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Although carotid endarterectomy reduces risk of ipsilat-
eral stroke in people with symptomatic carotid artery 

stenosis, the number needed to treat to prevent one stroke is 
large,1,2 especially in asymptomatic stenosis.3 Furthermore, 
the pathological event that leads to cerebral thromboembo-
lism (atherosclerotic plaque rupture) is not necessarily cor-
related with luminal stenosis severity.4 Other pathological 

features, such as inflammation, cell death, and microcalci-
fication, are important in driving both plaque formation and 
instability.5–7 New imaging biomarkers of these processes are 
therefore needed to improve risk stratification and clinical 
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decision-making. Such biomarkers could also assess the 
response of plaque biology to novel pharmacological inter-
ventions and provide a way of identifying culprit lesions in 
patients with multiple plaques.

Hybrid positron emission tomography and computed 
tomography (PET/CT) is a molecular imaging modality that 
has high sensitivity for noninvasive in vivo detection of radio-
labeled biomolecules tuned to a variety of pathophysiological 
processes. In carotid atherosclerosis imaging, the most widely 
used tracer has been 18F-fluorodeoxyglucose (18F-FDG)8–14: 
Recently, we have described another radiotracer, 18F-fluoride, 
in atherosclerosis imaging.15,16 We15–18 and others19–23 have 
shown that this tracer has major potential in cardiovascular 
disease. 18F-Fluoride can highlight culprit plaque in patients 
after myocardial infarction and high-risk plaques in patients 
with apparently stable coronary heart disease.16 We have 
shown that this is because 18F-fluoride can highlight areas 
of microcalcification indicative of necrotic atheroma.24 The 
ability to identify high risk or culprit plaque in the cephalic 
circulation has the potential to improve risk stratification in 
patients at high risk of stroke with a view to more targeted 
interventions. Our study aims were to compare and contrast 
the identification of clinically adjudicated culprit and high-
risk plaque at the carotid bifurcation using 18F-fluoride and 
18F-FDG PET/CT.

Methods

Patient Population
Two cohorts of people with a recent transient ischemic attack (TIA) or 
minor ischemic stroke were recruited: a case cohort with a high-grade 
internal carotid artery stenosis (≥50% by North American Symptomatic 
Carotid Endarterectomy Trial25 criteria for men, ≥70% for women) 
scheduled to undergo carotid endarterectomy and a control cohort 
in whom the cause of stroke was not attributed to carotid atheroma. 
Participants were recruited from outpatient clinics in National Health 
Service Lothian between January 2013 and June 2014 (for exclusion 
criteria, see Appendix in the Data Supplement). Research ethics com-
mittee approval (National Health Service West of Scotland Research 
Ethics Committee: 12/WS/0227) and the written and informed consent 
of all participants were obtained.

Baseline Assessment
Participants underwent clinical assessment at baseline including 
standard hematologic and biochemical indices. Serum C-reactive 
protein concentration was measured using the MULTIGENT CRP 
Vario assay on the high-throughput ARCHITECT system (Abbott 
Laboratories, Abbott Park, IL). Predicted cardiovascular risk was es-
timated using the ASSIGN score: a validated Scottish cardiovascular 
risk score that is similar to the Framingham risk score but includes 
additional factors, such as social deprivation and family history.26

PET/CT Protocol
Static 18F-FDG PET/CT was acquired using a hybrid scanner 
(Biograph mCT, Siemens Medical Systems, Erlangen, Germany) 90 
minutes after the intravenous administration of a target dose of 200 
MBq. A rigid neck collar was fitted to minimize movement and stan-
dardize position. An attenuation-correction CT scan (nonenhanced, 
low dose 120 kV, 50 mAs) was then performed followed by PET ac-
quisition covering 2 bed positions with the first upper bed centered 
over the carotid bifurcation in 3-dimensional mode for 20 minutes per 
bed. Patients were fasted for 6 hours before scanning.

18F-Fluoride PET/CT was undertaken the subsequent day 60 min-
utes after administering 250 MBq 18F-fluoride. A neck collar was 

Table 1. Baseline Clinical Characteristics

 
Stenosis 

Symptomatic
No Stenosis 

Symptomatic
P 

Value

n 18 8  

Age, y 71.7±12.3 66.1±12.5 0.30

Men, n (%) 12 (66.7) 4 (50) 0.67

BMI, kg·m−2 26.2±5 27.3 (23.38–36) 0.40

Systolic blood pressure 
(mm Hg)

137±25 154±16 0.08

Diastolic blood pressure 
(mm Hg)

78±18 85±3.4 0.34

ASSIGN score 31±15.5 21.1±13.1 0.13

Presenting syndrome, n (%)   0.22

  Stroke 8 (44) 6 (75)  

  TIA/amaurosis fugax 10 (56) 2 (25)  

CEA side, right (%) 8 (44)   

Cardiovascular history, n (%)

  Coronary artery disease 10 (56) 2 (25) 0.22

  Myocardial infarction 5 (28) 1 (13) 0.63

Risk factors, n (%)

  Hypertension 11 (61) 7 (88) 0.36

  Diabetes 1 (6) 0 1

  Hypercholesterolemia 13 (72) 5 (63) 0.67

  Current smoker 6 (33) 2 (25) 0.67

Medication, n (%)

  Single antiplatelet 
therapy

14 (78) 6 (88) 1

  Dual antiplatelet therapy 3 (17) 0 0.53

  Anticoagulant 1 (6) 2 (25) 0.22

  Statin 17 (94) 6 (75) 0.22

  ACEi/AIIRB 7 (39) 2 (25) 0.20

  Βeta-antagonist 7 (39) (131) 0.36

  Calcium antagonist 7 (39) 2 (25) 0.67

  Other antihypertensive 6 (39) 3 (38) 1

Hematology

  Hemoglobin, g/L 139.8±19 142.6±12.3 0.71

  White cell count, ×109/L 8±1.4 6.4 (3.8–7.9) 0.06

  Platelet count, ×109/L 259±64 273±63 0.60

Biochemistry

  Creatinine, mmol/L 88.5 (78–97.5) 76.8±13.5 0.07

  Total cholesterol, mg/dL 117.9±34.8 181.7±54.1 0.81

  C-reactive protein, mg/L* 3.1±2.6 2.4±3.5 0.66

Parametric data presented as mean±SD. Nonparametric data presented 
as median (IQR). Categorical data presented as number (%). ACE indicates 
angiotensin converting enzyme; AIIRB, angiotensin 2 receptor antagonists; BMI, 
body mass index; CAD, coronary artery disease; CEA, carotid endarterectomy; 
IQR, interquartile range; and transient ischemic attack.

*C-reactive protein values > 10 excluded as per AHA guidelines.



3  Vesey et al  18F-Fluoride and 18F-FDG PET After TIA/Ischemic Stroke

fitted and an attenuation-correction CT scan was performed. This was 
followed by PET acquisition covering 2 similar bed positions to the 
18F-FDG scan allowing 15 minutes per bed. A subset of 5 patients 
underwent fully dynamic 18F-fluoride PET/CT with pharmacokinetic 
analysis as described previously.24 Dynamic PET provides a quantita-
tive assessment of uptake and these data were used to validate the 
semiquantitative static imaging data.

After PET acquisition, a CT carotid angiogram was performed 
without moving the subject (Care Dose 4D, 120 kV, 145 mA, rotation 
time 0.5 seconds, pitch 0.8. Contrast: 50 mL Niopam 370).

Static PET data were reconstructed using the Siemens UltraHD 
algorithm: ordered subset expectation maximization+point spread 
function modeling+time-of-flight; 2 iterations and 21 subsets; matrix 
size 200×200; 5 mm full-width half-maximum Gaussian smoothing. 
Dynamic PET data were similarly reconstructed but only using coin-
cident events from the 60- to 75-minute time-bin. Dynamic data were 
analyzed as reported previously24 and a K

i
 value was calculated using 

Patlak analysis.27,28

Tissue Collection, Micro PET/CT, and Histology
At the time of endarterectomy, plaques were collected immediately 
after excision, photographed, and snap frozen. A random selection 
(n=8) of specimens was analyzed by micro PET/CT and histology 
to explore 18F-fluoride binding patterns (see Appendix in the Data 
Supplement for detailed methods).

Image Analysis
Positron Emission Tomography/Computed Tomography
Static analysis of 18F-FDG and 18F-fluoride uptake was performed 
on an OsiriX workstation (OsiriX version 3.5.1 64-bit; OsiriX 
Imaging Software, Geneva, Switzerland). PET/CT data were re-
viewed alongside the CT angiogram. Scans were qualitatively as-
sessed for registration, image quality, patient movement, and visual 
evidence of radiotracer uptake. PET and CT data were individually 
and carefully manually coregistered by lining up fiducial markers 

apparent on both modalities (eg, cervical spine, mandible and hyoid 
on 18F-fluoride imaging; skin, spinal cord, and brain on 18F-FDG 
imaging). No formal inter-PET registration was performed. Three 
regions of interests (ROIs) were drawn on the carotid of interest on 
adjacent 3-mm axial slices. If a plaque was present, the ROIs were 
centered on the area of highest uptake. If there was no plaque, the 
uptake in the proximal 1 cm of internal carotid artery, just distal to 
the bifurcation was quantified. From these, standardized uptake val-
ues (SUVs; maximum, mean maximum, and mean) were recorded. 
Blood pool activity was determined from the average of 5 ROIs 
within the lumen of the superior vena cava to calculate target to 
background ratios.

Uptake in the proximal left common carotid artery was quantified 
to explore the relationships between arterial 18F-FDG and 18F-fluoride 
uptake in a site unaffected by an acute plaque event. Three ROIs were 
placed around this vessel and uptake was recorded.

Inter- and intraobserver reproducibility of 18F-fluoride uptake mea-
surements were determined using a random selection of 12 patients (24 
carotids) by 2 experienced observers (A.T.V., G.S.) who were blinded to 
the clinical data during analysis.

Computed Tomography
The CT angiogram was assessed for image quality, plaque presence, 
location, and characteristics. Analysis was undertaken on a cardio-
vascular workstation (Vital Images, Minnetonka, MN). A blinded and 
experienced observer (A.V.) performed the semiautomated CT plaque 
analysis.

Statistical Analysis
Radiotracer uptake, expressed as mean and maximum SUV, was 
compared between the clinically adjudicated culprit carotid plaque 
and the contralateral side. Continuous variables are expressed as 
mean±standard deviation for normally distributed data and median 
(interquartile range) for skewed distributions. Skewed datasets un-
derwent logarithmic transformation to normalize their distribution. 
Parametric (unpaired and paired t-tests) and nonparametric (Mann–
Whitney U or Wilcoxon matched-pairs signed rank) tests were used 
for normally distributed and skewed data, respectively. Categorical 

Figure 1.  18F-Fluoride and 18F-fluorodeoxyglucose (FDG) positron emission tomography of carotid arteries. Example of 18F-fluoride (A, B, C) 
and 18F-FDG (D, E, F) positron emission tomography (PET)/computed tomography (CT) of 1 patient before surgery for symptomatic carotid 
stenosis. A, 18F-Fluoride PET axial slice. B, Registered CT angiogram axial slice. C, Fused PET/CT image. White arrow, Ruptured plaque 
showing 18F-fluoride uptake. D–F, Same slice but with 18F-FDG. Culprit shows uptake, but the contralateral side is obscured by uptake in the 
right longus colli (green star). An oblique computed tomography carotid angiogram reformat of the culprit (G). The operative specimen (H).
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data are presented as n (%) and were compared using Fisher’s exact or 
Chi-squared tests. Correlation was undertaken with either Pearson’s 
r or Spearman’s ρ subject to the normality of the variables tested. 
To quantify inter- and intraobserver reproducibility of 18F-fluoride 
uptake measurement, the intraclass correlation coefficient was calcu-
lated and Bland-Altman analysis was undertaken.

Statistical analyses were performed with the use of SPSS ver-
sion 18 (SPSS Inc, Chicago, IL) and Graph Pad Prism version 6.0 
(GraphPad Software Inc, San Diego, CA). Statistical significance was 
defined as a 2-sided P<0.05.

Results
Study Population
We recruited 26 patients: 18 in the carotid endarterectomy 
cohort and 8 in the control cohort (Figure I in the Data Supple-
ment). Baseline characteristics (Table 1) were similar in both 
cohorts. Twenty patients completed all the imaging techniques 
(Figure 1). A minority did not receive all scans because of the 
technical and feasibility challenges of completing our multi-
modality imaging protocol in the very short time frame before 
surgery. Actual doses and uptake times are specified in Table I 
in the Data Supplement. There were no adverse events during 
the study. There were 3 withdrawals.

Micro PET/CT and Histology
18F-Fluoride was observed to selectively highlight areas of 
pathologically high-risk microcalcification (Figure 2 and 

Supplementary Movie I in the Data Supplement). Both on auto-
radiography and micro PET/CT, 18F-fluoride was observed to 
bind avidly to areas of microcalcification but only to the sur-
face of large volume stable macrocalcifications. Our previous 
studies24 would suggest that this was because of the inability 
of the fluoride ion to penetrate to the deeper layers of a large 
crystalline mass (with a low surface-area-to-volume ratio). In 
contradistinction, the powdery deposits of microcalcification 
(not visible on CT) provide a large area (high surface-area-to-
volume ratio) for the fluoride ion to bind.

Imaging
When comparing the 18F-fluoride uptake on static imaging 
with full dynamic modeling, K

i
 was most strongly correlated 

with the SUV
mean

 (r=0.93 [95% confidence interval 0.64–0.99], 
P=0.001; Figure 3). There were no fixed or proportional biases 
in the SUV measurements within and between observers (Table 
II in the Data Supplement). These assessments also demon-
strated high intraclass correlation coefficients (all >0.90).

Assessment of Uptake: Culprit Compared With 
Contralateral and Controls
18F-Fluoride uptake was variably present in most plaques with 
all culprits showing uptake on visual assessment. In the large 
majority of patients undergoing carotid endarterectomy who 
were scanned (87%; 13/15), there was more visual uptake 
of 18F-fluoride in the culprit compared with the contralateral 

Figure 2.  18F-Fluoride micro positron emission tomography (PET)/computed tomography (CT), autoradiography, and alizarin red staining. 
Two examples of ex vivo 18F-fluoride micro PET/CT are shown (A–D, F). A, Coronal micro CT slice; B, corresponding micro PET; C, fused 
image; D, the plaque. Green arrow, Adherent thrombus over plaque rupture. Red arrow, Associated area of 18F-fluoride uptake (microcal-
cification). Black arrows, Areas of macrocalcification showing comparatively little uptake (A, C, F). These examples show that 18F-fluoride 
provides information of the presence of microcalcification and does not simply highlight all calcification. E, An example of micro CT slice 
registered to an alizarin red-stained section and the corresponding autoradiogram from a specimen that had been incubated whole in 
18F-fluoride. It can be seen that the tracer is unable to penetrate the deeper layers of macrocalcification (black arrow), but is able to high-
light microcalcification beyond the resolution of even micro CT (red arrow), thus explaining the findings in the micro PET/CT images.
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side. In the 2 patients without discriminatory uptake, there 
was heavy uptake bilaterally but more 18F-fluoride uptake on 
the contralateral side. One patient had grossly ossified carot-
ids and the second, at the time of surgery, was found to have 
a fibrous stenosis (low signal side) and was subsequently 
admitted with a fatal ischemic stroke on the contralateral side 
(high signal side, Figure 3J). 18F-Fluoride uptake was focal 
and readily identifiable with excellent signal to background 
discrimination. Spillover from the hyoid bone, thyroid carti-
lage and cervical vertebrae occasionally made drawing ROI 
difficult, but only 1 vessel was rendered uninterpretable. 
On SUV analysis, the clinically adjudicated culprit showed 
higher uptake than either the paired contralateral (log

10
SU-

V
mean

 0.29±0.10 versus 0.23±0.11, P=0.001) or an unpaired 
control (log

10
SUV

mean
 0.29±0.10 versus 0.12±0.11, P=0.001) 

irrespective of the method of quantification (Table 2 and Fig-
ures 3 and 4).

Of note, in patients with a stroke in whom the imaging 
extended to encompass the affected territory of the brain (n=3), 
intense 18F-fluoride uptake was noted in regions of cerebral 
infarction (SUV

mean
 4.8±1.98 versus SUV

mean
 of 0.07±0.02 for 

contralateral noninfarcted brain, P<0.001; Figure 3B and 3C, 
Movie II in the Data Supplement).

Seven of the 16 culprit carotid plaques demonstrated 
clear and discernible increased 18F-FDG uptake. However, 
this uptake was generally more diffuse than 18F-fluoride and 
analysis was more frequently hampered by overspill from 
sternocleidomastoid, longus colli, tonsillar tissue, and the 
submandibular salivary glands (Figure 1). This rendered 5 
vessels noninterpretable. In the remaining 4 culprit vessels, 
no increase in 18F-FDG uptake could be observed. Overall 
on semiquantitative analysis, 18F-FDG uptake was not higher 
in the clinically adjudicated culprit compared with either the 
paired contralateral (SUV

mean
 1.83±0.55 versus 1.81±0.46, 

P=0.269) or control vessels (SUV
mean

 1.83±0.55 versus 
2.08±0.33, P=0.269) irrespective of the method of quantifica-
tion (Table 2 and Figure 4).

Uptake Compared With Plaque Features and 
Baseline Characteristics
18F-Fluoride uptake was correlated with several plaque char-
acteristics on CT plaque analysis (Table 3). The strongest 

Figure 3.  Dynamic positron emission tomography (PET) acquisition and examples of 18F-fluoride uptake. A, Correlation between stati-
cally derived standardized uptake value (SUV)mean and dynamically measured Ki (dotted line is 95% confidence interval). Photograph 
shows a dynamic PET study in process. B, C, 18F-Fluoride uptake into areas of cerebral infarction. D–F, From 1 patient. D, Axial image 
from computed tomography carotid angiogram; E, Fused axial 18F-fluoride PET/computed tomography (CT; white arrow, culprit plaque); 
F, Oblique reconstruction. G–I, Similar reconstructions from a different patient. J, Obliquely reformatted PET/CT image from a patient 
who developed a fatal stroke (ipsilateral to the lesion marked by a white arrow) 2 weeks after this scan. The contralateral side, which had 
shown minimal uptake, had been deemed the culprit based on duplex assessment.
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correlation was with the Agatston score (SUV
mean

 r=0.72, 
P<0.001), although there were also strong correlations with 
high-risk features such as plaque burden (SUV

mean
 r=0.51, 

P=0.003) and positive remodeling (wall-distal internal carotid 
artery lumen ratio, with SUV

mean
 r=0.53, P=0.003).

In terms of baseline cardiovascular risk indices, uptake 
of both tracers in the vasculature correlated with age (18F-
FDG SUV

meanmax
 r=0.48, P=0.037; 18F-fluoride SUV

mean
 

r=0.59, P=0.007) and the cardiovascular risk score (18F-FDG 
SUV

meanmax
 r=0.53, P=0.019; 18F-fluoride SUV

mean
 r=0.65, 

P=0.002) but neither was associated with serum C-reactive 
protein concentration.

Discussion
We have shown that the culprit plaques of patients with recent 
TIA or minor ischemic strokes enhance with 18F-fluoride on 
PET/CT. Uptake was focal, readily identifiable, and discrimi-
nated between culprit and nonculprit. 18F-Fluoride uptake was 
associated with high-risk plaque phenotype and predicted 
cardiovascular risk. In contrast, while 18F-FDG uptake was 
present in plaque and correlated with cardiovascular risk, it 
was more diffuse and prone to spillover and therefore less dis-
criminatory. 18F-FDG also failed to correlate with established 
high-risk plaque morphological features.

We have previously shown that 18F-fluoride uptake is 
associated with increased intraplaque markers of cell death, 
procalcific proteins, inflammation, and high-risk features in 
the coronary circulation in vivo and the carotid system ex 
vivo.16 Here, we confirm our previous observations24 (which 
we have also recently reviewed29) that this is explained by the 
ability of 18F-fluoride to report microcalcification. Why is this 
the case? Far from a passive and degenerative process, vessel 
mineralization is a controlled response to a variety of insults, 
particularly oxidized inflammatory lipid (as in the calcific 
response to tuberculosis infection where lipid-rich bacterial 
cell walls become oxidized through leukocyte action). It is 
therefore perhaps no surprise that direct links between ath-
erosclerosis and the induction of extraskeletal osteogenesis 
have been identified.30,31 The presence of cellular necrosis and 
apoptosis32 is also likely to potentiate this relationship further. 
Hydroxyapatite nanocrystals themselves may also further 
drive the inflammatory cycle by setting up a positive feedback 
loop of increasing calcification, increasing inflammation, and 
increasing cell death.30 Furthermore, by accumulating in the 
surface of thin fibrous caps, microcalcifications may focally 
increase mechanical stress and thus promote structural cap 
failure and plaque rupture.7,33,34 18F-Fluoride can demonstrate 
this pathologically important microscopic calcific response.

Table 2. Radiotracer Uptake: Comparative Data

 Culprit  Vessel
Contralateral  

Vessel

P Value for 
Culprit vs 

Contralateral Control

P Value for 
Culprit vs  
Control

18F-Fluoride

  SUV
max

2.56 (2.35–3.54) 2.18 (1.94–3.01) * 1.78 (1.55–2.22) *

  SUV
meanmax

2.42 (2.24–3.24) 1.97 (1.78–2.74) * 1.67 (1.41–2.08) *

  SUV
mean

1.92 (1.71–2.46) 1.64 (1.39–1.98) * 1.41 (1.10–1.53) *

  TBR
max

2.75 (2.39–3.21) 2.42 (2.02–2.82) * 2.44 (1.715–2.48) *

  TBR
meanmax

2.61 (2.24–2.90) 2.32 (1.74–2.58) * 2.29 (1.61–2.37) *

  TBR
mean

1.96 (1.62–2.22) 1.71 (1.38–1.86) * 1.67 (1.28–1.95) *

  Log
10

SUV
max

0.44±0.14 0.38±0.16 0.013 0.25±0.09 <0.001

  Log
10

SUV
meanmax

0.42±0.13 0.34±0.15 0.005 0.22±0.10 <0.001

  Log
10

SUV
mean

0.29±0.10 0.23±0.11 0.001 0.12±0.11 <0.001

  Log
10

TBR
max

0.45±0.13 0.39±0.13 0.014 0.31±0.15 0.016

  Log
10

TBR
meanmax

0.43±0.13 0.35±0.12 0.005 0.28±0.15 0.014

  Log
10

TBR
mean

0.30±0.12 0.24±0.11 0.001 0.18±0.13 0.029

18F-FDG

  SUV
max

2.32±0.78 2.32±0.77 0.675 2.61±0.53 0.375

  SUV
meanmax

2.21±0.72 2.24±0.74 0.755 2.51±0.46 0.317

  SUV
mean

1.83±0.55 1.81±0.46 0.346 2.08±0.33 0.269

  TBR
max

1.88±0.31 1.81±0.31 0.496 1.86±0.27 0.848

  TBR
meanmax

1.80±0.29 1.74±0.29 0.554 1.79±0.20 0.925

  TBR
mean

1.49±0.19 1.44±0.19 0.358 1.48±0.10 0.922

Parametric data presented as mean±SD. Nonparametric data presented as median (IQR). FDG indicates 
fluorodeoxyglucose; SUV, standardized uptake value; TBR, target to background ratio; and IQR, interquartile range.

*Statistical testing performed on the normalized log
10

 transformed data.
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Figure 4.  18F-Fluoride and 18F-fluorodeoxyglucose (FDG) positron emission tomography (PET)/computed tomography uptake. Dynamic PET 
acquisition and examples of 18F-fluoride uptake. Uptake in clinically adjudicated culprit vs contralateral and vs controls. Tukey box and whisker 
plots. A, B, 18F-Fluoride uptake into culprit (red) and contralateral (blue) plaque using the standardized uptake value (SUV)mean and target to back-
ground ratio (TBR)mean measurements, respectively. C, D, Each demonstrate comparison in 18F-fluoride uptake between carotid endarterectomy 
(CEA) patients (red) and controls (blue); uptake is reported by SUVmean in C and TBRmean in D. E–H, The same comparisons but using 18F-FDG.
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This is the first observation of 18F-fluoride uptake in 
necrotic brain tissue and merits consideration. Uptake of 
this and other bone metabolism markers has previously been 
observed in tissue necrosis.33,35 This is likely to be because of 
cell membrane disruption with influx of calcium and forma-
tion of nanoscale calcium phosphate complexes. These offer a 
substrate to which 18F-fluoride can adsorb, allowing us to visu-
alize the microcalcification associated with necrosis. We have 
also observed the same process in myocardial tissue postin-
farction (Figure II in the Data Supplement).

We confirmed identification of culprit plaque in 2 ways. 
First, we compared the culprit to the ideal internal control, 
the contralateral carotid artery (which is almost invariably 
diseased). Second, we compared the culprit against a valid 
external control; patients with a TIA or minor ischemic stroke 
not attributed to carotid plaque. This shows that 18F-fluoride 
may have real potential in helping to identify culprit plaque 
thus helping decision-making. This is exemplified by the case 
where a plaque with high uptake deemed nonculprit subse-
quently caused a fatal ischemic stroke.

We compared uptake of 18F-fluoride with 18F-FDG. Unlike 
18F-fluoride, overall, 18F-FDG uptake was not significantly 
higher in culprit lesions. Moreover, on a per-lesion basis, 18F-
FDG failed to correlate with high-risk plaque morphological 
features, whereas 18F-fluoride uptake correlated with plaque 
burden, positive remodeling, and luminal stenosis: all estab-
lished markers of plaque risk. Other studies have explored the 
utility of 18F-FDG alone in carotid atherosclerosis9–11,14,36–39 and 
a few have directly compared clinical culprit with nonculprit 
plaques.8,12,13 Our results are consistent with these previous 
findings with significant uptake noted in some but not all cul-
prit plaques, in part because of spillover from adjacent muscle. 
Our observations are also influenced by the ubiquity of statin 
therapy, potentially blunting 18F-FDG uptake. We did, however, 
note that proximal carotid uptake correlated with cardiovascular 
risk indicating that 18F-FDG does reflect a major aspect of ves-
sel pathobiology. As others suggest,38,40 it may be that 18F-FDG 
better reflects generalized vascular inflammation and that the 
relationship between the tracer and a single advanced and acute 
plaque is more complicated. There are increasing data available 
concerning other more specific markers of inflammation, such 
as those targeting the macrophage-specific somatostatin recep-
tor.41 These will theoretically be less hampered by overspill.

Our findings confirm those of a smaller study of 9 patients 
by Quirce et al23 that explored 18F-fluoride and 18F-FDG 
uptake in symptomatic patients. They showed that 18F-fluoride 
uptake appeared to be higher in the symptomatic carotid and 
that 18-FDG uptake was nondiscriminatory. Taken together 
with our current larger series, this suggests that 18F-fluoride 
has the potential to be a useful and robust clinical tool to iden-
tify culprit atherosclerotic plaque. Vascular 18F-fluoride imag-
ing could therefore guide clinical management better than the 
current standard of care, and lead to trials of plaque-specific 
interventions that go beyond simple assessments of anatomic 
luminal stenosis severity.

Limitations
This was a small pilot observational study (recruitment is 
very challenging given the time pressure to intervene) and 

findings should be regarded as preliminary. The true utility 
of 18F-fluoride PET/CT will need to be evaluated by pro-
spective studies with patients randomized to intervention 
based on imaging. 18F-Fluoride PET/CT will need to be 

Table 3. Plaque Analysis by CT and PET

 All Patients

Calcium score

  Patients with AC CT usable for calcium score 24

  Carotid bifurcations analyzed for calcium score 48

  Agaston score, AU 164 (5–494)

  Log
10

Agaston score 1.76±1.13

  Calcium volume, mm3 150 (15.75–404)

CT plaque analysis

  Patients with analyzable CT angiogram 17

  Internal carotid artery plaques analyzed 33

  CT diameter stenosis, % 50 (0–77)

  Wall-distal ICA lumen ratio, % 90 (54–173)

  Plaque burden, % 49.4±16.4

  Lipid/necrosis volume, mm3 37.5 (8.6–79.5)

  Lipid/necrosis % volume 6.7 (2.4–15.8)

  Fibrofatty volume, mm3 201 (96–313)

  Fibrofatty % volume 42.8±15.6

  Calcium volume, mm3 211 (124–358)

  Calcium % volume 47.4±20.8

18F-Fluoride PET SUV
mean

1.69 (1.40–2.04)

 r P Value

  vs CT Agatson score 0.79 <0.001

  vs CT diameter stenosis 0.54 0.002

  vs plaque burden 0.51 0.004

  vs wall-distal ICA lumen ratio 0.53 0.003

  vs lipid/necrosis volume 0.32 0.080

  vs fibrofatty volume 0.29 0.126

  vs calcium volume 0.72 <0.001

18F-FDG PET SUV
mean

1.92±0.46

 r P Value

  vs CT Agatson score −0.14 0.469

  vs CT diameter stenosis −0.10 0.620

  vs plaque burden −0.03 0.873

  vs wall-distal ICA lumen ratio 0.00 0.996

  vs lipid/necrosis volume −0.19 0.315

  vs fibrofatty volume −0.15 0.457

  vs calcium volume 0.01 0.918

Parametric data presented as mean±SD. Nonparametric data presented 
as median (IQR). AC indicates attenuation correction; AU; arbitrary units; 
CT, computed tomography; FDG, fluorodeoxyglucose; ICA, internal carotid 
artery; IQR, interquartile range; PET, positron emission tomography; and SUV, 
standardized uptake value.
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compared with other techniques42 (in particular MR or PET/
MR) which have the advantages of improved soft tissue 
definition, reduced radiation, and lack of iodinated contrast. 
We did not perform prolonged-delayed 18F-FDG imaging 
which some authors have suggested is advantageous.43 We 
also acknowledge that quantitative vascular PET has some 
potential limitations because of the partial volume effects 
of small vascular structures. Finally, as vascular 18F-fluoride 
imaging is developed, consideration must be given to har-
monizing acquisition and reconstruction protocols,44 as well 
as achieving consensus on the uptake parameter of choice 
(SUV versus target to background ratio versus volumet-
ric parameters45) and whether to use manual or automated 
methods to define ROI. This will reduce variation between 
scanners and research groups and permit meaningful multi-
center studies.

Conclusion
We have shown that 18F-fluoride PET/CT is able to identify 
culprit or high-risk carotid plaque. In comparison, 18F-FDG, 
the most widely used tracer in cardiovascular PET imaging, 
did not reliably identify culprit plaque and did not correlate 
with high-risk morphological features. 18F-Fluoride PET has 
major potential to improve how we assess and manage the risk 
of stroke in patients with atherosclerosis.
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CLINICAL PERSPECTIVE
Stroke remains the leading global cause of disability and is responsible for huge healthcare costs. It is commonly caused by 
thromboembolism from extracranial atherosclerotic plaque. In addition to medical therapy, invasive carotid artery interven-
tion (by endarterectomy or stenting) has a role in reducing the chances of subsequent stroke. However, intervention itself 
is associated with significant risk and the decision to proceed with surgery is still based principally on stenosis severity, an 
outdated parameter. This report shows that by selectively demonstrating intraplaque microcalcification, a pathologically 
high-risk process that reflects ongoing inflammation and cell death, 18F-fluoride PET/CT may be able to identify plaque at 
particular risk of causing future stroke. The technique, as part of a multimodal risk stratification strategy, may help to ensure 
the appropriate planning of surgical intervention. This would potentially avoid unnecessary surgery on quiescent yet tightly 
stenosed plaques and conversely permit the identification and removal of high-risk plaques that currently do not meet criteria 
for intervention. 18F-Fluoride PET/CT also offers the possibility of noninvasively assessing the response to existing or novel 
pharmacological agents permitting the personalization of therapy to maximize benefit and minimize risk of complications.




