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Abstract: As the demand for video streaming has been rapidly increasing recently, new technologies
for improving the efficiency of video streaming have attracted much attention. In this paper, we
thus investigate how to improve the efficiency of video streaming by using clients’ cache storage
considering exclusive OR (XOR) coding-based video streaming where multiple different video
contents can be simultaneously transmitted in one transmission as long as prerequisite conditions are
satisfied, and the efficiency of video streaming can be thus significantly enhanced. We also propose a
new cache update scheme using reinforcement learning. The proposed scheme uses a K-actor-critic
(K-AC) network that can mitigate the disadvantage of actor-critic networks by yielding K candidate
outputs and by selecting the final output with the highest value out of the K candidates. The K-AC
exists in each client, and each client can train it by using only locally available information without
any feedback or signaling so that the proposed cache update scheme is a completely decentralized
scheme. The performance of the proposed cache update scheme was analyzed in terms of the
average number of transmissions for XOR coding-based video streaming and was compared to that
of conventional cache update schemes. Our numerical results show that the proposed cache update
scheme can reduce the number of transmissions up to 24% when the number of videos is 100, the
number of clients is 50, and the cache size is 5.

Keywords: streaming; multimedia; reinforcement learning; cache; exclusive OR

1. Introduction

In recent years, Internet traffic has been rapidly increasing and is expected to increase
more rapidly in the future [1,2]. In particular, it is also expected that video streaming traffic
will account for 82% of the global Internet traffic by 2022 due to the wide popularity of
various video streaming platforms such as YouTube [1]. This trend is more pronounced in
mobile networks, and many advanced techniques have been thus investigated to increase
the capacity of next-generation mobile communication networks [3–5]. Along with many
technologies to increase network capacity by using a wide bandwidth or by increasing
spectral efficiency, other technologies for reducing network traffic are also attracting much
attention as another alternative [6,7]. Multicast (MC) transmission can reduce network
traffic by transmitting a video to multiple clients in one transmission if the clients requested
the same video at the same time [6]. Proxy servers with cache can significantly reduce net-
work traffic, and bandwidth optimization for real-time video traffic transmission through a
proxy server was investigated in [7]. In particular, MC-aware caching can better exploit the
available cache space and can yield a gain of 19% over existing caching schemes [6]. Many
studies have studied how to reduce network traffic by using the transmitters’ cache storage,
while the low cost and large capacity of storage motivated some studies to focus on the
clients’ cache storage [8–13]. In this paper, we thus investigate a new video streaming
system using clients’ cache and XOR-based index coding. In the new video streaming
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system, multiple different video contents can be transmitted in one transmission if prereq-
uisites are satisfied, and transmission efficiency can be thus significantly improved. Cache
update is an important factor in video streaming systems [14–19]. However, there have
been no previous studies that investigated cache update policies for the index coding-based
video streaming system. Thus, we investigate how to update the clients’ cache for index
coding-based video streaming systems in order to use the clients’ cache more efficiently,
and we propose a new cache update scheme for clients using deep reinforcement learning.
The proposed cache update scheme was based on a new architecture called K-actor-critic
(K-AC) that can mitigate the shortcomings of the actor-critic (AC) network architecture.
The K-AC network that consists of an actor network and the main value network exists in
each client, and each client can thus update its own cache in a fully decentralized manner
without any exchange of information or signaling. In this work, we assumed that all clients
have different popularity for videos, and the popularity for each client is time varying,
contrary to most conventional studies assuming that video popularity is the same for all
clients and is time invariant.

The rest of this paper is organized as follows. We investigate related studies in
Section 2. Section 3 introduces the system model considered in this paper and describes the
basic concept of XOR coding-based video streaming. A mathematical ground for reducing
the number of XOR operations is also introduced in Section 3. In Section 4, we propose a
new cache update algorithm using reinforcement learning for index coding-based video
streaming systems. Section 5 shows the numerical results. Finally, this paper is concluded
in Section 6.

2. Related Work

Contrary to conventional strategies that used the transmitters’ cache, there have been
recent studies to exploit the clients’ cache storage [8–13]. Methods that can efficiently
exploit the clients’ cache storage were investigated from the viewpoint of information
theory [8–10]. Lower and upper bounds were presented on the capacity-memory tradeoff
of an erasure broadcast network with two disjoint sets of receivers: a set of weak receivers
with equal erasure probabilities and equal cache sizes and a set of strong receivers with
equal erasure probabilities and no cache memories [8]. It was proposed to exploit the
limited cache packets as side information to cancel incoming interference at the receiver
side by considering a stochastic network [9]. A new inner bound on the capacity region of
the general index coding problem was investigated by relying on a random coding scheme
and optimal decoding [10]. A new concept using index coding for transmitting contents was
proposed in [11], where multiple contents were index coded, and they can be transmitted in
one transmission over a single channel if some prerequisites are satisfied. A new algorithm
of the index code and time resource allocation that can minimize wireless transmission
outage probability with a low complexity was proposed [12]. Many studies focusing on the
clients’ cache mainly investigated theoretical performance analysis or optimal index code
design by considering simplistic or unrealistic system models, while the index code was
applied to a realistic system in [13]. Exclusive OR (XOR)-based index coding can be applied
to large-scale video streaming systems while providing a complete backward compatibility
with existing streaming schemes such as unicast (UC) and MC thanks to the properties of
the XOR operator such as zero-identity, self-inverse, commutativity, and associativity [13].

On the other hand, there have been many studies on cache update [14–19]. The perfor-
mance of FIFO, the least recently used (LRU), and the least frequently used (LFU) schemes
was analyzed in terms of the rate at which a particular request is returned before a given
deadline [14] and in terms of hit rate [15]. A novel content-aware cache replacement
algorithm taking advantage of content demand forecasts was investigated to efficiently
use limited caches in size [16]. LRU-K, which is a combination of LRU and LFU, was
proposed [17]. They simulated TV distribution with time-shift and investigated the effect of
introducing a local cache close to the viewers and what impact TV program popularity, pro-
gram set size, cache replacement policy, and other factors had on the caching efficiency [18].
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A new concept that cache servers share request information to predict the popularity of
contents through regression was proposed [19]. A deep Q-network (DQN)-based cache
update scheme for edge cache networks was proposed [20]. They aimed at maximizing
the overall quality of 360◦ videos delivered to the end-users by caching the most popular
ones at base quality along with a virtual viewport in high quality. A new centralized cache
update scheme using the Wolpertinger architecture for base stations was proposed [21].
The Wolpertinger architecture selects a single proto-action from the actor network and
selects the K-closest action around the proto-action for the input of the critic network [22].
Contrary to the Wolpertinger architecture, our K-AC directly selects K candidate actions
with the highest Q values from the actor network for the input of the critic network, in-
spired by the fact that the actions in our problem do not have a strong correlation with
each other. Despite these many existing studies on cache update, the simplest cache up-
date scheme, first-in first-out (FIFO), was only considered in index coding-based video
streaming systems [13], and there have been no cache update schemes targeting index
coding-based video streaming systems. In index coding-based video streaming systems,
each client needs to update its cache so as to increase the probability of index coding with
other clients, as well as its own hit probability, contrary to conventional video streaming
systems where each client’s hit probability is only considered.

3. XOR Coding-Based Streaming System

We investigated a coded video streaming system, as depicted in Figure 1, which
consisted of N clients and a streaming server. All the clients and the server were equipped
with cache. Clients’ cache can store C videos, while the server’s cache can store V videos
(V � C). It was assumed that all videos had the same length in time. Even if multiple
clients request different videos, they can be selectively XOR-encoded into one bit stream
according to the status of their caches [13]. For a given set of clients, if every client in the set
has all videos requested by the remaining clients in its cache, then all the clients in the set
can receive their videos through XOR coding in one transmission. This is called XOR-cast
(XC). The XOR-encoded bit stream is transmitted to the clients by one transmission, and
we can reduce the number of transmissions for the videos requested by the clients. Then,
each client restores its video by decoding the received bit stream with the contents stored
in its cache [13]. As a specific example, the client requesting v1 in Figure 1 plays the video
v1 stored in its cache without receiving any data from the server, which is called local
cast (LC). The two clients requesting v2 can stream v2 from the same channel through
MC. The client requesting v3 and the client requesting v4 store v4 and v3, respectively, and
the server thus XOR encodes v3 and v4. (v3 ⊕ v4) is transmitted over a single channel
through XC even though v3 and v4 are different. The client that requested v3 restores
v3 by using (v3 ⊕ v4) ⊕ v4 = v3, and the client that requested v4 restores v4 by using
(v3 ⊕ v4) ⊕ v3 = v4, where the equalities are valid due to the properties of the XOR
operator such as zero-identity, self-inverse, commutativity, and associativity.

The relative popularity of the v-th most popular one among V videos is modeled by
the Zipf distribution, which is given by:

f (v; β, V) =
1/vβ

∑V
k=1(1/kβ)

, (1)

where β is the Zipf parameter characterizing the distribution and ∑V
v=1 f (v; β, V) = 1

regardless of β [23]. Contrary to most conventional studies that assumed that all clients
have the same relative popularity for all videos and the relative popularity is time-invariant,
we assumed that all clients have different popularity and that the popularity for each client
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is time varying. Client n requests a video v at time t with a probability Pt
(n,v). Pt

(n,v)’s are
time varying and different for all clients and can be defined as:

Pt+1
(n,v) =

{
ρPt

(n,v) + (1− ρ) f (w; β, V) with prob. p

Pt
(n,v) with prob. 1− p,

(2)

where p denotes the probability that the rank v of a video changes to a new rank w for the
client n, w denotes that the new rank of the video v is a random integer between one and V,
and ρ denotes a correlation between the old rank v and the new rank w satisfying 0 < ρ < 1
for all v ∈ {1, . . . , V}. The initial probability of Pt

(n,v) is given by P0
(n,v) = f (v; β, V). p and ρ

can adjust the frequency and the amount of change in popularity for video v, respectively.

Figure 1. System architecture.

Figure 2 shows the overall procedure of XOR coding-based streaming systems. rn and
Cn denote a video that client n requests and the set of videos stored in the cache of the
client n, respectively. |Cn| = C, where ||̇ denotes the cardinality of a set. In this system, we
aimed to reduce the number of transmissions required to transmit the N videos {rn|n ∈ U}
requested by the N clients, where U denotes the set of the whole clients and is given by
U = {1, 2, . . . , N}. If rn ∈ Cn, which denotes that rn is stored in the client n’s cache, then
the client n can play the rn stored in the cache through LC without connecting to the server.
The set of clients who can play a video through LC can be found as:

GLC = {n|rn ∈ Cn, n ∈ U}. (3)

If an arbitrary client n is not included in GLC, it transmits a request message including
the information of rn and Cn to the server. The extra overhead per client required to send
Cn, denoted by O, can be calculated as:

O = dlog2Ve × C, (4)

where d·e denotes the ceiling function. O is linearly proportional to C, which is not a big
value in real environments and is logarithmically proportional to V. In addition, O is
ignorable, compared to the size of recent video contents. If there exist multiple clients
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that have requested the same video, they can all receive the video through MC in one
transmission. The set of clients who can receive a video through MC can be found as:

GMC =

{
n

∣∣∣∣∣ ∣∣∣{i|ri = rn, (i 6= n)&(i ∈ U \ GLC)
}∣∣∣ ≥ 1, n ∈ U \ GLC

}
, (5)

where A \ B denotes the set difference of sets A and B. GMC includes all clients that can
receive a video through MC, and the number of transmissions required for GMC denoted
by KMC can be calculated by:

KMC =

∣∣∣∣∣ ∑
n∈GMC

{rn}
∣∣∣∣∣, (6)

where (A+B) denotes the union of two setsA and B, removing duplicate elements instead
of the arithmetic addition for notational simplicity. Then, all remaining clients that are
not included in GLC or GMC, given by X = U \ GLC \ GMC, become candidates for XC, and
the server sorts out the clients eligible for XC. A client i ∈ X can receive a video content
through XC together with other clients in X that satisfy

{
j|ri ∈ Cj, rj ∈ Ci, j 6= i, j ∈ X

}
.

They compose one group for XC, and the server XOR encodes their video contents into
one bit stream and transmits the bit stream in one transmission. For each client i in X , the
server looks for other clients in X that can be grouped with the client i for XC, and the
result can be obtained by:

GXC=
{
{i}+

{
j|ri∈Cj, rj∈Ci, j 6= i, j ∈ X

}∣∣i∈X }. (7)

GXC is a set of sets and GXC[k] denotes the k-th element of GXC, which is a set. If GXC[k]
includes a single client, |GXC[k]| = 1, the client will receive the video by UC, and if
|GXC[k]| = 2, the two clients will receive their videos by XC with no other options. If
|GXC[k]| ≥ 3, the possibility of XC among the rest of the clients except for GXC[k][1] exists,
and there can be thus multiple options that the clients can be grouped for XC. We need
to reduce the number of XOR operations, and the number of XOR operations decreases
as the cardinalities of XC groups are even, as described in Theorem 1 and Remark 1.
The server sorts all groups in GXC in ascending order according to their cardinalities
and saves them in ĜXC. ĜXC[k̂] denotes the group with the k-th smallest cardinality, and
|ĜXC[k̂]| ≤ |ĜXC[k̂ + 1]| is thus satisfied for all k’s, 1 ≤ k ≤ |X | − 1. Then, XC groups can
be obtained by:

G̃XC[i] = ĜXC[i] \
i−1

∑
j=1

ĜXC[j], (8)

where all duplicate groups are removed and smaller XC groups are chosen instead of larger
ones when there are multiple options for XC grouping. Finally, the set of clients who can
stream a video through XC can be given as:

GXC =
|G̃XC|

∑
i=1

G̃XC[i], (9)

and the number of transmissions required for GXC is denoted by KXC and can be calcu-
lated by:

KXC = |G̃XC|. (10)

As a specific example, assume that GXC = {{1, 2, 3}, {2, 1, 3}, {3, 1, 2, 4}, {4, 3}}. Then,
two different options for making XC groups exist; A : {{1, 2}, {3, 4}}, which requires
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six XOR operations, and B : {{1, 2, 3}, {4}}, which requires eight XOR operations. Even
though the two options both require two transmissions, ĜXC is given as:

ĜXC = {{4, 3}, {1, 2, 3}, {2, 1, 3}, {3, 1, 2, 4}}, (11)

and G̃XC is calculated as:

G̃XC = {{4, 3}, {1, 2}} (12)

by (8). Thus, the option A with two XC groups {1, 2} and {3, 4} is chosen instead of the
option B by (8) due to its smaller number of XOR operations, where six is the minimum
number of XOR operations for K = 2 and N = 4, given by Theorem 1. GXC = {1, 2, 3, 4}.

Info. of

LC

MC/XC/UC

Play

Update Cache

Neural Network

Figure 2. Overall procedures of XOR coding-based streaming.

Theorem 1. For M XC groups with N clients, the minimum total number of XOR operations
required by the server and the clients is N2

M −M.

Proof. For an XC group consisting of n clients, the server requires (n− 1) XOR operations
for encoding, and each client in the XC group also requires (n− 1) XOR operations for
decoding. Thus, the total number of XOR operations required by the server and the clients
can be calculated by (n− 1) + n(n− 1) = n2 − 1. If we have M XC groups and N clients
in total and Nk denotes the cardinality of the i-th XC group, the total number of XOR
operations required by both the server and the clients can be calculated as:

O =
M

∑
i=1

(N2
i − 1) =

M

∑
i=1

N2
i −M, (13)

where ∑M
i=1 N2

i can be rewritten as ∑M
i=1 N2

i = M ∑M
i=1 N2

i
M = ME[N2

i ]. For an arbitrary
random variable X, V[X] = E[X2]− E[X]2. Thus, (13) can be rewritten as:
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O = M
(

E[N2
i ]− 1

)
= M

(
E[Ni]

2 + V[Ni]− 1
)

= M

(∑M
i=1 Ni

M

)2

+ V[Ni]− 1

 (14)

=
(∑M

i=1 Ni)
2

M
−M + MV[Ni]

=
N2

M
−M + MV[Ni],

where the third equality is valid because E[Ni] =
∑M

i=1 Ni
M . The minimum value of O is

N2

M −M, which is achieved when V[Ni] = 0 because V[Ni] is non-negative. This completes
the proof of Theorem 1.

Remark 1. For M XC groups with N clients in total, the total number of XOR operations decreases
as the variance of the cardinalities of XC groups decreases.

In this paper, we placed a higher priority on MC over XC to reduce the computational
complexity for XC grouping and XOR coding by decreasing the number of candidate clients
of XC without increasing the number of required transmissions. Finally, all the remaining
clients, given by GUC = U \ GLC \ GMC \ GXC, will receive their videos through UC. The
number of transmissions required for UC is calculated by KUC = |GUC|.

4. Proposed Cache Update Scheme Using Reinforcement Learning

In this section, we formulate a cache management problem for XOR coding-based
streaming systems and propose a new cache update scheme using reinforcement learning
to improve the efficiency of video streaming. In our problem, each client updates its cache
by replacing a content stored in Cn with rn after playing rn.

In conventional actor-critic (AC) networks, one action is only generated by actor
networks, and the action may not be thus optimal with a high probability; it is also difficult
to evaluate the value of the action generated by the actor network. In this paper, we thus
proposed the K-actor-critic (K-AC) network to overcome the disadvantage of AC networks,
which is depicted in Figure 3. The K-AC exists in each and every client and consists of an
actor network and the main value network. st and π(st) denote the input state and the
output of actor network, respectively. st for the client n, denoted by sn

t , consists of 2(C + 1)
elements and is given as:

sn
t =

{
f n
t,s(rn), f n

t,s(Cn(1)), . . . , f n
t,s(Cn(C)), · · ·

f n
t,l(rn), f n

t,l(Cn(1)), . . . , f n
t,l(Cn(C))

}
,

(15)

where f n
t,x∈{s,l}(v) denotes the view count of the video v for the client n during the last

Lx∈{s,l} video view times and f n
t,s(v) ≤ Ls, f n

t,l(v) ≤ Ll . f n
t,s(v) and f n

t,l(v) represent the
frequency of the video v for a short-term period and a long-term period, respectively;
thus, Ls < Ll . Each client updates its cache by replacing one video stored in its cache
with the requested video rn or keeps the cache as it is. Thus, at denoting an action that
each client can take is defined as at ∈ A = {0, 1, 2, . . . , C}. The video C(at) will be
replaced by rn if 1 ≤ at ≤ C. at = 0 denotes that the cache will be kept in its current
state, which leads to |A| = C + 1. The output π(st) has the same size as A. Contrary
to conventional AC networks that choose a single action, the proposed K-AC selects
the K elements with the largest value in π(st) as candidate actions, which are denoted
by ât = {âk

t |âk
t ∈ A, 1 ≤ k ≤ K}. If K = 1, the K-AC becomes a conventional AC
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network. ât generates the set of K next states ŝt+1 = {ŝk
t+1|1 ≤ k ≤ K}. The main value

network evaluates the values of ŝt and ŝt+1 by yielding V(ŝt) and V(ŝt+1), respectively,
and the final action is selected as at = âk∗

t , where k∗ = arg max
k∈{1,··· ,K}

V(ŝt+1), while the

corresponding next state is determined by st+1 = ŝk∗
t+1. We designed rewards for our neural

network in each client to minimize the number of transmissions per each client’s video
view. The rewards for each client are defined as:

rt =


1 for LC
0.5 for MC or XC
0 for UC

, (16)

where LC has the largest reward because it requires no video transmissions, MC and
XC have the second largest and the same reward because they can reduce the number
of video transmissions by sharing network resources with other clients, and UC has the
lowest reward because it cannot reduce the number of video transmissions. The number of
transmissions might be a better reward than that in (16) because our goal was to reduce
the number of transmissions. However, the proposed learning model was designed to be
trained and run in a fully distributed manner without information exchange with other
devices or the server, and it is thus impossible for each client to know the final number
of transmissions. We used a replay memory and the concept of mini batch to train our
networks by updating the parameters of the actor and main value networks, as depicted in
Figure 4. The size of the mini batch is B. Through a back propagation, the parameters of
the main value network are updated first, and those of the actor network are then updated.
The parameters of the main value network are trained by using the B random samples to
minimize the loss, which is defined as:

LV :=
1
B

B

∑
i=1

(ri
t + γ ·V′(si

t+1)−V(si
t))

2, (17)

where γ, denoting a discount factor, satisfies 0 ≤ γ ≤ 1 and V′(si
t+1) is the output of the

target value network. The target value network is used to generate the target Q-values for
computing the loss during training and to keep the network from being destabilized by
falling into feedback loops between the target and estimated Q-values. The parameters of
the target value network are fixed and periodically updated by being replaced by those of
the main value network. The parameters of the main value network, θV , are updated by
the following gradient descent method:

θV ← θV + α∇θV LV , (18)

where α denotes a learning rate. The loss function of the actor network is defined as:

LA :=
1
B

B

∑
i=1

log π(ai
t | si

t)A(st, at), (19)

where A(st, at) denotes the advantage function of the actor network and can be calculated as:

A(st, at) = rt + γ ·V′(st+1)−V(st). (20)

Finally, the parameters of the actor network θπ are also updated by the gradient ascent
method as follows:

θπ ← θπ + β∇θπ LA, (21)

where β denotes a learning rate.
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Figure 3. The proposed architecture of the K-AC.

Figure 4. Illustration of the training process of the K-AC.
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5. Numerical Results

In this section, we analyze the efficiency of the proposed cache update scheme using
the K-AC in terms of the average number of transmissions per video streaming per client,
which is defined as:

η = E
[

KMC + KXC + KUC

N

]
, (22)

and compare it to that of conventional cache update schemes for both XC and non-XC.
0 ≤ η ≤ 1, where η = 0 if all videos are transmitted through LC, while η = 1 if videos
are all transmitted through UC. In the K-AC, the actor network consists of input, hidden,
and output layers of sizes 2(C + 1), 4(C + 1), and (C + 1), respectively. The hidden layer
is fully connected with the input and output layers. The ReLU and softmax functions
are used as the activation functions for the input and hidden layers, respectively [24].
The value networks are the same as the actor network except that the output size is one.
All parameters for the actor and value networks were initialized by He Uniform [25] and
then updated iteratively by the Adam optimizer [26]. In our simulations, B and γ were set
to 10 and 0.9, respectively, and Ls and Ll were set to 10 and 100, respectively. We compared
the performance of the proposed K-AC with that of conventional cache update algorithms
such as LRU, LFU, and FIFO, where it was assumed that K = 10.

Figure 5 shows the reward that the proposed K-AC scheme earns during a training
process. p, denoting the probability that the popularity of videos changes, was set to 0.001,
and the correlation factor ρ was set to 0.5. V, N, and β, denoting the number of videos,
the number of clients, and the parameter of the Zipf distribution, were set to 100, 50, and 1,
respectively. C, denoting the size of the cache, was set to 10 or 20. It is shown that the
reward for C = 10 stabilized faster than for C = 20. More specifically, the reward for
C = 10 stabilized after about 20 iterations, whereas the reward for C = 20 stabilized after
about 40 iterations.

Figure 5. The rewards of the proposed scheme earned during a training process. p = 0.001, ρ = 0.5,
V = 100, N = 50, K = 10, and β = 1.

Figures 6–10 show the average number of required transmissions per view of the
video per client, defined in (22), for ρ, C, N, and β, respectively. According to Figure 6,
the XC video stream scheme outperformed the non-XC scheme regardless of the cache
update algorithms. The non-XC scheme denotes the conventional video streaming with
UC and MC without supporting XC. As ρ decreased, videos’ popularity changed less, and
the average number of transmissions required for each video streaming decreased for all
schemes. The proposed cache update scheme outperformed all conventional cache update
schemes regardless of the value of ρ. For ρ = 0.6, the XC video stream scheme reduced η by
about 23.2%, 23.7%, and 23%, compared to FIFO, LFU, and LRU, respectively. In addition,
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the proposed cache update scheme could reduce η by about 8.8%, compared to LRU, which
showed the best performance among the conventional schemes.
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Figure 6. Average number of required transmissions for various ρ’s. p = 0.001, V = 100, N = 50,
C = 20, K = 10, and β = 1.
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Figure 7. Average number of required transmissions for various C’s. p = 0.001, ρ = 0.5, V = 100,
N = 50, K = 10, and β = 1.
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Figure 8. Average number of required transmissions for various N’s. p = 0.001, ρ = 0.5, V = 100,
C = 20, K = 10, and β = 1.
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Figure 9. Average number of required transmissions for various V values. p = 0.001, ρ = 0.5, β = 1,
N = 50, C = 20, and K = 10.
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Figure 10. Average number of required transmissions for various β’s. p = 0.001, ρ = 0.5, V = 100,
N = 50, C = 20, and K = 10.

Figures 7 and 8 show that η decreased as C or N increased for all schemes. The
greater the C, the more the LC was because the probability that requested videos were
already cached in the clients’ cache increased. The greater the N, the more the MC or XC
was where multiple videos can be transmitted by single transmission. In addition, the
XC video streaming scheme outperformed the non-XC video streaming scheme for all
cache update schemes, and the proposed cache update scheme based on K-AC yielded
the best performance. In Figure 7, when C = 15, the XC video streaming scheme could
reduce η by about 16.5%, 16.7%, and 16.3%, compared to FIFO, LFU, and LRU, respectively,
and the proposed cache update scheme could reduce η by about 9.9% compared to LRU,
which yielded the best performance among the conventional schemes. In Figure 8, when
N = 20, the XC video streaming scheme could reduce η by about 18.6%, 15.6%, and 14.6%,
compared to FIFO, LFU, and LRU, respectively, and the proposed cache update scheme
could reduce η by about 9.7%, compared to LRU.

Figure 9 shows η for various V values. For constant C and N, the possibility of MC
and XC decreased as V increased, and η thus decreased for all schemes as V increased.
The proposed cache update scheme outperformed all conventional schemes for all V values.
Finally, Figure 10 shows that η decreased as β increased because clients were inclined to
request highly popular videos, and the probability of LC, MC, or XC also increased. For
β = 0.9, the XC video streaming scheme reduced η by about 23.1%, 23.4%, and 22.9%,
compared to FIFO, LFU, and LRU, respectively, and the proposed cache update scheme
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could reduce η by about 8%, compared to LRU, which showed the best performance among
the conventional schemes.

6. Conclusions

In this work, we investigated a cache management problem for XC video streaming
systems, where each client needs to update its cache so as to increase the probability of XC
with other clients, as well as its own hit probability, while each client’s hit probability has
been only considered in conventional video streaming systems. We formulated a cache
management problem for XC video streaming systems and investigated how to minimize
the number of XOR operations. We also proposed how to update the clients’ cache to
improve the efficiency of video streaming by decreasing the number of transmissions. Con-
trary to most existing studies assuming that all clients have the same popularity of videos
and the popularity is time invariant, our study considered that the popularity varies over
time and is differently distributed for each client. Based on these practical assumptions, we
proposed a new cache update scheme using reinforcement learning. The proposed scheme
used the K-AC network to overcome the disadvantages of conventional AC networks.
Each client can train its own K-AC network by using the local information, which does not
require any feedback or signaling, and can decide whether to update its cache. If a client
decides to update its cache, the video to be replaced by a new one is decided by the action
of the K-AC. Thus, the proposed scheme is completely decentralized. We analyzed the
performance of the proposed scheme in terms of the average number of required transmis-
sions per each video streaming per client, which was compared to that of conventional
cache update schemes such as FIFO, LFU, and LRU. Our numerical results showed that XC
video streaming outperformed non-XC video streaming, and the proposed cache update
scheme using the K-AC yielded the best performance. Specifically, when V = 100, N = 50,
C = 15, and β = 1, the ρ’s for non-XC LRU, XC LRU, and the proposed scheme were 0.58,
0.48, and 0.44, respectively. Thus, it can be concluded that the proposed scheme could
reduce the number of transmissions by 24.1% and 8.3%, compared to the non-XC LRU and
XC-LRU schemes, respectively.
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