippocampal neurogenesis is continuously maintained
by the proliferation of neural stem cells located in the
subgranular zone (SGZ) [11–13]. These neuroprogenitors
have been named “radial glia-like cells” (rNSCs), or type 1
cells, since they morphologically and functionally resemble
the embryonic radial glia. They have also been defined as
“quiescent neuroprogenitors” because only a small percentage
of the population is actively dividing during normal phys-
iological conditions. The lineage of these cells is frequently
traced by using analogs of the nucleotide thymidine, such
as bromodeoxyuridine (BrdU) which gets incorporated into
the DNA of dividing cells during the S phase and can be
detected by immunofluorescence. Alternatively, their lineage
can be traced by labeling with fluorescent reporters which are
delivered to dividing cells by retroviral vectors or expressed
by specific cell type promoters via inducible transgenic mice
(for a review of the methods commonly used to study adult
neurogenesis, see [14]). The daughter cells of rNSCs, also
called type 2 cells or amplifying neuroprogenitors (ANPs),
rapidly expand their pool by proliferating before becoming
postmitotic neuroblasts. Within a month, these neuroblasts
differentiate and integrate as mature neurons into the hip-
pocampal circuitry [15]. They however display unique elec-
trophysiological characteristics during several months, being
more excitable than mature neurons [16], and constitute a
special cell population that is particularly inclined to undergo
synaptic remodeling and activity-dependent plasticity [17].

These unique properties of the newborn neurons and
the neurogenic cascade in general suggested that adult
hippocampal neurogenesis could play an important role
in hippocampal-dependent functions that require exten-
sive neuroplasticity such as learning and memory. Indeed,
activity-dependent plasticity and learning are long known
for modulating adult neurogenesis in a complex, yet specific
manner, with adult hippocampal neurogenesis being influ-
enced by learning tasks which depend on the hippocam-
pus [44, 45]. For instance, hippocampal-dependent learning
paradigms were found to regulate the survival of newborn
neurons, in a positive manner that depends on the timing
between their birth and the phases of learning [46, 47]. Young
(1.5–2 months old) newborn neurons were also shown to
be preferentially activated during memory recall in a water
maze task, compared to mature neurons, as determined by
colabeling of BrdU with immediate early genes such as c-
Fos and Arc, in which expression correlates with neuronal
firing [48]. Nonetheless, it has only been in the last few
years that loss-of-function and gain-of-function approaches
with inducible transgenic mice were able to confirm that
adult hippocampal neurogenesis is necessary for synaptic
transmission and plasticity, including the induction of long-
term potentiation (LTP) and long-term depression [49], as
well as trace learning in conditioned protocols [50], memory
retention in spatial learning tasks [51, 52], and encoding of
overlapping input patterns, that is, pattern separation [53].

Adult hippocampal neurogenesis and its functional
implications for learning and memory are however influ-
enced negatively by a variety of conditions that are commonly
associatedwithmicroglial activation and inflammation in the
brain, such as chronic stress, aging, and neurodegenerative
diseases, as we will review herein. Indeed, inflammation
caused by irradiation produces a sustained inhibition of
neurogenesis, notably by decreasing the proliferation and
neuronal differentiation of the progenitors, and therefore,
exposure to therapeutic doses of cranial irradiation has been
widely used for modulating neurogenesis experimentally
before the development of more specific approaches [54].

3. Regulation of Adult Hippocampal
Neurogenesis by Inflammation

Inflammation is a natural bodily response to damage or
infection that is generally mediated by proinflammatory
cytokines such as interleukin 1 beta (IL-1𝛽), interleukin 6 (IL-
6), and tumour necrosis factor alpha (TNF𝛼), in addition
to lipidic mediators such as prostaglandins and leukotrienes.
Oftentimes, it is associated with an increased production of
ROS, as well as nitric oxide (NO). Together, these proin-
flammatory mediators lead to an increase in local blood
flow, adhesion, and extravasation of circulating monocytes,
neutrophils, and lymphocytes [55]. In the brain,microglia are
the main orchestrator of the neuroinflammatory response,
but other resident cell types, including astrocytes, endothelial
cells, mast cells, perivascular and meningeal macrophages,
and even neurons, can produce proinflammatory mediators,
though perhaps not to the same extent as microglia [56].
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Figure 1: The effects of surveillant and inflammatory microglia on the adult hippocampal neurogenic cascade. During physiological
conditions, surveillant microglia effectively phagocytose the excess of apoptotic newborn cells and may release antineurogenic factors
such as TGF𝛽. This anti-inflammatory state is maintained by neuronal (tethered or released) fractalkine. Enriched environment drives
microglia towards a phenotype supportive of neurogenesis, via the production of IGF-1. In contrast, inflammatory challenge triggered by
LPS, irradiation, aging, or AD induces the production of proinflammatory cytokines such as IL-1𝛽, TNF𝛼, and IL-6 by microglia as well as
resident astrocytes and infiltrating monocytes, neutrophils, and lymphocytes. These cytokines have profound detrimental effects on adult
neurogenesis by reducing the proliferation, survival, integration, and differentiation of the newborn neurons and decreasing their recall
during learning and memory paradigms.

In addition, peripheral immune cells invading the CNS
during inflammation can further produce proinflammatory
mediators, but the respective contribution ofmicroglia versus
other cell types in the inflammatory response of the brain is
poorly understood.

The harmful effects of inflammation are also widely
determined by the actual levels of proinflammatory media-
tors released, rather than the occurrence or absence of an
inflammatory response in itself. For instance, TNF𝛼 regulates
synaptic plasticity by potentiating the cell surface expression
of AMPA glutamatergic receptors, thus resulting in a homeo-
static scaling following prolonged blockage of neuronal activ-
ity during visual system development [57]. However, TNF𝛼
also produces differential effects at higher concentrations,
ranging from an inhibition of long-term potentiation to an
enhancement of glutamate-mediated excitotoxicity in vitro
[58]. Inflammation induced by chronic ventricular infusion
of bacterial lipopolysaccharides (LPS; a main component
of the outer membrane of Gram-negative bacteria), that is,
the most widely used method for inducing an inflammatory
challenge, also increases ex vivo the hippocampal levels of
TNF𝛼 and IL-1𝛽, thereby impairing novel place recognition,
spatial learning, and memory formation, but all these cog-
nitive deficits can be restored by pharmacological treatment

with a TNF𝛼 protein synthesis inhibitor, a novel analog of
thalidomide, 3,6-dithiothalidomide [59].

The impact of inflammation on adult hippocampal neu-
rogenesis was originally discovered by Olle Lindvall and
Theo Palmer’s groups in 2003, showing that systemic or
intrahippocampal administration of LPS reduces the for-
mation of newborn neurons in the adult hippocampus, an
effect that is prevented by indomethacin, a nonsteroidal anti-
inflammatory drug (NSAID) which inhibits the synthesis of
proinflammatory prostaglandins [60, 61]. Similarly, inflam-
mation can determine the increase in neurogenesis that is
driven by seizures, a context in which neurogenesis can be
prevented by LPS and increased by the anti-inflammatory
antibiotic minocycline [60]. In these studies, hippocampal
proliferation remained unaffected by LPS orminocycline and
thus it is likely that inflammation targeted the survival of
newborn cells [60, 61], as LPS is known to increase SGZ
apoptosis [62]. Inflammation also has further downstream
effects on the neurogenic cascade. For instance, LPS increases
the number of thin dendritic spines and the expression
of the excitatory synapses marker “postsynaptic density
protein of 95kDa” (PSD95) in newborn neurons. LPS in
addition increases the expression ofGABAA receptors at early
stages of synapse formation, leading to suggesting a possible
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imbalance of excitatory and inhibitory neurotransmission
in these young neurons [63]. Finally, LPS also prevents the
integration of newborn neurons into behaviourally relevant
networks, including most notably their activation during
spatial exploration, as determined by the percentage of BrdU
cells colabeled with the immediate early gene Arc [64].

Importantly, none of these manipulations is specific to
microglia and may directly or indirectly affect other brain
cells involved in the inflammatory response of the brain. For
instance, both LPS andminocycline affect astrocytic function
in vitro and in vivo [65–69]. Furthermore, LPS is known
to drive infiltration of monocytes and neutrophils into the
brain parenchyma [70]. Monocytes and neutrophils produce
major proinflammatorymediators and could therefore act on
the neurogenic cascade as well. The implication of microglia
in LPS-induced decrease in neurogenesis is nonetheless
supported in vivo by the negative correlation between the
number of newborn neurons (BrdU+, NeuN+ cells) and
the number of “activated” microglia (i.e., expressing ED1)
[60]. ED1, also called CD68 or macrosialin, is a lysosomal
protein which is overexpressed during inflammatory chal-
lenge. While the location of ED1 previously suggested its
involvement in phagocytosis, its loss of function did not result
in phagocytosis deficits and thus, its function still remains
unknown (reviewed in [10]). The number of ED1-positive
microglia also negatively correlates with neurogenesis during
inflammation provoked by cranial irradiation [61]. While
correlation does not involve causation, nor can pinpoint to
the underlying mechanism, these experiments were the first
to reveal a potential role for “activated” microglia in the
regulation of adult hippocampal neurogenesis. More direct
evidence of microglial mediation in LPS deleterious effects
was obtained from in vitro experiments, as it was shown that
conditionedmedia fromLPS-challengedmicroglia contained
IL-6, which in turn caused apoptosis of neuroblasts [61].
Nonetheless, astrocytes can also release IL-6 when stimulated
with TNF𝛼 or IL-1𝛽 [71] and chronic astrocytic release
of IL-6 in transgenic mice reduced proliferation, survival,
and differentiation of newborn cells, thus resulting in a
net decrease in neurogenesis [72]. In summary, while the
detrimental impact of inflammation on neurogenesis is well
established, more work is needed to define the specific roles
played by the various inflammatory cells populating the
brain.

4. Inflammation Associated with
Chronic Stress

Across health and disease, the most prevalent condi-
tion that is associated with neuroinflammation is “chronic
stress,” which commonly refers to the repeated or sus-
tained inability to cope with stressful environmental, social,
and psychological constraints. Chronic stress is character-
ized by an imbalanced secretion of glucocorticoids by the
hypothalamic-pituitary-adrenal (HPA) axis (most notably
cortisol in humans and corticosterone in rodents), which
leads to an altered brain remodeling,massive loss of synapses,
and compromised cognitive function [73]. In particular, an

impairment of spatial learning, working memory, novelty
seeking, and decision making has been associated with
chronic stress [74]. Glucocorticoids are well known for
their anti-inflammatory properties, as they interfere with
NF-𝜅B-mediated cytokine transcription, ultimately delaying
wound healing [75]. They are also potent anti-inflammatory
mediators in vivo [76] and in purified microglia cultures
[77]. Recently, repeated administration of high doses of
glucocorticoids by intraperitoneal injection, to mimic their
release by chronic stress, was also shown to induce a loss
of dendritic spines in the motor cortex, while impairing
learning of a motor task. A transcription-dependent pathway
acting downstream of the glucocorticoid receptor GR was
proposed [78, 79] but the particular cell types involved were
not identified.

Microglia are considered to be a direct target of the gluco-
corticoids, as they were shown to express GR during normal
physiological conditions in vivo [77]. In fact, transgenic mice
lacking GR in microglia and macrophages show an increased
production of proinflammatory mediators (including TNF𝛼
and IL-1𝛽) and greater neuronal damage in response to an
intraparenchymal injection of LPS, compared to wild-type
mice [80]. In contrast, glucocorticoids are considered to be
proinflammatory in the chronically stressed brain [81], where
among other changes they can promote inflammation, oxida-
tive stress, neurodegeneration, andmicroglial activation [82].
For example, repeated restraint stress induces microglial
proliferation and morphological changes, including a hyper-
ramification of their processes in the adult hippocampus
following restraint stress [83], but a nearly complete loss
of processes in the context of social defeat [84]. Prenatal
restraint stress also causes an increase in the basal levels of
TNF𝛼 and IL-1𝛽, while increasing the proportion ofmicroglia
showing a reactive morphology in the adult hippocampus
[85]. Similarly, social defeat leads to an enhanced response
to the inflammatory challenge induced by intraperitoneal
injection of LPS, including an increased production of TNF𝛼
and IL-1𝛽, and expression of inducible NO synthase (iNOS)
by microglia, accompanied by an increased infiltration of
circulating monocytes [84, 86]. Therefore, microglia are a
strong candidate for mediating some of the effects of stress
on adult neurogenesis, as will be discussed below, in synergy
with other types of inflammatory cells.

Chronic stress is well known for its negative effects on
hippocampal neurogenesis (reviewed in [87, 88]), although
not all stress paradigms are equally effective [89]. Several
stress paradigms can decrease neuroprogenitors proliferation
in the tree shrew [90] and inmice [91, 92], although this effect
seems to be compensated by an increased survival of newborn
neurons [92] and whether stress results in a net increase
or decrease in neurogenesis remains controversial (reviewed
in [87, 88]). The effects of stress on adult neurogenesis
seem to be mediated at least partially by glucocorticoids,
because mice lacking a single copy of the GR gene show
behavioural symptoms of depression including learned help-
lessness, neuroendocrine alterations of the HPA axis, and
impaired neurogenesis [93]. In parallel, chronic stress is
associated with an increased inflammatory response, which
may inhibit neurogenesis as well. For instance, serum levels
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of IL-1𝛽 and IL-6 are significantly increased in depressed
patients [94]. In mice, restraint stress leads to a widespread
activation of NF-𝜅B in the hippocampus, including at the
level of neuroprogenitors [95] and increased protein levels of
IL-1𝛽 [96]. In addition to the direct role of glucocorticoids,
IL-1𝛽 also seems to mediate some of the effects of mild
chronic stress, because in vivomanipulations that block IL-1𝛽
(either pharmacologically or in null transgenic mice) prevent
the anhedonic stress response and the antineurogenic effect
of stress [91, 96].Moreover, the corticoids and IL-1𝛽 pathways
may regulate each other in a bidirectional manner because
the administration of a GR antagonist can blunt the LPS-
induced production of hippocampal IL-1𝛽 in stressed mice
[97], whereas mice knockout for the IL-1𝛽 receptor (IL-1R1)
fail to display the characteristic elevation of corticosterone
induced by mild chronic stress [96]. Another stress-related
cytokine, IL-6, induces depressive phenotypes and prevents
the antidepressant actions of fluoxetinewhen administered to
mice in vivo [98]. So far the effects of stress on neurogenesis
via corticosteroids and inflammation have been assumed to
be cell autonomous, as neuroprogenitors express both GR
[99] and IL-1R1 [95]. The potential participation of microglia
is yet to be determined, but there are some reports of a
direct effect of stress on microglial activation. For instance,
microglia acutely isolated frommice subjected to acute stress
(by inescapable tail shock) showed a primed response to LPS
challenge by producing higher levels of IL-1𝛽mRNA ex vivo
[100], and the specific loss of expression of GR in microglia
leads to a blunted inflammatory response in vitro and to a
decreased neuronal damage in vivo in response to LPS [80].
In stress paradigms, these enhanced responses of microglia
to inflammatory challenges are similar to their age-related
“priming” which has been associated with and is possibly
due to an increased basal production of proinflammatory
mediators. However, whether microglia express increased
levels of IL-1𝛽 and other proinflammatory cytokines in
response to stressful events is presently unclear [101]. It is thus
possible that some of the antineurogenic effects of stress are
exerted bymeans of microglial-dependent inflammation, but
this hypothesis remains to be experimentally tested.

5. Inflammation Associated with Aging and
Neurodegenerative Diseases

Inflammation is also commonly associated with normal
aging and neurodegenerative diseases and, therefore, could
represent a putative underlying mechanism that explains
their decrease in hippocampal neurogenesis. Nonetheless,
inflammation is also associated with neurological diseases,
such as epilepsy or stroke, where neurogenesis is thought to
be increased, although the data from rodents and humans is
somewhat conflictive [102]. Neurogenesis is well known to
decline throughout adulthood and normal aging in rodents
and humans [103, 104], but the decay ismore pronounced and
occurs later in life in mice than in humans [105]. The aging-
associated decrease in neurogenesis has been shown to occur
mainly as a consequence of exhaustion of the rNSC popula-
tion which, after being recruited and activated, undergo three

rounds of mitosis in average and then terminally differentiate
into astrocytes [12, 106]. In addition, a reduced mitotic
capacity of the neuroprogenitors could further contribute to
decreasing neurogenesis [106], and moreover, an age-related
increase in the levels of proinflammatory cytokines could
also hinder neurogenesis in the aging brain. Serum levels
of IL-1𝛽, IL-6, and TNF𝛼 are elevated in elderly patients
[107, 108]. Aged microglia express higher levels of these
proinflammatory cytokines and show a greater response to
LPS inflammatory challenge, that is, a “primed” response,
than their younger counterparts [109]. The origin of this
low-grade age-related inflammation (“inflamm-aging” [110])
remains unknown and may be related to both aging and
damage to the surrounding neurons, as well as aging of the
immune system per se.

At the cellular level, stress to the endoplasmic reticulum
(ER) caused by various perturbations, such as nutrient deple-
tion, disturbances in calcium or redox status, or increased
levels of misfolded proteins, can induce a cell-autonomous
inflammatory response to neurons. Stress to the ER, a mul-
tifunctional organelle which is involved in protein folding,
lipid biosynthesis, and calcium storage triggers a homeostatic
response mechanism named the unfolding protein response
(UPR), aiming to clear the unfolded proteins in order to
restore normal ER homeostasis [111]. However, if the ER
stress cannot be resolved, theUPR also initiates inflammatory
and apoptotic pathways via activation of the transcription
factor NF-𝜅B which controls the expression of most proin-
flammatory cytokines [112]. In the brain, ER stress is often
initiated by the formation of abnormal protein aggregates
in several neurodegenerative diseases such as Alzheimer’s
disease (AD), Parkinson’s disease (PD), amyotrophic lateral
sclerosis (ALS), Huntington’s disease (HD), and prion-related
disorders [113]. This neurodegeneration-associated ER stress
is assumed to occur mostly in neurons, but there are
some examples of microglial protein misfolding as well. For
instance, both microglia and neurons overexpress CHOP
(C/EBP homologous protein), a transcription factor which
is activated during ER stress in human patients and mouse
models of ALS [114]. Inflammation has been speculated to
be a main negative contributor to the pathology of ALS
[115], but a direct microglial involvement in mediating the
inflammatory response to abnormal protein aggregation in
ALS and other neurodegenerative conditions remains to be
tested. Finally, ER stress has been linked to a variety of inflam-
matory conditions [116, 117], including chronic stress, diet-
induced obesity, and drug abuse, as well as atherosclerosis
and arthritis [118–120]. During normal aging, a progressive
decline in expression and activity of key ER molecular
chaperones and folding enzymes could also compromise the
adaptive response of the UPR, thereby contributing to the
age-associated decline in cellular functions [118]. Therefore,
aging is strongly associated with a chronic ER stress which
leads to increased activation of NF-𝜅B [112]; however, the
contribution of the different brain cell types to “inflamm-
aging” is still poorly understood. The detrimental effects on
neurogenesis of increased proinflammatory cytokines in the
aging brain are not necessarily related to microglia, but also
to stressed neurons. Furthermore, ER stress may also cause a
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cell-autonomous response in neural stem cells [121], although
its impact on neurogenesis remains to be experimentally
determined.

In addition, aging is accompanied by an increased level
of mitochondrial oxidative stress, which in turn activates
the “Inflammasome” [122], a group of multimeric proteins
comprising the interleukin 1 converting enzyme (ICE, cas-
pase 1) which serves to release the active form of the
cytokine [123]. IL-1𝛽 may act directly on rNSCs (visualised
by labeling with the Sox2 marker), as they express IL-
1R1 in the adult hippocampus [91]. Treatment with IL-1𝛽
decreases hippocampal proliferation in young mice [91] and
pharmacological inhibition of ICE partially restores the num-
ber of newborn neurons in aged mice without significantly
affecting their differentiation rate [124]. Transgenic IL-1𝛽
overexpression results in chronic inflammation and deple-
tion of doublecortin-labeled neuroblasts, thus mimicking
the aging-associated depletion of neurogenesis [125]. The
actual mechanism of action of IL-1𝛽 on neurogenesis in
aged mice, including decreased proliferation of rNSCs/ANPs
and survival of newborn neurons, remains undetermined.
Microglia are a main source of IL-1𝛽 in the aging brain, but
the hypothesis that microglia-derived IL-1𝛽 is responsible
for depleting neurogenesis in the aging brain remains to be
directly tested.

The regulation of neurogenesis by IL-1𝛽 in the aging
brain has been further linked to the activity of another
cytokine, the chemokine fractalkine, or CX3CL1. Fractalkine
has soluble and membrane-tethered forms and is exclu-
sively expressed by neurons, while the fractalkine receptor
(CX3CR1) is expressed in the brain by microglia alone [126].
Thismodule forms a unique neuron-microglia signalling unit
that controls the extent of microglial inflammation in several
neurodegenerative conditions including PD, ALS [127], or
AD [128]. In fact, CX3CR1 blocking antibodies increase
the production of hippocampal IL-1𝛽 when administered
to young adult rats [129]. Importantly, chronic treatment
with fractalkine increases hippocampal proliferation and the
number of neuroblasts in aged (22 months old) but not
young (3 months old) or middle-aged rats (12 months old),
whereas an antagonists of CX3CR1 has the opposite effects
in young, but not in middle-aged nor old rats [129]. Since
fractalkine expression is decreased during aging [129], a
reduced neuron-microglia signalling might be releasing the
brake on microglial contribution to inflammatory responses,
although increased levels of fractalkine were instead reported
in aged rat hippocampus by other studies [68]. Additional
insights into the role of fractalkine signalling come from
knock-in mice in which the endogenous CX3CR1 locus is
replaced by the fluorescent reporter GFP [126]. The initial
studies suggested that CX3CR1GFP/GFP (i.e., CX3CR1−/−)
mice have no significant differences in brain development and
functions [130], but more systematic investigations recently
revealed a long list of hippocampal-dependent changes in
young (3 months old) CX3CR1GFP/GFP and CX3CR1GFP/+
mice compared to wild-type mice. These changes notably
included decreased neuroprogenitors proliferation and neu-
roblasts number, impaired LTP, performance in contextual

fear conditioning and water maze spatial learning and mem-
ory, and, importantly, increased IL-1𝛽 protein levels [131].The
signalling pathway of fractalkine-IL-1𝛽 is functionally rele-
vant, because IL-1R1 antagonists rescued LTP and cognitive
function in CX3CR1GFP/GFP mice [131]. In sum, even though
neuronal fractalkine seems to be sufficient for restraining
the inflammatory activity of microglia in young rats, its
downregulation during aging could activate the microglial
inflammatory response and thereby subsequently reduce the
proliferation of remaining neuroprogenitors.

In AD, inflammatory cytokines such as IL-1𝛽 are over-
expressed in the microglia associated with the amyloid beta
(A𝛽) plaques of postmortem samples [132] and in transgenic
mice modeling the disease [133]. The loss of synapses (from
hippocampus to frontal cortex) is one of the main patho-
logical substrates in this disease, but adult neurogenesis is
also severely reduced in most mouse models of AD, possibly
due to a decreased proliferation of neuroprogenitors and a
decreased survival of newborn cells, even though the putative
changes in the neurogenic cascade in postmortem samples
remain controversial (reviewed in [102]). This lack of agree-
ment is possibly explained by the fact that the vast majority
of AD cases have a late onset over 65 years of age, when little
neurogenesis remains. In contrast, in most transgenic AD
mouse models, the A𝛽 accumulation, cognitive deficits, and
changes in neurogenesis are already detectable in young ani-
mals (2-3 months old). The study of AD is further hindered
by the difficulty in comparing the time course and pathology
across different mouse models. For instance, early treatment
with minocycline can improve cognition and reduce A𝛽
burden in mice expressing the human amyloid precursor
protein (APP) [134]. In contrast, in mice expressing APP and
a mutated form of presenilin 1 (PS1), which is part of the 𝛾
secretase pathway that cleaves A𝛽, inflammation is reduced
without any detectable changes in A𝛽 plaques deposition
[135]. Concomitantly with a decrease in tissue inflamma-
tory cytokines and number of microglial cells, minocycline
restores neurogenesis and hippocampus-dependent memory
deficits in these APP/PS1 mice [135], indirectly suggesting
that cognitive decay in AD may be at least in part related
to a detrimental effect of inflammation on hippocampal
neurogenesis. Direct evidence that neurogenesis is associated
with the cognitive performance in AD is still lacking. Further
research is also necessary to determine the neurogenic targets
of AD-related inflammation. One central open question
for future therapies aiming at increasing neurogenesis and
cognition in AD is whether neuroprogenitors are spared or
whether their age-induced loss becomes accelerated. Rather
than increasing the proliferation and neurogenic output of
the few rNSCs remaining in an old AD brain, it may be more
relevant to develop strategies that prevent the age-related loss
of neuroprogenitors in presymptomatic patients.

In summary, inflammation associated with a wide variety
of experimental models of disease produces strong detri-
mental effects on hippocampal neurogenesis. These effects
on human neurogenesis are however not so well described
and, in vitro, IL-1𝛽 increases the proliferation of hip-
pocampal embryonic neuroprogenitors but decreases their
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differentiation into neurons [136]. Novel methods to assess
hippocampal neurogenesis in the living human brain, from
metabolomics of neuroprogenitors to hippocampal blood
brain volume (reviewed in [102]), will help to determine the
contribution of inflammation to adult neurogenesis in the
healthy and diseased human brain during aging.

6. Normal Physiological Conditions

In the healthy mature brain, microglia are an essential com-
ponent of the neurogenic SGZ niche, where they physically
intermingle with neuroprogenitors, neuroblasts, and new-
born neurons [62]. Here, surveillant microglia effectively and
rapidly phagocytose the excess of newborn cells undergoing
apoptosis [62]. Importantly, microglial phagocytosis in the
adult SGZ is not disturbed by inflammation associated with
aging or by LPS challenge, as the phagocytic index (i.e.,
the proportion of apoptotic cells completely engulfed by
microglia) is maintained over 90% in these conditions [62].
Nonetheless, the consequences of microglial phagocytosis on
adult hippocampal neurogenesis remain elusive. Treatment of
mice with annexin V, which binds to the phosphatidylserine
(PS) receptor and prevents the recognition of PS on the
surface of apoptotic cells, presumably blocking phagocytosis,
increases the number of apoptotic cells in the SGZ [40]. Con-
comitantly, annexin V reduces neurogenesis by decreasing
the survival of neuroblasts without affecting neuroprogeni-
tors proliferation [40]. Similar results were obtained in trans-
genic mice knock-out for ELMO1, a cytoplasm protein which
promotes the internalization of apoptotic cells, although
the effects on neurogenesis were ascribed to a decreased
phagocytic activity of neuroblasts [40].The actual phagocytic
target of the neuroblasts remains undetermined, but the
newborn apoptotic cells in the adult SGZ are exclusively
phagocytosed by microglia, at least in physiological condi-
tions [62]. Nevertheless, none of the above manipulations
has specifically tested the role of microglial phagocytosis
in hippocampal-dependent learning and memory and thus,
the functional impact of microglial phagocytosis in adult
neurogenic niches during normal physiological conditions
remains to be elucidated.

Microglial phagocytosis of apoptotic cells is actively
anti-inflammatory, at least in vitro, and thus it has been
hypothesized that anti-inflammatory cytokines produced by
phagocytic microglia may further regulate neurogenesis [10].
For instance, transforming growth factor beta (TGF𝛽), which
is produced by phagocytic microglia in vitro [137], inhibits
the proliferation of SGZ neuroprogenitors [138]. Microglia
are further able to produce proneurogenic factors in vitro
[139]. When primed with cytokines associated with T helper
cells such as interleukin 4 (IL-4) or low doses of interferon
gamma (IFN𝛾), culturedmicroglia support neurogenesis and
oligodendrogenesis through decreased production of TNF𝛼
and increased production of insulin-like growth factor 1
(IGF-1) [139], an inducer of neuroprogenitor proliferation
[26]. A list of potential factors produced by microglia
and known to act on neuroprogenitor proliferation can

be found in Table 1. In addition, recent observations sug-
gest that neuroprogenitor cells may not only regulate their
own environment, but also influence microglial functions.
For instance, vascular endothelial growth factor (VEGF)
produced by cultured neuroprecursor cells directly affects
microglial proliferation, migration, and phagocytosis [20].
More potential factors produced by neuroprogenitors shown
to be influencing microglial activity and function can be
found in Table 2. However, it has to be taken into account
that most of these observations were obtained in culture and
that further research is needed in order to elucidate whether
those factors are also secreted and have the same regulatory
responses in vivo.

In addition, microglial capacity to remodel and eliminate
synaptic structures during normal physiological conditions
has suggested that microglia could also control the synap-
tic integration of the newborn neurons generated during
adult hippocampal neurogenesis [140]. Three main mech-
anisms were proposed: (1) the phagocytic elimination of
nonapoptotic axon terminals and dendritic spines, (2) the
proteolytic remodeling of the perisynaptic environment,
and (3) the concomitant structural remodeling of dendritic
spines [7, 140]. Indeed, microglial contacts with synaptic
elements are frequently observed in the cortex during normal
physiological conditions, sometimes accompanied by their
engulfment and phagocytic elimination [141–143], as in the
developing retinogeniculate system [144]. Microglial cells are
distinctively surrounded by pockets of extracellular space,
contrarily to all the other cellular elements [142], suggesting
that microglia could remodel the volume and geometry
of the extracellular space, and thus the concentration of
various ions, neurotransmitters, and signalling molecules
in the synaptic environment. Whether microglia create the
pockets of extracellular space themselves or not remains
unknown, but these pockets could result from microglial
release of extracellular proteases such as metalloproteinases
and cathepsins [145], which are well known for influencing
the formation, structural remodeling, and elimination of
dendritic spines in situ and also experience-dependent plas-
ticity in vivo [7, 146]. More recently, microglial phagocytosis
of synaptic components was also observed in the developing
hippocampus, in the unique time window of synaptogenesis,
a process which is notably regulated by fractalkine-CX3CR1
signalling [147]. Therefore, the attractive hypothesis that
microglial sculpts the circuitry of newborn cells in the adult
hippocampus deserves further attention.

Lastly, microglia were also involved in increasing adult
hippocampal neurogenesis in the enriched environment
(EE) experimental paradigm. EE is a paradigm mimick-
ing some features of the normal living circumstances of
wild animals, as it gives them access to social interactions,
toys, running wheels, and edible treats. EE has long been
known to enhance neurogenesis by acting on newborn
cells survival, resulting ultimately in an enlargement of
the dentate gyrus [148]. Functionally, these changes are
accompanied by enhanced spatial learning and memory
formation with the water maze paradigm [149]. Similar
increases in neurogenesis are obtained by subjecting mice
to voluntary running paradigms, although in this case the
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Table 1: Summary of factors secreted by microglia and the potential effect they have on neuroprogenitors in vitro.

Microglia secreted factors Reference Modulation of neural progenitor cells Reference
BDNF [18] Differentiation [19]
EGF [20] Survival, expansion, proliferation, differentiation [21]
FGF𝛽 [22] Survival and expansion [23]
GDNF [24] Survival, migration, and differentiation [25]
IGF-1 [21] Proliferation [26]
IL-1𝛽 [27] Reduction in migration [27]
IL-6 [28] Inhibition of neurogenesis [29]
IL-7 [20] Differentiation [30]
IL-11 [20] Differentiation [30]
NT-4 [24] Differentiation [31]
PDGF [32] Expansion and differentiation [33]
TGF𝛽 [34] Inhibition of proliferation [19]

Table 2: Summary of factors secreted by neuroprogenitors and the potential effect they have on microglia in vitro.

NPC secreted factors Reference Modulation of microglia Reference
BDNF [18] Proliferation and induction of phagocytic activity [35]
Haptoglobin [24] Neuroprotection [36]
IL-1𝛽 [37] Intracellular Ca+2 elevation and proliferation [22]
IL-6 [37] Increase in proliferation [38]
M-CSF [20] Mitogen [39]
NGF [40] Decrease in LPS-induced NO [41]
TGF𝛽 [37] Inhibition of TNF𝛼 secretion [42]
TNF𝛼 [37] Upregulation of IL-10 secretion [43]
VEGF [20] Induction of chemotaxis and proliferation [20]

effect is mediated by increased neuroprogenitor proliferation
[150]. During inflammatory conditions, EE is antiapoptotic
and neuroprotective [151] and it limits the hippocampal
response to LPS challenge by decreasing the expression of
several cytokines and chemokines, including IL1-𝛽 andTNF𝛼
[152]. In fact, EE is believed to counteract the inflammatory
environment and rescue the decreased number of neuroblasts
in CX3CR1GFP/GFP mice compared to wild-type mice [153].
The effects of EE are independent of the IL-1𝛽 signalling
pathway, as it increases neurogenesis in mice that are null
for IL-1R1 [154]. EE also induces microglial proliferation and
expression of the proneurogenic IGF-1 [155], but the full
phenotype of microglia in EE compared to standard housing
and its impact on the neurogenic cascade remains to be
determined.

The mechanisms behind the anti-inflammatory actions
of EE are unknown, but they were suggested to involve
microglial interactions with T lymphocytes through an
increased expression of themajor histocompatibility complex
of class II (MHC-II) during EE [155]. MHC-II is responsible
for presenting the phagocytosed and degraded antigens to
the antibodies expressed on the surface of a subtype of
T lymphocytes (T helper or CD4+ cells), thus initiating
their activation and production of antigen-specific antibod-
ies. Severe combined immunodeficient (SCID) mice lacking
either T and B lymphocytes or nude mice lacking only T
cells have impaired proliferation and neurogenesis in normal

and EE housing compared to wild-type mice [155], as well
as impaired performance in the water maze [156]. Similarly,
antibody-based depletion of T helper lymphocytes impairs
basal and exercise-induced proliferation and neurogenesis
[157]. Furthermore, a genetic study in heterogeneous stock
mice, which descend from eight inbred progenitor strains,
has found a significant positive correlation between genetic
loci associated to hippocampal proliferation and to the
proportion of CD4+ cells among blood CD3+ lymphocytes
[158]. Additional experiments are needed to fully determine
the possible interactions between microglia and T cells
in neurogenesis, because, at least in normal physiological
conditions, (1) T cell surveillance of the brain parenchyma
is minimal, (2) microglia are poor antigen presenting cells,
and (3) antigen presentation by means of MHC-II family of
molecules is thought to occur outside the brain, that is, in the
meninges and choroid plexus [159]. In fact, during voluntary
exercise, there are no significant changes in T cell surveillance
of the hippocampus, nor a direct interaction between T cells
and microglia, nor any changes in the gene expression profile
of microglia, including that of IGF-1, IL-1𝛽, and TNF𝛼 [160].
The number of microglia is also inversely correlated with
the number of hippocampal proliferating cells, rNSCs, and
neuroblasts in aged (8 months) mice subjected to voluntary
running, as well as in vitro cocultures of microglia and
neuroprogenitors, which has been interpreted as resulting
from an overall inhibitory effect of microglia on adult
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neurogenesis [161]. Even though EE is clearly a more com-
plex environmental factor than voluntary running, further
research is necessary to disregard nonspecific or indirect
effects of genetic or antibody-based T cells depletion on
microglia and other brain cell populations, including rNSCs.
For instance, adoptive transfer of T helper cells treated with
glatiramer acetate, a synthetic analog of myelin basic protein
(MBP) approved for the treatment of multiple sclerosis, pro-
duces a bystander effect on resident astrocytes and microglia
by increasing their expression of anti-inflammatory cytokines
such as TGF𝛽 [162]. Alternatively, it has been suggested that
T cells may mediate an indirect effect on adult hippocampal
neurogenesis by increasing the production of brain-derived
neurotrophic factor (BDNF) [157], which is involved in the
proneurogenic actions of EE [163]. Whether BDNF can
counteract the detrimental effects of T cell depletion on neu-
rogenesis remains unknown.Overall, the roles ofmicroglia in
EE and running-induced neurogenesis are unclear and have
to be addressed with more precise experimental designs. In
summary, surveillant microglia are part of the physical niche
surrounding the neural stem cells and newborn neurons of
the mature hippocampus, where they continuously phagocy-
tose the excess of newborn cells.Microglia were also linked to
the proneurogenic and anti-inflammatory effects of voluntary
running and EE, but direct evidence is missing. The overall
contribution of microglia to neurogenesis and learning and
memory in normal physiological conditions remains largely
unexplored at this early stage in the field.

7. Conclusion

In light of these observations, microglia are now emerging
as important effector cells during normal brain development
and functions, including adult hippocampal neurogenesis.
Microglia can exert a positive or negative influence on
the proliferation, survival, or differentiation of newborn
cells, depending on the inflammatory context. For instance,
microglia can compromise the neurogenic cascade during
chronic stress, aging, and neurodegenerative diseases, by
their release of proinflammatory cytokines such as IL-1𝛽,
IL-6, and TNF𝛼. A reduced fractalkine signalling between
neurons and microglia could also be involved during normal
aging. However, microglia are not necessarily the only cell
type implicated because astrocytes, endothelial cells, mast
cells, perivascular and meningeal macrophages, and to a
lesser extent neurons and invading peripheral immune cells
could further contribute by releasing proinflammatorymedi-
ators.

Additionally, microglia were shown to phagocytose the
excess of newborn neurons undergoing apoptosis in the
hippocampal neurogenic niche during normal physiological
conditions, while a similar role in the synaptic integration
of newborn cells was also proposed in light of their capacity
to phagocytose synaptic elements. Lastly, microglial interac-
tions with T cells, leading to the release of anti-inflammatory
cytokines, neurotrophic factors, and other proneurogenic
mediators (notably during EE and voluntary running), could
counteract the detrimental effects of inflammation on adult

hippocampal neurogenesis and their functional implications
for learning and memory.

However, further research is necessary to assess the rela-
tive contribution of microglia versus other types of resident
and infiltrating inflammatory cells and to determine the
nature of the effector cytokines and other inflammatory
mediators involved, as well as their cellular andmolecular tar-
gets in the neurogenic cascade. Such research will undoubt-
edly help to develop novel strategies aiming at protecting the
neurogenic potential and ultimately its essential contribution
to learning and memory.
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