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Neo-chemoradiotherapy (nCRT) before surgery is a standard treatment for locally
advanced esophageal cancers. However, the treatment outcome of nCRT varied with
different patients. This study aimed to identify potential biomarkers for prediction of nCRT-
response in patients with esophageal squamous cell carcinoma (ESCC). Microarray
datasets of nCRT responder and non-responder samples (access number GSE45670
and GSE59974) of patients with ESCC were downloaded from Gene Expression Omnibus
(GEO) database. The mRNA expression profiles of cancer biopsies from four ESCC
patients were analyzed before and after nCRT. Differentially expressed genes (DEGs) and
miRNAs were screened between nCRT responder and non-responder ESCC samples.
Functional enrichment analysis was conducted for these DEGs followed by construction of
protein-protein interaction (PPI) network and miRNA-mRNA regulatory network. Finally,
univariate survival analysis was performed to identify candidate biomarkers with prognostic
values in ESCC. We identified numerous DEGs and differentially expressed miRNAs from
nCRT responder group. GO and KEGG analysis showed that the dysregulated genes were
mainly involved in biological processes and pathways, including “response to stimulus”,
“cellular response to organic substance”, “regulation of signal transduction”, “AGE-RAGE
signaling pathway in diabetic complications”, and “steroid hormone biosynthesis”. After
integration of PPI network and miRNA-mRNA network analysis, we found eight genes,
TNF, AKR1C1, AKR1C2, ICAM1, GPR68, GNB4, SERPINE1 and MMP12, could be
candidate genes associated with disease progression. Univariate cox regression analysis
showed that there was no significant correlation between dysregulated miRNAs (such as
hsa-miR-34b-3p, hsa-miR-127-5p, hsa-miR-144-3p, and hsa-miR-486-5p, et al.) and
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overall survival of ESCC patients. Moreover, abnormal expression of MMP12 was
significantly correlated with pathological degree, TNM stage, lymph nodes metastasis,
and overall survival of ESCC patients (p < 0.05). Taken together, our study identified that
MMP12 might be a useful tumor biomarker and therapeutic target for ESCC.

Keywords: esophageal neoplasms, differentially expressed genes, prognosis, MMP12, neo-chemoradiotherapy

INTRODUCTION

Esophageal squamous cell carcinoma (ESCC) is a primary
histological type of esophageal cancer worldwide. In the
United States, approximately 18,440 new cases were diagnosed
and 13,100 deaths occurred in 2020 (Siegel et al., 2020). China is
one of the areas with highest incidence of esophageal cancer.
According to the cancer statistics in China, an estimate of 477,900
newly diagnosed esophagus carcinoma cases were found in
China, and 375,000 individuals died of this disease (Chen
et al., 2016). Over the past decades, the incidence of
esophageal cancer has been decreased slightly in the
United States, whereas most cases of this disease occurred in
developing countries. ESCCs in China bear more than half of
global burden (Bray et al., 2018; He et al., 2019).

Esophageal cancer has a poor prognosis when it is diagnosed at
advanced stage. The 5 years survival rate would decrease to 4%
when metastasis occurred (Shaheen et al., 2017). As for locally
advanced ESCC, neo-chemoradiotherapy (nCRT) before surgery
is the primarymanagement. However, patients always suffer from
disease recurrence after resection. Also, the outcome of nCRT
varied among patients. Patients who response to nCRT acquire
superior survival time while those with no response suffer a poor
prognosis (Berger et al., 2005). Besides, nCRT may increase
postoperative complications, and clinical parameters (TNM
classification, tumor location) could not predict response to
nCRT (Rohatgi et al., 2005; Wen et al., 2014). Therefore,
identification of novel biomarkers that could predict response
to nCRT would be beneficial for ESCC management. In addition,
it would help clinical doctors to discontinue non-effective
treatments, and thereby avoid overtreatment for non-responders.

In recent years, the development of microarray analysis and
RNA sequencing technology provided favorable information for
exploring the association of gene expression and clinical
outcomes (Meyerson et al., 2010; Ross and Cronin, 2011). In
this study, based on RNA sequencing and bioinformatics analysis,
we identified differentially expressed genes (DEGs) or
differentially expressed miRNA between nCRT responders and
non-responders in patients with ESCC. Additionally, protein-
protein interaction (PPI) network integrated with miRNA-
mRNA network were constructed to explore the candidate
genes related to disease progression. Cox regression analysis
was finally conducted to investigate the correlations between
survival times and candidate genes or miRNAs in ESCC
patients. A schematic diagram of bioinformatics analysis for
ESCC datasets were shown in Figure 1. Our study investigated
the transcriptomic expression patterns of ESCC, and identified
novel biomarkers with prognostic values that could provide a
better understanding of ESCC progression.

MATERIALS AND METHODS

Data Source and Data Processing
The gene expression profile GSE45670 (Wen et al., 2014) and
miRNA expression profile GSE59974 (Fu et al., 2016) were
downloaded from the Gene Expression Omnibus (GEO)
database. The two datasets were derived from the same clinical
samples that consist of 17 treatment non-responders and 11
responders. GSE45670 dataset were tested on platform of hg-
u133_plus_2 Affymetrix Human Genome U133 Plus 2.0 and
GSE45670 was analyzed on Agilent-038169 human miRNA
novirus v18.0 platform.

In addition, cancer biopsies were taken from four patients
before and after nCRT in Changzhou No.2 People’s Hospital, the
Affiliated Hospital of Nanjing Medical University. This study was
approved by the Ethical Research Committee of hospital.
Transcriptomics data (under access number GSE137867,
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?
acc�GSE137867) were obtained by RNA sequencing technology
and mRNA expression was analyzed for these clinical specimens.
GSE137867 were considered as validation datasets. DEGs were
screened from the three datasets and overlapped genes were
considered as candidate genes related to ESCC.

Data normalization was performed for these microarray data.
We extracted the gene expression values from series matrix files,
and converted corresponding probe ID into gene symbols. After
removal of abnormal information, we selected the expressed
values from ESCC responders or non-responders to conduct
Principal Components Analysis (PCA).

PCA Analysis and DEGs Screening
PCA is a multivariate technique that converted multiple
correlated variables into cohort of values linearly, and
uncorrelated variables represented principal components. It
has been extensively used to explore high-dimensional data,
such as genomic and transcriptomic expression data (Ringnér,
2008; Ellsworth et al., 2017). In this study, we used PCA method
to investigate distribution of samples between the experimental
group and control groups. After detection and removal of
abnormal samples, we finally obtained a series of specimen
with high similarity.

The miRNA matrix and mRNA expression profiles were
normalized based on quantile normalization method. Limma
package (Ritchie et al., 2015) was used to screen DEGs and
miRNAs between experimental group and normal control
group by setting thresholds as p < 0.1 and fold change
>1.5 (|log2FC| > 0.585). Moreover, with the same cutoff
criteria, we screened the overlapped DEGs of GSE137867
and GEO datasets to conduct further analysis.
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Functional Enrichment Analysis for DEGs
Associated with ESCC
Gene Ontology (GO) (Ashburner et al., 2000) and Kyoto
Encyclopedia of Genes and Genomes (KEGG) (Ogata et al.,
2000) signaling pathway enrichment analysis were conducted
for DEGs. Using fisher’s exact test, we screened a cohort of
biological processes and pathway categories enriched by DEGs.
p < 0.05 was considered as significant difference, and the column
with smaller p value represented a closer association between
DEGs and pathway categories.

Prediction of miRNA-mRNA Interactions
We further predicted the miRNA-mRNA interactions by
examining various databases [TargetScan (Agarwal et al.,
2015), miRTarBase (Chih-Hung et al., 2017), miRDB (Nathan
and Wang, 2014) and miRanda (Doron et al., 2008)]. As for the
upregulated miRNAs, we explored their correlations with down-
regulated target genes. Subsequently, we focused on the
downregulated miRNAs, and investigated their correlations
with upregulated target genes in nCRT responders. Cytoscape
software was used to visualize the relationships of differentially
expressed miRNAs and mRNAs.

Construction of Regulatory Network
The online tool STRING (https://string-db.org/) (Christian et al.,
2003) was used to analyze the interactions of proteins. Interaction

score >0.7 (high confidence) was set as the cut-off criteria. After
screening the correlation pairs, Cytoscape (Shannon et al., 2003)
was used to analyze the topological properties (connectivity
degree, closeness degree and betweenness degree) of PPI
network. The proteins with high scores were considered as
hub factors in network and might be key candidate genes in
disease progression.

In addition, we integrated the PPI network and miRNA-
mRNA regulatory network by using Cytoscape software to
predict the candidate miRNAs involved in ESCC progression.

Survival Analysis
Survival package (Cox, 1972) in R software was used to
construct cox regression model. Univariate cox regression
analysis and survival analysis were performed to identify
crucial genes and miRNAs related to ESCC survival based on
the TCGA datasets.

RESULTS

Screening DEGs From nCRT Responders of
ESCCs
PCA analysis and correlation analysis on samples were conducted
for mRNA expression dataset GSE45670. Under the threshold of
p < 0.1 and fold change >1.5 (|log2FC| > 0.585), we screened a

FIGURE 1 | A schematic diagram of bioinformatics analysis for ESCC datasets.
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TABLE 1 | Twenty five DEGs were identified from two mRNA profiles (GSE45670 dataset and GSE137867 dataset), including 17 upregulated genes and 8 down-regulated
genes in the ESCC responder groups compared with control non-responder groups.

DEGs Gene names

Up-regulated ANO4, BMP2, DTNB, GADD45A, GAS1, GNB4, GPR68, ICAM1, IL24, MAN1A1, MMP12, NRBF2, SERPINE1, SLC31A2,
SNX10, TNF, TNNT1

Down-regulated AKR1C1, AKR1C2, PCTP, PER2, RAB40B, TLE2, ZDHHC11, ZNF703

TABLE 2 | Fifety nine differential expressedmiRNAs were identified frommiRNA profiles (GSE59974 dataset), including 44 upregulated genes and 15 down-regulated genes
in the ESCC responder groups compared with control groups.

miRNAs Gene names

Up-regulated hsa-miR-106b-3p, hsa-miR-122-5p, hsa-miR-1252, hsa-miR-127-5p, hsa-miR-1295a, hsa-miR-1343, hsa-miR-137, hsa-
miR-155-3p, hsa-miR-18a-3p, hsa-miR-195-3p, hsa-miR-196a-5p, hsa-miR-206, hsa-miR-222-5p, hsa-miR-299-3p,
hsa-miR-3144-5p, hsa-miR-323b-5p, hsa-miR-330-3p, hsa-miR-34b-3p, hsa-miR-3617-5p, hsa-miR-363-5p, hsa-miR-
373-3p, hsa-miR-3975, hsa-miR-3978, hsa-miR-424-5p, hsa-miR-4448, hsa-miR-4528, hsa-miR-4645-3p, hsa-miR-
4670-5p, hsa-miR-4704-5p, hsa-miR-4709-3p, hsa-miR-4715-5p, hsa-miR-4717-5p, hsa-miR-4773, hsa-miR-4774-5p,
hsa-miR-4789-5p, hsa-miR-4798-5p, hsa-miR-503-5p, hsa-miR-504, hsa-miR-5189, hsa-miR-539-3p, hsa-miR-5579-
3p, hsa-miR-637, hsa-miR-7-5p, hsa-miR-924

Down-regulated hsa-miR-138-1-3p, hsa-miR-144-3p, hsa-miR-144-5p, hsa-miR-192-3p, hsa-miR-3145-5p, hsa-miR-3972, hsa-miR-
486-5p, hsa-miR-489, hsa-miR-499a-5p, hsa-miR-550b-2-5p, hsa-miR-551b-3p, hsa-miR-5585-5p, hsa-miR-5690, hsa-
miR-640, hsa-miR-675-3p

FIGURE 2 | Screening the differential expression genes (DEGs) in ESCC-nCRT responder and non-responder samples. (A) Volcano plot visualized the distribution
of DEGs. Red dots represented up-regulated genes and blue dots were down-regulated genes. The overlapped genes were named in figures represented the up-
regulated or down-regulated genes in both datasets. (B) Bidirectional clustering analysis of DEG in nCRT responder and non-responder samples. These genes are
overlapped genes dysregulated in both datasets. The color changed from blue to red represented the expression level from low to high.
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FIGURE 3 | Volcano plot and heat map visualized the differentially expressedmiRNA screening between nCRT responders and non-responders. (A, B) Scatter plot
and Volcano plot represented the differentially expressed miRNAs found by correlation analysis of ESCC samples. (C) Clustering analysis of differentially expressed
miRNAs between nCRT responder and non-responder samples. The color changed from blue to red represented the expression level from low to high.

TABLE 3 | Gene Ontology analysis of differentially expressed genes associated with ESCC (Top ten biological process terms).

Category Description Count p value FDR

BP GO:0071396∼cellular_response_to_lipid 6 2.80e−06 0.001617666
BP GO:0050896∼response_to_stimulus 18 2.84e−06 0.001617666
BP GO:0071395∼cellular_response_to_jasmonic_acid_stimulus 2 3.63e−06 0.001617666
BP GO:0023051∼regulation_of_signaling 12 6.06e−06 0.001658521
BP GO:0010033∼response_to_organic_substance 11 7.33e−06 0.001658521
BP GO:0071310∼cellular_response_to_organic_substance 10 7.44e−06 0.001658521
BP GO:0009966∼regulation_of_signal_transduction 11 1.32e−05 0.002048231
BP GO:0071222∼cellular_response_to_lipopolysaccharide 4 1.46e−05 0.002048231
BP GO:0030155∼regulation_of_cell_adhesion 6 1.46−-05 0.002048231
BP GO:2000351∼regulation_of_endothelial_cell_apoptotic_process 3 1.54e−05 0.002048231

Category stands for GO terms and BP refers to biological process.
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total of 1311 DEGs from nCRT responders and non-responders.
We found 672 upregulated and 639 down-regulated genes. The
same cutoff criteria were applied for RNA-Seq profile
GSE137867, and numerous DEGs were screened in specimens
before and after nCRT.

Moreover, we integrated the overlappedDEGs betweenRNA-Seq
profile and GEO datasets. Of these gene overlaps, 17 genes were both
upregulated in two datasets while eight genes were both
downregulated in two datasets (Table 1). Volcano plot and
bidirectional clustering analysis were performed for these DEGs,
and results were shown in Figure 2. Furthermore, the differentially
expressed miRNAs were identified by setting the thresholds of P <
0.1 and fold change >1.5 (|log2FC| > 0.585). Scatter plot and volcano
plot were used to visualize the results. Finally, we identified 44
upregulated miRNAs and 15 downregulated miRNAs from the
nCRT responders compared with non-responders. The
differentially expressed miRNAs are listed in Table 2 and
heatmaps are visualized in Figure 3.

GO and KEGG Analysis for These Candidate
Genes
The GO analysis results revealed that these dysregulated DEGs were
mainly associated with several biological processes (Table 3), such as
“response to stimulus” (count � 18, FDR � 0.001617666),
“regulation of signaling” (count � 12, FDR � 0.001658521),
“response to organic substance” (count � 11, FDR �
0.001658521), “cellular response to organic substance” (count �
11, FDR � 0.001658521), and “regulation of signal transduction”
(count � 11, FDR � 0.002048231). The KEGG pathways (Table 4)
enriched by these genes were “AGE-RAGE signaling pathway in
diabetic complications” (count � 3, p � 5.23e−04), “Epstein-Barr
virus infection” (count � 3, p � 3.91e−03), “steroid hormone
biosynthesis” (count � 2, p � 3.91e−03), “African
trypanosomiasis” (count � 2, p � 1.63e−03) and “malaria” (count �
2, p � 2.85e−03).

PPI Network Analysis and Prediction of
miRNA-Gene Interactions
By predicting the target genes of the upregulated miRNAs and
downregulated miRNAs, we built two miRNA-target networks

for upregulated miRNAs (Figure 4A) and downregulated
miRNAs (Figure 4B). In the regulatory networks, several
molecules were identified as hub genes for high degree of
connectivity, including PER2 (degree � 6), PCTP (degree � 6),
and hsa-miR-486-5p (degree � 6).

Using the online tool STRING and Cytoscape software, we
constructed a PPI network for DEGs (Table 5; Figure 4C)
and obtained five interaction pairs among eight genes,
including tumor necrosis factor (TNF), Aldo-keto
reductase family one member C1 (AKR1C1), AKR1C2,
intercellular adhesion molecule 1 (ICAM1), ovarian cancer
G-protein coupled receptor 1 (GPR68), guanine nucleotide-
binding protein subunit beta-4 (GNB4), plasminogen
activator inhibitor-1 (SERPINE1) and matrix
metalloproteinase-12 (MMP12).

By integrating PPI network and miRNA-mRNA network, we
finally constructed a regulatory network that consisted with
miRNAs and genes. Among these genes, PER2, PCTP, TNF
and hsa-miR-486-5p exhibited higher interactions than other
genes. Thus, these genes were identified as hub genes related to
ESCC progression.

Identifying Crucial Genes with Prognostic
Values in nCRT Responders
We conducted a survival analysis on independent cohort of
patients (the data were derived from TCGA database) to
analyze the prognostic significance of 8 genes in ESCC
patients. The analyzed signatures included genes TNF,
AKR1C1, AKR1C2, and ICAM1, et al. (Figure 5) The patients
were divided into high expression group and low expression
group according to the median of gene expression. Survival
probability was compared between two groups to predict
candidate genes with prognostic value. The results revealed
that patients with high level of MMP-12 exhibited poorer
prognosis than patients in low expression groups (hazardous
ratio for survival probability, 1.737; p < 0.05).

Moreover, univariate cox regression analysis and survival
analysis were performed for these differentially expressed
miRNAs, such as hsa-miR-34b-3p, hsa-miR-127-5p, hsa-
miR-144-3p, and hsa-miR-486-5p et al. However, the results
revealed that there was no significant correlation between any

TABLE 4 | KEGG pathway analysis of differentially expressed genes in ESCC.

Category Description Count p value FDR Genes

KEGG hsa04933∼AGE-RAGE_signaling_pathway_in_diabetic_complications
Homo_sapiens_(human)

3 5.23e−04 0.058021807 ICAM1/
SERPINE1/TNF

KEGG hsa05143∼African_trypanosomiasis Homo_sapiens_(human) 2 1.63e−03 0.08638883 ICAM1/TNF
KEGG hsa05144∼Malaria Homo_sapiens_(human) 2 2.85e−03 0.08638883 ICAM1/TNF
KEGG hsa05169∼Epstein-Barr_virus_infection Homo_sapiens_(human) 3 3.91e−03 0.08638883 GADD45A/

ICAM1/TNF
KEGG hsa00140∼Steroid_hormone_biosynthesis Homo_sapiens_(human) 2 4.24e−03 0.08638883 AKR1C1/AKR1C2
KEGG hsa05217∼Basal_cell_carcinoma Homo_sapiens_(human) 2 4.67e−03 0.08638883 BMP2/GADD45A
KEGG hsa04115∼p53_signaling_pathway Homo_sapiens_(human) 2 6.06e−03 0.095935394 GADD45A/SERPINE1
KEGG hsa05323∼Rheumatoid_arthritis Homo_sapiens_(human) 2 9.54e−03 0.095935394 ICAM1/TNF
KEGG hsa04350∼TGF-beta_signaling_pathway Homo_sapiens_(human) 2 0.01 0.095935394 BMP2/TNF
KEGG hsa04713∼Circadian_entrainment Homo_sapiens_(human) 2 0.01 0.095935394 GNB4/PER2
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dysregulated miRNAs and prognosis of ESCC patients
(Figure 6).

DISCUSSION

In this study, we attempted to identify potential tumor
biomarkers for prediction of nCRT-response in patients with
ESCC. After integrating overlapped genes between RNA
sequencing dataset and GEO datasets, we identified 17 genes

that were upregulated, and eight genes that were downregulated
in these two datasets. After verification of the data set samples
used in the project analysis and the actual number of samples
included in the analysis, no samples were excluded from the
project, and all samples were analyzed. Functional enrichment
analysis showed that dysregulated genes were mainly involved in
“response to stimulus”, “regulation of signal transduction”,
“AGE-RAGE signaling pathway in diabetic complications”,
“steroid hormone biosynthesis”. According to analysis of PPI
network and miRNA-mRNA network, we identified eight

FIGURE 4 | Identification of candidate genes based on protein-protein interaction (PPI) network analysis andmiRNA-mRNA regulatory network construction. (A, B)
Regulatory network visualized the correlation of dysregulated miRNA and mRNAs in ESCC samples. The circles represent mRNA while diamonds refer to miRNAs. Red
mean to up-regulated genes and blue refer to down-regulated gene. (C) PPI network analysis for these differentially expressed genes. A red dot represents an up-
regulated gene and a blue dot is a down-regulated gene. (D) The miRNA-mRNA regulatory network analysis to identify crucial genes related to ESCC progression.
Red colors represent up-regulated while blue colors refer to down-regulated genes. Diamond and circles represent miRNA and mRNA.
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candidate genes, TNF, AKR1C1, AKR1C2, ICAM1, GPR68,
GNB4, SERPINE1 and MMP12, that were associated with
progression of ESCC progression. Finally, univariate regression
analysis in ESCC patients revealed that high expression of
MMP12 was significantly correlated to poor prognosis.

Previous studies have explored the difference of gene
expression between nCRT responder and non-responder

samples for prediction of nCRT response in esophageal cancer.
Maher et al. (2009) identified eight genes that were differentially
expressed in patients responded to treatment. Based on analysis
using predictive model, five genes were able to predict response to
nCRT with high accuracy (95%) in a large proportion of
esophageal cancer patients. In a recent study (Chen et al.,
2015), researchers identified nine dysregulated genes between
treatment responders and non-responders. Functional
enrichment analysis showed that four of the genes, miR-422,
CDK4, Cyclin D2, and E2F3, were mainly related to G1/S
checkpoint which could regulate tumor sensitivity to nCRT.
Els Visser et al. (2017) assessed the association of gene
expression and clinical outcome in 22 studies of esophageal
cancer, and they found a large heterogeneity in gene
expression, response to nCRT, and lymph node metastasis.

Our results demonstrated that eight genes, including TNF,
AKR1C1, AKR1C2, ICAM1, GPR68, GNB4, SERPINE1 and
MMP12, were candidate genes associated with ESCC
progression. AKR1C1/C2 encodes enzymes belong to aldo/keto
reductase superfamily. These enzymes are crucial in drug
resistance of cancer cells and related to metabolism of
polycyclic aromatic hydrocarbons (Selga et al., 2008). AKR1C1

TABLE 5 | Protein-protein interaction network analysis for differential expressed
genes in ESCC samples based on connectivity degrees evaluation.

Gene Degree

TNF 3
AKR1C1 1
AKR1C2 1
ICAM1 1
GPR68 1
GNB4 1
SERPINE1 1
MMP12 1

Only AKR1C1 and AKR1C2 were down-regulated genes while other genes were
upregulated.

FIGURE 5 | Kaplan–Meier survival curves of candidate genes in ESCC, including TNF, AKR1C1, ICAM1, MMP12, et al. Red line represents high expression of
crucial genes while green line refers to low expression genes. The X axis represent overall survival time (day), and Y axis means survival probability.
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and AKR1C2 share a high degree of homology in AKR1C
subfamily and were different in seven amino acids. Previous
study showed that AKR1C1/C2 were associated with EDHB-
induced inhibition of esophageal cancer cell proliferation and this
might promote treatment of esophageal cancer using EDHB, a
substrate of the enzymes (Li et al., 2016).

In the miRNA-mRNA regulatory network, we identified PER2,
PCTP, TNF and hsa-miR-486-5p as hub genes related to disease
progression. MiRNA have been confirmed to have a major role in
cancer development by regulating the expression of oncogenes or
cancer suppressor genes. Aberrant expression of special miRNAs have
been detected in ESCC patients such as upregulated of miR-10b (Tian
et al., 2010), miR-21 (Mathe et al., 2009), miR-26a (Shao et al., 2016)
and downregulated miR-125b, miR-203, and miR-205 (Matsushima
et al., 2011; Hu et al., 2016; Fan et al., 2018). A recent study showed
that downregulation of miR-486-5p was reported in esophageal
carcinoma samples and it might function as a tumor suppressor
gene in disease metastasis via regulating cellular migration (Yi et al.,
2016). By tissue microarrays analysis of 185 ESCCs samples, Ren et al.
also found that decreasedmiR-486-5p was identified in 66.2% of cases

and abnormal expression of miR-486-5p were related to prognosis of
esophageal carcinoma (Ren et al., 2016). Our results predicted down-
regulatedmiR-486-5p, interact with target gene ICAM1 played critical
roles in ESCC progression. ICAM1 or CD54 is a 90 kDa glycosylated
transmembrane protein highly expressed on endothelial cells and
mesenchymal stem cells. It plays major roles in cell metastasis,
proliferation and multiple cellular immune response. Dysregulation
of ICAM1 has been confirmed in liver cancer and ESCC stem cells
(Liu et al., 2013; Tsai et al., 2015). ICAM1 promotes epithelial-to-
mesenchymal transition by regulating metastasis-related genes in
ESCC cells. ICAM1 was identified as a target gene of lncRNA-
ECM and involved in development and progression of ESCC (Yao
et al., 2018). However, the role of ICAM1 and miR-486-5p remains
unclear, especially the interaction of the two molecules. A previous
study reported that down-regulation of miR-486-5p could suppress
tumor metastasis by regulating metastatic mediator of ICAM-1 in
breast cancer (Abdallah et al., 2017). It is speculated that ICAM-1
might be regulated by miR-486-5p and played a crucial role in
development and metastasis of ESCC. Therefore, inhibition of
ICAM-1 might be a potential strategy for ESCC treatment.

FIGURE 6 | Univariate cox regression analysis and survival analysis for differentially expressed miRNAs in ESCC responder samples, including hsa-miR-34b-3p,
hsa-miR-127-5p, hsa-miR-144-3p, etc. The X axis represent overall survival time (month), and Y axis means survival probability. p < 0.05 represent a significant
difference.

Frontiers in Pharmacology | www.frontiersin.org April 2021 | Volume 12 | Article 6269729

Wang et al. Identify Biomarkers in ESCC

https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles


In addition to hsa-miR-486-5p, survival analysis was
performed for several other differentially expressed miRNAs,
such as hsa-miR-34b-3p, hsa-miR-127-5p, and hsa-miR-144-
3p, et al. in tumor samples. However, there was no significant
correlation between any dysregulated miRNAs and prognosis of
ESCC patients. According to literature, miR-127 was
downregulated in several types of cancers, including gastric
cancer (Guo et al., 2013), glioblastoma (Jiang et al., 2014), and
hepatocellular carcinoma (Huan et al., 2016). In ESCC patients,
Gao et al. revealed that miR-127 acted as a tumor suppressor in
tumors by regulating oncogene Formin-like 3 (FMNL3) (Gao
et al., 2016). In another study, seven serum miRNAs were
identified as ESCC biomarkers, including miR-127-3p (Zhang
et al., 2010). Also, tissue or serum miR-144 expression were
evaluated in gastric cancer and low miR-144 expression was
found to predict a poor prognosis in gastrointestinal cancer
(Liu et al., 2017). Moreover, miRNA-34b played an oncogenic
role in ESCC development, the polymorphisms of rs4938723/pri-
miR-34b/c were associated with ESCC susceptibility based an
analysis on a large number of Chinese population (Harata
et al., 2010; Zhang et al., 2014). Thus, the potential role of these
miRNAs in response to nCRT in ESCC warrants further
studied.

Protein of MMP-12 is known as human macrophage
metalloelastase (HME) or macrophage elastase (ME), and belongs
to the MMPs family. MMP12 is associated with elastin degradation
and macrophage migration in various diseases, such as chronic
obstructive pulmonary disease, skin diseases and cancers (Kerkela
et al., 2000; Hunninghake et al., 2009). However, the function of
MMP12 in tumors is controversial. Aberrant expression of MMP12
was reported in several types of cancers, including hepatocellular
carcinoma (He et al., 2018), lung cancer (Roman, 2017), colon cancer
(Klupp et al., 2016) and nasopharyngeal carcinoma (Chung et al.,
2014). Overexpression of HME/MMP12 mRNA in patients with
colorectal carcinoma exhibited a significantly better survival
outcome compared with patients with normal HME/MMP12
mRNA expression (Yang et al., 2001). Cheng et al. observed a
high level of MMP12/HME protein in patients with gastric
carcinoma, and overexpression of MMP12 represented a better
survival rate (Cheng et al., 2010). The anti-tumorigenic effect of
MMP12 might be due to the generation of angiostatin, which is
induced byMMP12 and could prevent tumor angiogenesis. However,
in other types of cancers, upregulated MMP12 were reported to
involve in short survival times.When grouping samples, the analysis is
based on the average gene expression to distinguish high and low
expression, so the sample size of high and low expression is different.
The longest survival time of high expression group is around
2000 days, which is also consistent with the survival trend of
grouping according to the median. To our knowledge, the
potential role of MMP12 in ESCC remains uncertain. A recent
study showed that overexpression of MMP12 was identified in
cohorts of resectable tumor tissues compared with normal
squamous epithelium, and overexpression of MMP12 was
correlated with poor overall survival in ESCCs (Han et al., 2017).
Consistent with the previous study, our results also demonstrated that
overexpression of MMP12 was correlated with clinical stage and poor
survival outcomes by cox regression analysis. In miRNA-mRNA

regulatory network, MMP12 interacting with TNF was identified
as hub genes related to disease progression. A previous study have
reported that the expression and secretion of MMP-12 can be
regulated by IL-1β and TNF-α in human airway smooth
muscle cells, and thereby participated in diseases of the
airway, such as chronic asthma or chronic obstructive
pulmonary diseases (COPD) (Xie et al., 2005). Yu et al.
showed that TNFα-activated mesenchymal stromal cells
can recruit CXCR2+ neutrophils to tumor
microenvironment, resulting in upregulation of MMP12
and other metastasis-related genes in tumor cells, such as
MMP13 and TGFβ, that promoted breast cancer metastasis
(Yu et al., 2017). However, there is few study on the
interactions of MMP12 and TNFs in cancer development.
Our findings suggested that MMP12 might interact with
TNFs and play a role in ESCC progression.

There were some limitations in our study. Experimental validation
should be conducted to identify the exact biological behaviors of
candidate DEGs or miRNAs in ESCC development. Meanwhile, the
number of ESCC specimen was limited. Further validation in larger
cohorts is necessary to investigate the disease predictive value of
these genes.

CONCLUSION

In conclusion, we identified eight genes, including TNF,
AKR1C1, AKR1C2, ICAM1, GPR68, GNB4, SERPINE1, and
MMP12, as candidate genes by performing integrative analysis
on gene expression profiles of microarray datasets. We found
that abnormal expression of MMP12 was significantly
correlated with pathological degree, TNM stage, lymph
nodes metastasis, survival time of ESCC patients. Further
basic experiments and large-scale multi-center clinical
research studies are required to validate our results since
our study was conducted based on data analysis.
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