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Optical Chirality of Time-Harmonic 
Wavefields for Classification of 
Scatterers
Philipp Gutsche   1,2 & Manuel Nieto-Vesperinas3

We derive expressions for the scattering, extinction and conversion of the chirality of monochromatic 
light scattered by bodies which are characterized by a T-matrix. In analogy to the conditions obtained 
from the conservation of energy, these quantities enable the classification of arbitrary scattering 
objects due to their full, i.e. either chiral or achiral, electromagnetic response. To this end, we put 
forward and determine the concepts of duality and breaking of duality symmetry, anti-duality, helicity 
variation, helicity annhiliation and the breaking of helicity annihilation. Different classes, such as chiral 
and dual scatterers, are illustrated in this analysis with model examples of spherical and non-spherical 
shape. As for spheres, these concepts are analysed by considering non-Rayleigh dipolar dielectric 
particles of high refractive index, which, having a strong magnetic response to the incident wavefield, 
offer an excellent laboratory to test and interpret such changes in the chirality of the illumination. In 
addition, comparisons with existing experimental data are made.

Progress in designing spatially structured electromagnetic wavefields1 is giving rise to an increasing interest 
in electromagnetic waves with twists of their polarization and wavefronts, i.e. with spin and orbital angular 
momenta2–4. This complex shaped light is receiving substantial attention because of its potential for probing 
light-matter interactions, with additional information contents like in new circular dichroism (CD) techniques 
in chiroptical spectroscopy5,6 and spin-orbit phenomena7–10, including Hall effects11,12. Additionally, such fields 
with angular momentum are of potential importance as communication vehicles with larger numbers of degrees 
of freedom13–15.

Considering light as a probe, the relationship between its chirality and that of matter is of great importance in 
the understanding of their mutual interactions16,17. Related magnetoelectric effects associated with the breaking 
of dual, P- and T-symmetries have been studied18. However, procedures that enhance energy transfer (e.g. Förster 
resonance energy transfer, FRET) between molecules19 and CD measurements are often hindered by very weak 
signals. The sensitivity of such experiments is enhanced by increasing the helicity of the illuminating field20,21, 
using either particles with plasmon resonances22–25 or magneto-dielectric particles26, or by means of near-field 
hot spots between plasmonic nanoparticles on tailoring the incident polarization27. Further strategies for strong 
chiroptical effects include thermally-controlled chirality in hybrid THz metamaterials28 and enhancing the inter-
ference of electric and magnetic dipoles of the excited molecule29.

In recent work, we established consequences of the continuity equation that governs the conservation of elec-
tromagnetic chirality of light and other electromagnetic waves30–32. In this way, we introduced an optical theorem 
which describes the extinction of helicity of time-harmonic wavefields on scattering and absorption by arbitrary 
scatterers33 and that shows the connections between the chirality of the illuminating wave and that of the scatter-
ing object. This yields a unified formulation of CD17,34 and enables the introduction of a chirality enhancement 
factor34,35 which is the chiral analogue of the Purcell factor for the emitted energy from nanostructures in inho-
mogeneous environments. In addition, the continuity equation of chirality conservation was extended to twisted 
fields near nanostructures, as well as to arbitrary configurations36,37. We emphasize that the optical chirality of 
monochromatic, i.e. time-harmonic, fields addressed in this work is equivalent to their helicity17,32. Both scalars 
differ only by a factor which is the square of the wavenumber33. Since the former quantity has been extensively 
used in the literature after Ref.20, we employ both terms interchangeably.
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In this paper, we start from these concepts to classify the optical response of nanoparticles to monochromatic 
wavefields. These isolated scatterers are well described by their T-matrix38. In analogy, and complementary, to the 
T-matrix based standard classification of scatterers into lossless and lossy particles39, we now propose an analy-
sis stemming from the variation of helicity of chiral illuminating fields, which characterizes the major changes 
in the helicity of the incident wave with respect to that of the scattered field. To this end, we first establish the 
chiral quantities for this general formulation, and develop a matrix-based formalism for the illumination with 
light of well-defined helicity40. Then we put forward scalars which provide insight into the variation of incident 
circular polarization, including breakings of duality, anti-duality, annihilation of helicity, as well as the helicity 
variation. These concepts allow us to establish the following three classes of scattering bodies: helicity-keeping 
and helicity-flipping scatterers, which are weaker forms of dual and anti-dual bodies, respectively. The third class 
which we introduce is that of helicity-annihilating particles.

Our findings are first illustrated by numerical studies of spherical objects described by Mie theory. We thus 
start by addressing a magneto-dielectric, dipolar in the broad sense34 (i.e. non-Rayleigh) silicon nanoparticle, 
as well as an isotropic chiral one built from it. As we shall show, the existence of a strongly induced magnetic 
dipole, in addition to the usual electric one, confers unique characteristics to this kind of scatterer as regards the 
rich variety of effects that it causes in the incident field chirality. Phenomena that, in turn, constitute signatures 
of the body magnetodielectric properties. Finally, the chiroptical behaviour of anisotropic particles is discussed 
with these novel quantities, studying both an achiral ellipsoidal-shaped body and a gold nanoparticle which was 
experimentally investigated before41.

Results
T-Matrix Formalism.  The electromagnetic response of a scattering object to an external illumination in an 
extinction experiment, i.e. scattering plus absorption or conversion, can be described by a matrix T which gives 
the relation of the incident and scattered fields, i and s respectively38: T · i = s.

For isolated scatterers, vector spherical harmonics (VSHs) M(l) and N(l) (l = 1, 3) are a suitable basis. VSHs are 
rigorous solutions of Maxwell’s equations and there are two distinct classes. In one class are the incident fields (p, q), 
the other class (a, b) pertains to the scattered fields which obey the radiation condition. Accordingly, the incident 
electric inc and magnetic inc  time-harmonic fields are given by42 [Sec. 9.7]
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The index m indicates the multipole order and it is associated to the eigenvalue m(m + 1) of the squared orbital 
angular momentum operator L2 in the spherical harmonic basis Ymn(θ, φ)42 [Sec. 9.7] (θ and φ being the polar and 
azimuthal angles of the position vector x). The series above will be truncated at an order M in the following cal-
culations. The index | | <n m is related to the azimuthal behaviour of the VSHs. The VSHs Nmn

(3)  and Mmn
(3)  are pro-

portional to the electric and magnetic outgoing multipolar fields, respectively. On the other hand, the VSHs Nmn
(1)  

and Mmn
(1)  of the source-free incident wave are proportional to the electric and magnetic multipolar fields with 

both outgoing and incoming components43. Because of this, (1) and (2) represent the incident and scattered fields 
in the parity basis, namely that of eigenmodes of electric and magnetic nature.

In matrix notation, the coefficients of the series expansions (1) and (2) are related to each other through the 
T-matrix38,44:
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where T has been subdivided into electric Tee, magnetic Tmm and cross electric-magnetic Tem, Tme matrices.
The scattering solution for isotropic spherical particles with relative permittivity ε and relative permeability μ 

are given analytically45. Furthermore, if the sphere is optically active, the refractive indices differ for right and left 
circularly polarized illumination, being nR and nL, respectively. Using the achiral refractive index εμ=n  and 
assuming that particle is reciprocal, its optical behaviour is described with the Pasteur, or chirality, parameter 
κ ∈ [−1, 1]46 [Eq. (2.85)] as nR = n(1 + κ) and n = n(1 − κ).

For a geometrically isotropic sphere, the respective submatrices of the T-matrix in (3) are diagonal. In the case 
of reciprocal materials, we have additionally Tem = Tme. The main diagonal elements of Tee, Tmm and Tem are given 
in the Methods section.

Energy Conservation.  Assuming the scatterer is embedded in a lossless medium, the conservation of energy 
predicts a scattered Wsca, extinction Wext and absorption Wabs of energy related by Wext = Wsca + Wabs. In the VSH 
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basis, these quantitites are reduced to the following expressions38 [Eq. (5.18a,b)]. Note that our notation for the 
role of (p, q) and (a, b) is interchanged with respect to that of Ref.38, using instead that of Ref.47. For the sake of 
brevity, we henceforth omit the variation ranges of the indices m and n in the series representations and obtain
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where H denotes the Hermitian adjoint, i.e. matrix transposition and complex conjugation, and ω=k n c/s 0 is the 
wavenumber, with ns being the refractive index of the embedding medium. Since we use normalized VSHs, here 
and in the following we drop the terms | | = | | = V mN M 1( / )mn mn

2 2 2. Taking this unity factor and its dimension 
into account, the unit of the integrated energy fluxes Wsca and Wext is watt, as expected. Eqs. (4) and (5) may be 
written as
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The quadratic matrices sca and ext have dimension 2M(M + 2) for multipole orders m = 1, ..., M. From the 
conservation of energy, the following conditions apply39 [Eq. (10)]

 =Lossless scatterer: , (8)ext sca

 −Lossy scatterer: ( ) is HPD, (9)ext sca

where HPD means Hermitian positive definite. Note that both sca and ext are Hermitian by construction. 
These general matrices provide the illumination-independent information on scattering and extinction of energy 
by an isolated scatterer whose optical response is described by its T-matrix. Eq. (6) indicates that multiplying sca 
on the left and right with the vector of coefficients (p, q) of the incident light gives the scalar scattered energy Wsca, 
for the specific illumination with (p, q). The same holds for the matrix ext and the energy Wext extinguished from 
the incident field [cf. Eq. (7)] as well as for the matrices sca and ext, which represent the scattered and extin-
guished optical chirality and are introduced in (12) and (13) below.

Chirality Conservation.  The conservation law of optical chirality33,36 states that the scattered chirality Xsca and 
the extinguished chirality (or chirality extinction) Xext, as well as the converted chirality (or chirality conversion) 
Xconv are related by Xext = Xsca + Xconv. Note that as shown in Ref.36 Xconv is a field chirality that may be either 
absorbed or generated on scattering of the incident wave by the body. This is why it is named chirality conversion.

The optical chirality density in the near-field is proportional to the excitation rate of chiral molecules20. Here, 
we study the integrated optical chirality flux density yielding extinction Xext and scattered Xsca chirality, as well 
as its conversion Xconv. The scattered optical chirality flux density is proportional to the difference of the circular 
polarization components of the scattered field at a specific point in space, thus being the third Stokes parameter. 
Its integral, the scattered chirality Xsca, is the angular average of the differential circular polarization of scattering. 
That is, Xsca = 0 both for locally achiral light (e.g. linearly polarized plane waves), as well as for light sources which 
emit equal parts of right and left circular polarization in different directions (e.g. circularly polarized electric 
dipoles).

In order to classify the chiroptical response of isolated scatterers, we henceforth establish these quantities in 
the VSH basis:
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Incident Light of Well-Defined Helicity.  Of particular interest are wavefields of well-defined helicity48, i.e. those 
whose plane wave components31,34 all have the same helicity handedness of circular polarization with respect to 
their wavevector. In the following, we discuss the helicity of the incident light which is given by the VSH coeffi-
cients (p, q) in (1).

The transformation40,49,50:

=
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2
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changes the representation (1) of the incident wavefield in the parity basis to the helicity basis in which they have 
positive [sign + in (14)] or negative [sign − in (14)] well-defined helicity.

In this framework, the conditions for fields of well-defined helicity may be straightforwardly derived from the 
relation of the integrated energy and chirality introduced in the previous section. The incident energy is 

= | | + | |k ZW p q2 2
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2 2 [cf. (4) replacing (a, b) by (p, q)], whereas the incident chirality is = ⋅⁎kZX p q2 2Re( )inc  
[cf. (10)].

For incident fields of well-defined helicity, it is required that Xinc = ±kWinc, whereas in (14) the sign ± denotes 
a state of positive and negative helicity, respectively. Accordingly, a positive helicity state requires that q = p and 
a negative helicity state is characterized by q = −p. Notice that both conditions are indepedent of each other, so 
that the coefficients of a positive helicity state are not related to those of a negative helicity state. That is why we 
denote p+ and p− the coefficients of an arbitrary field of well-defined positive and negative helicity, respectively. 
Summarizing, it holds either q + = p+ or q− = −p− for incident light of well-defined positive or negative helicity, 
respectively.

Therefore here and throughout the entire paper, the superscripts ± denote illumination with light of 
well-defined helicity. In what follows, we shall analyze the response of an arbitrary scatterer to incident light of 
either positive or negative helicity. Specifically, we investigate the scattered energy +Wsca or −Wsca, as well as the 
scattered chirality ±Xsca, for illuminating light of positive or negative helicity, respectively.
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For randomly oriented isolated scatterers, averaging over all illumination directions is of interest. This is 
because in dilute solutions, where multiple scattering can be neglected, the experimental results are dominated by 
the averaged response of a single particle41. Let θ φ±W ( , )ext  be the energy extinction of an incident circularly 
(±)-polarized (CPL) plane wave with propagation direction given by θ and φ. From the expansion of plane waves 
into vector spherical harmonics, one derives that the averaged energy extinction is given by [cf. Eq. (C57)]38
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where ±( )iiext  are the diagonal elements of the extinction energy matrices of well-defined helicity states (17). 
Similarly, it follows
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Definitions for Classification of Scatterers.  Duality and Anti-Duality.  The scattered field of a dual 
scatterer has the same (well-defined) helicity as the incident field, i.e. =+ +X kWsca sca for positive incident helicity, 
and = −− −X kWsca sca for negative incident helicity. In matrix notation, it follows  = −± ± ± ±X W T T( )e m

H
sca sca  

− =± ±T T( ) 0e m . In general, we establish the duality breaking  ∈ [0, 1] of the scattering object with an arbitrary 
matrix norm ||·|| as

				    .			                                    (20)
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Our formalism is independent of the choice of the specific norm. Due to its numerical robustness, we choose 
the 2-norm A 2 of a matrix A which is given by the largest singular value of A. Note in this connection that if the 
Frobenius norm were chosen in Eq. (20),  would be similar to the definition established in47 [Eq. (23)],51  
[Eq. (32)] and52 [Eq. (2)].

On the other hand, if the scattered field has the opposite (well-defined) helicity with respect to that of the 
incident field, i.e. = −+ +X kWsca sca for positive incident helicity and =− −X kWsca sca for negative incident helicity, we 
shall say that the scatterer is anti-dual. In matrix notation, it follows X W± = + + =± ± ± ± ± ±T T T T( ) ( ) 0e m

H
e msca sca . 

Thus, in general, we herewith put forward the anti-duality breaking ╱a  ∈ [0, 1] as

				    .				                 (21)

Helicity Variation.  Given an incident field of well-defined helicity, in general the helicity of the scattered field 
may have the same sign as the incident one but may not be well-defined, i.e. its angular spectrum of plane wave 
components31,34 is composed of some with positive and some with negative helicity. If Xsca has the same sign as 
that of the incident field (e.g. >+X 0sca  for positive incident helicity), we put forward the term helicity-keeping 
classifying such scatterers. By contrast, a helicity-flipping scatterer (e.g. <+X 0sca  for positive incident helicity) 
changes the sign of the incident helicity to its opposite value. If an incident chiral field is scattered into a purely 
achiral field with =±X 0sca , we shall call the scatterer helicity-annihilating. Therefore, we establish the following 
classification of scattering bodies:

 ‐ + −Perfectly Helicity Keeping: (HPD) and (HND), (22)sca sca

+ − ‐Perfectly Helicity Flipping: (HND) and (HPD), (23)sca sca

‐ = .±Perfectly Helicity Annihilating: 0 (24)sca

We recall that HPD and HND stand for Hermitian positive and negative definite matrix, respectively. From 
(15) and (16) and the triangle inequality, it follows that  ≤ +± ± ±T Te msca

2 2
 and  ≤± ± ±T T2 e msca . 

Based on the former relations we establish the breaking of helicity annhiliation  relative to the scattered energy:

				    .				                   (25)

This novel quantity vanishes for linearly polarized scattered light, i.e. , as then scattering annihilates all 
incident helicity. In contrast, the breaking of helicity annihilation is one for scattered light of well-defined helicity; 
however, it is independent of the incident helicity, which means  if the scattered light has the same helicity 
as, or opposite to, the helicity as the incident light.

Further, we introduce the helicity variation hv ∈ [−1, 1] by the eigenvalues λ
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According to this definition, a helicity-keeping scatterer has >h 0v , while a helicity-flipping one has <h 0v . 
Note that a necessary condition for a scatterer to be anti-dual is to be perfectly helicity-flipping, i.e. hv = −1. 
Conversely, for a dual scatterer the condition hv = 1 (namely, to be perfectly helicity-keeping) is necessary. 
However, these two last conditions for hv are not sufficient for either duality or anti-duality, and thus they may be 
regarded as weaker forms of these two latter properties.

Specifically, the helicity variation only takes the sign of the eigenvalues of sca into account. For a dual scat-
terer not only the sign of the incident helicity has to be preserved, but the eigenvalues of sca and sca must be of 
equal absolute value. So, hv = 1 is a weaker condition than  since hv = 1 means that the scattered light is 
dominated by the incident helicity, but it may not possess well-defined helicity. On the other hand,  implies 
that the scattered light has well-defined helicity equal to that of the incident light.

As described above, perfectly helicity-keeping (hv = 1) and perfectly helicity-flipping (hv = −1) are weaker 
conditions of duality and anti-duality. These conditions may be further weakened yielding helicity-keeping 
( >h 0v ) and helicity-flipping ( <h 0v ) objects. Since the helicity variation (26) is a weighted average over all 
eigenvalues of sca, hv describes the mean alteration of the sign of the scattered chirality for all possible incident 
fields of well-defined helicity. For a helicity-keeping scatterer, the chirality scattering is dominated by incident 
fields for which the incident and the scattered helicity equal one-another. It does not imply that the helicity of all 
possible incident fields is unchanged, however, the major contribution to scattering is due to incident fields with 
preserved helicity. Accordingly, for strongly scattering illuminations of well-defined helicity, the scattered helicity 
changes sign predominantly for a helicity-flipping scatterer.
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Chirality.  Starting from (18), the chirality c and the g-factor of a scatterer are defined as

= − =
−

+
+ −

+ −

+ −
c W W g W W

W W
, ,

(27)
ext ext

ext ext

ext ext

where the average bars should be understood as written in (18) and (19). Hence, these quantitites represent the 
plane-wave averaged values derived from the full T-matrix, and are the corresponding generalizations for wide 
sense dipolar particles20. We notice that during the writing of this manuscript, a T-matrix formalism introducing 
quantities similar to those of Eq. (27) has been developed in Ref.53.

Discussion of Examples
Electromagnetic scattering by non-Rayleigh dipolar isotropic scattering objects is described by their electric and 
magnetic polarizabilities, αe and αm, and by their cross electric-magnetic ones, αem and αme. We assume reciprocal 
scatterers with αem = −αme. With a1, b1 and c1 being the electric, magnetic and cross electric-magnetic first Mie 
coefficients, it is well-known that α = πε ae

i

k

6
1

0
3 , α =

πμ
bm

i

k

6
1

0
3  and α =

π ε μ
cme

i

k

6
1

0 0
3 . In terms of these polarizabili-

ties, one has for the quantitites introduced above:
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In general, the four experimental observables ±Wext and ±Wsca are not sufficient to determine the real and imag-
inary parts of those three polarizabilities. Therefore, we propose the additional measurement of the scattered 
chirality ±Xsca. This together with Eqs (28)–(34) should enable the full optical characterization of a dipolar scatter-
ing object.

The g-factor expressed by (27) is well-known: it is the dissymmetry factor45,54 of circular dichroism (see e.g.20 
[cf. Eq. (6)]). Furthermore, the chirality (or helicity) c, being the differential extinction due to incident circularly 
polarized light, is proportional to the real part of the cross electric-magnetic polarizability αem

20. This measures 
the optical activity of the scatterer like e.g. a chiral nanoparticle or molecule45.

A dipolar body with αe = αm (and as stated above, αem = −αme) guarantees duality symmetry33; thus it presents 
a vanishing duality breaking parameter ( ). This requirement coincides with the first Kerker condition55–64 
according to which there is zero backscattered intensity under plane wave illumination. In fact, it has been shown 
that a dual scatterer produces zero-backscattering and that duality may be regarded as a generalization of the first 
Kerker condition65. On the other hand, the second Kerker condition55 for achiral lossless objects (αem = 0) is 
Im(αe) = Im(αm) and Re(αe) = −Re(αm), yields a minimum of the forward scattered intensity57 and also of the 
anti-duality breaking ╱a . A scatterer with strictly vanishing ╱a  has been recognized as behaving as anti-dual65. Note 
that as a consequence of (32), a chiral reciprocal non-Rayleigh dipolar particle, i.e. with αem ≠ 0, cannot be anti-dual.

(i) Next, we first analyze the scattering by an achiral non-Rayleigh dipolar particle. Specifically, we address the 
behaviour of a spherical silicon (Si) nanoparticle of radius r = 230 nm and refractive index n = 3.5 in the 
near-infrared regime illuminated with a CPL plane wave of positive helicity, i.e. left circularly polarized, LCP(+). 
Since the sphere is an achiral scatterer, illumination with a CPL plane wave of negative helicity, i.e. right circularly 
polarized, RCP (−), yields equal results with regards to energy ( =− +W Wsca sca), while all chiral quantities present 
an additional minus sign (e.g. = −− +X Xsca sca).

It has been shown that lossless dielectric particles of high permittivity, like this one, sustain strong mag-
netic dipoles and multipoles and hence are suitable constitutive elements for new photonic materials and 
devices63,64,66–68. As depicted in Fig. 1(b), the particle shows dipolar behaviour at incident wavelengths larger than 
1200 nm, exhibiting an electric and magnetic dipole peak at 1280 nm and 1680 nm, respectively [see Ref.66, one of 
whose figures is reproduced here as Fig. 1(b) to ease understanding].
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Figure 1(a) shows that the particle has  only at the incident wavelength λ ≈ 1830 nm, where it is dual. 
Here, the first Kerker condition is fulfilled since the electric and magnetic total scattering cross-sections are equal 
[Fig. 1(b)] for the incident LCP(+) plane wave. Since the latter equivalence is necessary but not sufficient for 
zero-backscattering, the dual behaviour is more intuitively observed by noting that the incident polarization 
remains unchanged; i.e. the scattered field has the same helicity as the incident wave and, hence, the chirality 
conversion due to the scattering is zero, =+X 0conv  [see Fig. 1(c)].

Concerning the second Kerker condition, manifested as a minimum of the differential scattering cross-section 
in the forward direction, here observed at λ ≈ 1550 nm where, once again, the electric and magnetic parts of the 
scattered energy are equal [see Fig. 1(b)], the anti-duality breaking ╱a  is at a local minimum of 0.59 [cf. Fig. 1(a)]. 
However, the breaking of helicity annhilation  is at a local maximum. Note in this connection that a fully 
anti-dual scatterer yielding ╱d  =  , would give rise to  = 1. Nevertheless, due to causality, a fully anti-dual behav-
iour is unphysical for lossless particles57. A perfect anti-dual scatterer would convert the incident circular polari-
zation fully into its opposite handedness. Here, it should be stressed that the sign of the scattered chirality +Xsca

30 
involves both amplitudes and phases of the polarizabilities. Accordingly, the scattered chirality is at a minimum 
for this wavelength of minimum forward scattering [cf. Fig. 1(c)].

Furthermore, depolarization effects such as Rayleigh depolarization at long wavelengths69, are described by 
the breaking of helicity annihilation . In Fig. 1(a), it is observed that at both λ ≈ 1330 nm and λ ≈ 1640 nm the 
scattered light is achiral, i.e. linearly polarized. This property is observable as a vanishing scattered chirality 
Xsca = 0 [Fig. 1(c)]. At these wavelengths, the contributions of the particle induced dipoles, yielding positive and 
negative helicity in the scattered energy, are equal and thus cancel each other [Fig. 1(d)]. As a result, an achiral 
response of the isotropic dipolar scatterer takes place.

Figure 1.  Spectra from a spherical Si particle of radius r = 230 nm and refractive index n = 3.5 illuminated by a 
left circularly polarized LCP (+) plane wave. (a) Breakings of duality , anti-duality ╱a  and helicity annihilation 

. (b) Scattered energies due to the excitation of each of the induced electric and magnetic dipoles (at 1280 nm 
and 1680 nm, respectively), and magnetic quadrupole (at 1160 nm), and total scattered energy due to the 
superposition of their respective scattered fields (after66). (c) Extinction, scattered, and conversion chiralities. 
(d) Multipolar scattered energies in the helicity basis (cf. main text). These are: due to the excitation of the 
RCP(−) dipole and quadrupole, +Wsca,RCP

,dip  (red line) and +Wsca,RCP
,qua  (pink line), respectively; as well as due to the 

excitation of the LCP(+) dipole and quadrupole, +Wsca,LCP
,dip  (green line) and +Wsca,LCP

,qua  (blue line), respectively. At 
dual behaviour (╱d  =  ), the chirality conversion Xconv vanishes, and anti-duality (minimal ╱a ) is observed as a 
minimum in Xsca.
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The interplay between the electric and magnetic induced multipoles in these magnetodielectric particles 
gives rise to excitations in the body whose helicity is either the same or opposite to that of the incident wave; 
namely, dipoles and multipoles induced in the sphere, that represented in the helicity basis [cf. (14)] are of pos-
itive [LCP(+)] or negative [RCP(−)] helicity. Both kinds of excitations appear in the case of incident LCP(+) 
plane wave illumination. For example, a LCP(+) dipole is due to an electric dipole d which oscillates with a 
positive phase shift of π with respect to a magnetic dipole m of equal amplitude (d = im/c)48,70. Conversely, a 
negative helicity RCP(−) electric dipole has a phase shift of −π compared to the corresponding magnetic dipole, 
i.e. d = −im/c. Thus we denote their positive and negative helicity property with subscripts LCP and RCP, respec-
tively. In general, both kind of dipoles are induced by an incident wave of given helicity, and they determine the 
polarization of the scattered field. We recall that as introduced before, the superscripts ± stand for incident light of 
positive and negative helicity, respectively.

The dipoles and multipoles of helicity opposite to that of the incident wave are associated to the conversion of 
chirality (or helicity) on scattering. This phenomenon is seen when we compare this chirality conversion +Xconv [cf. 
red line in Fig. 1(c)] and the excitation of induced dipoles and quadrupoles, which expressed in the helicity basis 
have negative handedness, [see +Wsca,RCP

,dip  and +Wsca,RCP
,qua , red and pink lines, respectively, in Fig. 1(d)]. On the basis 

of the criterion above, these two latter excitations have helicity [RCP (−)] opposite to that of the incident wave 
which has been chosen as positive [LCP (+)], as explained before.

Hence, taking into account that the scatterer is lossless and that, as just seen, the scattered energy consists of 
two parts: one of negative and one of positive helicity, it follows that the total scattered energy +Wext due to this 
incident plane wave with positive helicity LCP(+) is written as: = = ++ + + +W W W Wext sca sca,LCP sca,RCP. Furthermore, 
the scattered chirality measures the difference of these two contributions71: ∝ −+ + +X W Wsca sca,LCP sca,RCP. From the 
equivalence of extinction of both energy and chirality for incident fields of well-defined helicity [cf. (17)], we 
deduce that for a lossless scatterer the chirality conversion is given by twice the scattered energy of opposite helicity, 
i.e. ∝+ +X W2conv sca,RCP. This is confirmed in the dipolar regime (λ > 1200 nm), as well as around 1170 nm where 
the magnetic quadrupole dominates; and shows the significance of this novel observable, namely the chirality 
conversion, specifically for scattering objects that, like these high refractive index dielectric particles, exhibit a 
strong magnetic response to the incident field.

(ii) Now, we introduce chirality in the geometrically isotropic scatterer by means of a non-zero chirality 
parameter κ, while this body remains reciprocal and bi-isotropic46. For lossless media, the absolute value of κ 
is smaller than unity46 [Eq. (D.8)], as stated above. Here, as before, we fix the sphere radius r = 230 nm and its 
refractive index n = 3.5. The chirality parameter κ is then varied from zero (which would be the case discussed 
above) to unity. Of course now the particle will no longer be made of Si, since κ ≠ 0 makes the material hypothet-
ical. Nevertheless, this yields a direct way of studying the interplay of significant magnetodielectric effects with 
phenomena stemming from the chirality of the scattering object.

The breakings of duality and helicity annihilation, as well as the helicity variation, are shown in Fig. 2(a–c). 
These quantities are symmetric with respect to κ = 0, while the g-factor is antisymmetric [Fig. 2(d)]. For vanish-
ing κ, the scatterer is achiral and, accordingly, g = 0. The magnetic quadrupole resonance at 1160 nm of the achiral 
particle is clearly red-shifted and yields very large g-factors up to one. Interestingly, the sign of g is not directly 
coupled to the sign of the chirality parameter, but changes over the analyzed spectrum: regions of highly positive, 
as well as of very negative, g-factor occur throughout this parameter domain. In this regard, it should be noted 
that natural materials usually posess very small effective chirality parameters72, these being in the range of 10−3.

A very unusual behaviour is observed in the duality of this magnetodielectric object with high κ [Fig. 2(a)]: at 
κ ≈ 0.85, the scatterer is dual irrespective of the incident wavelength. Due to the red-shifted interference of mag-
netic quadrupole and electric dipole resonances, the particle is even stably dual with respect to both λ and κ in 
this regime. This stable minimum in  is visible as a cross-like structure centered at λ ≈ 1250 nm and κ ≈ 0.85. 
Although in the range of wavelengths in this study, the particle shows either dipolar or quadrupolar behaviour 
depending on λ, the stability of its dual behaviour is more intuitively understood in the dipolar domain. For 
κ > .0 85, the electric polarizability is dominant, whereas for chirality parameters smaller than 0.85, the magnetic 
response is larger (not shown for the sake of brevity). The change from a predominantly electric response to a 
magnetic one occurs at κ = 0.85 throughout the spectrum. Here, the first Kerker condition αe = αm yields vanish-
ing duality breaking [cf. Eq. (31)] with cross electric-magnetic polarizibilities αem of an order similar to that of the 
electric and magnetic ones. Additionally, the achiral dual resonance at 1830 nm is again red-shifted.

This overall red-shift is also apparent in the breaking of helicity annihilation [Fig. 2(b)]. The first helicity anni-
hilation resonance at λ ≈ 1330 nm vanishes as the chirality parameter shows up because the red-shifted magnetic 
quadrupole peak is then larger and exhibits a non-zero scattered helicity. Concerning the annihilation peak at 
1640 nm in the achiral case [cf. Fig. 1(a)], it is stable up to κ ≈ 0.6. For larger chirality parameters, the resonance 
of helicity annihilation vanishes and barely there are regimes of similar behaviour, i.e. most scattered light is not 
linearly polarized for incident fields of well-defined helicity. The general trends of both duality and helicity anni-
hilation breakings are also visible in the helicity variation, however, since this condition is weaker for both dual 
and helicity annihilating behaviour, as discussed before, the areas of extreme hv-values are better distinguishable 
with sharp transitions from positive to negative hv [Fig. 2(c)].

The study of non-spherical anisotropic scatterers is highly dependent on the direction of illumination. Chiral 
molecules are often analyzed in dilute solutions wherein they are randomly oriented. Mostly, only small numbers 
of single molecules are available and multiple scattering can be neglected. The quantities introduced above are 
suitable for the analysis of such isolated scatterers, as we show in the next two illustrations: (iii) and (iv).

We wish to remark that in recent experiments, the helicity components of the scattered light were measured 
in transmission73 and discussed by dual symmetry74. Furthermore, a chirality flux spectroscopy, measuring the 
third Stokes parameter, was used to analyze the chiroptical response of two-dimensional chiral structures75. We 
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note that the helicity of light has been measured mostly in transmission. By contrast, our study addresses the 
importance of the full angular averaged chirality flux. This quantity may be measured in an integrating sphere, or 
by combining measurements in forward and backward directions as in Ref.70.

(iii) Next, we first numerically study the scattering from a convex body with the help of the Finite Element 
Method (cf. section Methods). The six different radii of a generalized ellipsoid are fixed except the one: r1. Again, 
we start from the magnetodielectric sphere with r = 230 nm and refractive index n = 3.5. As this object is trans-
formed into an ellipsoid, the varying radius r1 is shrinked <( )1r

r
1  to its half and stretched >( )1r

r
1  to its double 

value. For simplicity, we fix the incident wavelength to 1680 nm, which, as seen above, coincides with the reso-
nance peak of the magnetic dipole when this object is spherical.

Since there exist at least two mirror-planes in this geometrically achiral body, both the chirality and g-factor 
vanish. As shown in Fig. 3, the scatterer is perfectly helicity-keeping with hv = 1 for < .1 2r

r
1 . The duality breaking 

decreases for prolate shapes with a minimal value of 0.2 at half the initial sphere radius. Above = .1 2r
r
1 , the dual-

ity breaking remains nearly constant, but the helicity variation reveals that the incident helicity sign changes in 
the scattered field for > .1 3r

r
1 . However, the object is not anti-dual in the strict sense, since the anti-duality break-

ing is larger than 0.8 in the full parameter space, and only the dominating sign of the eigenvalues of the scattered 
chirality is represented in the helicity variation Furthermore, there is no helicity annihilation at this wavelength 
and geometric variations. The minimal value of the breaking of helicity annihilation is approximately 0.2 for 
elongated shapes.

(iv) In what follows we illustrate our formalism for chiral anisotropic particles. We start by analyzing their 
duality breaking. A chiral gold particle resulting from a sophisticated fabrication procedure, and studied experi-
mentally41, is made dual by introducing a magnetic permeability. Namely, the particle is analyzed for an incident 
wavelength of 600 nm, the permittivity ε is kept constant at its value for gold at 600 nm, while the permeability 
varies as μ = x(ε − 1) + 1. The parameter x is a parameter that grows between 0 and 1, so that when x = 1, the 
particle is dual since ε = μ and thus αe = αm

55.

Figure 2.  Spherical chiral particle of radius r = 230 nm, refractive index n = 3.5 and varying chirality parameter 
κ ≠ 0. Colorbars indicate breakings of: (a) duality  and (b) helicity annihilation ; as well as (c) helicity 
variation hv and (d) the g-factor. The wavelength at which the achiral particle (κ = 0) behaves as dual is red-
shifted, and for a large κ the particle is dual independently of the wavelength. The long wavelength achiral 
helicity annhiliation is also red-shifted, whereas the short wavelength achiral peak is vanishing for increasing 
chirality. The helicity variation resembles the qualitative behaviour of duality. The quantities , and hv are 
symmetric with respect to κ; while the g-factor changes sign for positive and negative κ, and, being strongly 
wavelength dependent, it generally increases as so does |κ|.
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As shown in Fig. 4(a) (blue lines), the duality breaking accurately depicts both the non-dual and dual behav-
iour of the particle as x varies from zero up to one ( ). The helicity variation with hv = 1 is, as discussed 
before, a weaker condition for duality. The scatterer is already perfectly helicity-keeping for x larger than 0.5 [see 
Fig. 4(b)]. From this value of x on, more detailed information is contained in . However, we can deduce from the 
spectrum of helicity variation that the scattered field is dominantly positive chiral for all artificial materials ana-
lyzed in this example, since >h 0v  for all x. Furthermore, the anti-duality and helicity annihilation breakings are 
unity for > .x 0 7, as expected for dual symmetric materials.

The chirality c and the g-factor reveal the highly chiral response of the particle. Large magnitudes of g-factors 
up to 0.1 are reached [see Fig. 4(b)]. This is partly attributed to the high scattering due to the very large refractive 
index n ≈ −10.14 + 1.38i. Nevertheless, record g-factors with values up to 0.02 are also attained when the par-
ticle is purely made of gold. This g derived from the full T-matrix [cf. Eq. (27)] can be interpreted as the average 

Figure 3.  Convex body with shrinked <( )1r
r
1  and elongated >( )1r

r
1  radius r1 in one direction starting from a 

sphere with r = 230 nm (cf. main text). The incident wavelength is 1680 nm and the electric permittivity 
ε = .3 5. The breakings of duality , anti-duality ╱a  and helicity annhilation , as well as the helicity variation 
hv are displayed. Prolated shapes are helicity-keeping and approach dual behaviour. The dominating sign of the 
scattered chirality is flipped with respect to that of the incident light ( <h 0v ) for > .1 3r

r
1 . However, this 

scattered light is depolarized with a breaking of helicity annihilation of approximately 0.2.

Figure 4.  Geometrically chiral pyramidal particle made from gold41 (upper inset and red lines) or from a dual 
material obtained by introducing a magnetic permeability at λ = 600 nm (lower inset and blue lines). (a) 
Breakings of duality ╱d , anti-duality  and helicity annihilation  dependent both on the wavelength for the 
gold particle and on the duality parameter x ∈ [0, 1] for the dual particle, respectively. (b) Chirality c, g-factor 
(left axis), and helicity variation hv (right axis). The gold particle is neither dual ( ) nor anti-dual ( ) but 
scatters mostly achiral light since  ≈ 0.15 over the whole sprectrum. Its optically chiral response has been 
measured experimentally41 and fits the simulated data. The dual particle illustrates the simultaneous conditions 

,  and hv = 1 for a dual symmetric scatterer. Throughout the transition from gold (x = 0) to a dual 
particle (x = 1), the particle is dominantly negative chiral. The increase of the magnitude of chirality by a factor 
of six is partly due to the higher refractive index.
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differential response due to incident right and left circularly polarized plane waves. Our simulated data of c and g 
correspond well with the experimentally measured results41 [cf. Fig. 3(b,d)].

The helicity variation for the chiral gold particle shows a monotonic decreasing behaviour with a sign change 
at 680 nm. For smaller wavelengths the scattered chirality flux mostly has positive helicity, whereas in the longer 
wavelength regime a negative helicity is observed. This yields near-fields which are dominated by positive and 
negative optical chirality hot-spots, respectively. Note, however, that this is only the case for the scattered field. 
The coupling of chiral molecules in the near-field is due to the total field composed of the incident and the scat-
tered one20. Accordingly, interference effects might result in helicity-flipping fields for small wavelengths, even 
though >h 0v . Nevertheless, the study of the helicity variation provides further insight than the study of the 
previously introduced breakings such as  in this example. The breakings are constant over the spectrum of inci-
dent wavelengths and are not suitable for classifying the scattering response with respect to polarization phenom-
ena, [see Fig. 4(a), red lines].

In conclusion, we have put forward the quantities derived from the conservation of optical chirality (or helicity)  
of monochromatic wavefields, both in Mie and T-matrix theories. Such quantities are scalars that characterize 
the response of arbitrary scattering particles. In particular, the breaking of dual symmetry is accompanied by a 
weaker condition based on the scattered chirality, namely, the so-called helicity variation.

Directional effects of the differential scattering cross-section, such as the Kerker conditions, have been 
included in this general formalism, both for achiral and chiral magnetodielectric dipolar spherical particles, and 
discussed with respect to the experimentally accessible data of scattered and extinguished energy and chirality. 
This has been illustrated with high permittivity, non-Rayleigh, dipolar spheres, which have generated so much 
interest in nanophotonics. We have shown how their illumination with chiral light uncovers new important phe-
nomena associated to their chiral dipolar and quadrupolar resonant excitations, either with the same or with 
opposite helicity with respect to that of the illuminating wave.

Anisotropic scatterers, either with or without a mirror-plane, are classified by these novel quantities, and the 
implications for the scattered fields are discussed. As an illustration, a comparison with experimental data from a 
chiral gold particle has been drawn. We expect that this general framework enables the characterization of a broad 
range of scattering objects with applications in chiral molecular spectroscopy, spin photonics, and the design of 
optical sources as well as of metamaterials and other composite media.

Methods
Isotropic Mie Code.  As described in the main text, the submatrices of the T-matrix of a geometrically iso-
tropic scatterer are diagonal. The coefficients are given by45 [p. 188, adopted to non-even/-odd basis M, N]

α =
+
+
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W m V m V m W m

( ) ( ) ( ) ( )
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n L n R n L n R

β =
+
+

W m B m W m B m
W m V m V m W m

( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) (36)n

n L n R n R n L

n L n R n L n R

γ =
−
+

.
W m A m W m A m
W m V m V m W m

( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) (37)n

n R n L n L n R

n L n R n L n R

The coefficients αn, βn and γn are the main diagonal elements of Tee, Tmm and Tem, respectively. The relative 
refractive indices mL and mR and the mean refractive index m are then defined as = =m m,L
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μ( )m m m

1 1
2
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R L s
, where ns and μs are the refractive index and the relative permeability of the surrounding 

medium, respectively. The results in Figs 1 and 2 are obtained using these analytic solutions of Maxwell’s 
equations.

Anisotropic Numerical Simulations.  The solution of time-harmonic Maxwell’s equations for arbitrary 
geometries are obtained with the commerical solver JCMsuite based on the Finite Element Method (FEM). The 
particles analyzed in Figs. 3 and 4 are discretized by tetrahedral meshes. Convergence is ensured for sidelength 
constraints of h = 50 nm and ansatz functions of polynomial degrees p = 3 and p = 4 for Figs. 3 and 4, respec-
tively. The open boundary conditions are modelled by Perfectly Matched Layers which are controlled by a 
software-specific precision parameter76 of 1e − 5.

The T-matrices are computed by illumination with 36 and 88 plane waves, respectively. These are equally dis-
tributed on a sphere in k-space, and are created with random polarizations. This procedure yields accurate results 
up to multipoles of order m = 3 for the achiral ellipsoid and m = 5 for the chiral particle, respectively. The entries 
of the T-matrix are efficiently calculated by a surface integral based on the conservation of extinction77.

References
	 1.	 Andrews, D. L. & Babiker, M. The angular momentum of light (Cambridge University Press, 2012).
	 2.	 Allen, L., Barnett, S. M. & Padgett, M. J. Optical angular momentum (CRC Press, 2003).
	 3.	 Allen, L., Padgett, M. & Babiker, M. The orbital angular momentum of light. In Wolf, E. (ed.) Prog. Opt., vol. 39, 291–372 (Elsevier, 

1999).
	 4.	 Schäferling, M., Dregely, D., Hentschel, M. & Giessen, H. Tailoring enhanced optical chirality: design principles for chiral plasmonic 

nanostructures. Phys. Rev. X 2, 031010 (2012).
	 5.	 Schellman, J. A. Circular dichroism and optical rotation. Chem. Rev. 75, 323–331 (1975).



www.nature.com/scientificreports/

1 2SCIeNtIfIC REPOrTs |  (2018) 8:9416  | DOI:10.1038/s41598-018-27496-w

	 6.	 Richardson, F. S. & Riehl, J. P. Circularly polarized luminescence spectroscopy. Chem. Rev. 77, 773–792 (1977).
	 7.	 Vuong, L., Adam, A., Brok, J., Planken, P. & Urbach, H. Electromagnetic spin-orbit interactions via scattering of subwavelength 

apertures. Phys. Rev. Lett. 104, 083903 (2010).
	 8.	 Bliokh, K. Y., Rodrguez-Fortuño, F., Nori, F. & Zayats, A. V. Spin–orbit interactions of light. Nat. Photonics 9, 796 (2015).
	 9.	 Sukhov, S., Kajorndejnukul, V., Naraghi, R. R. & Dogariu, A. Dynamic consequences of optical spin–orbit interaction. Nat. Photonics 

9, 809 (2015).
	10.	 Hakobyan, D. & Brasselet, E. Optical torque reversal and spin-orbit rotational doppler shift experiments. Opt. Express 23, 

31230–31239 (2015).
	11.	 Hosten, O. & Kwiat, P. Observation of the spin hall effect of light via weak measurements. Science 319, 787–790 (2008).
	12.	 Bliokh, K. Y., Smirnova, D. & Nori, F. Quantum spin hall effect of light. Science 348, 1448–1451 (2015).
	13.	 Andrews, D. L., Coles, M. M., Williams, M. D. & Bradshaw, D. S. Expanded horizons for generating and exploring optical angular 

momentum in vortex structures. Proc. SPIE 8813, 88130Y (2013).
	14.	 O’Sullivan, M. N., Mirhosseini, M., Malik, M. & Boyd, R. W. Near-perfect sorting of orbital angular momentum and angular 

position states of light. Opt. Express 20, 24444–24449 (2012).
	15.	 Krenn, M., Tischler, N. & Zeilinger, A. On small beams with large topological charge. New J. Phys. 18, 033012 (2016).
	16.	 Bradshaw, D. S., Leeder, J. M., Coles, M. M. & Andrews, D. L. Signatures of material and optical chirality: Origins and measures. 

Chem. Phys. Lett. 626, 106–110 (2015).
	17.	 Nieto-Vesperinas, M. Non-zero helicity extinction in light scattered from achiral (or chiral) small particles located at points of null 

incident helicity density. J. Opt. 19, 065402 (2017).
	18.	 Bliokh, K. Y., Kivshar, Y. S. & Nori, F. Magnetoelectric effects in local light-matter interactions. Phys. Rev. Lett. 113, 033601 (2014).
	19.	 Vincent, R. & Carminati, R. Magneto-optical control of Förster energy transfer. Phys. Rev. B 83, 165426 (2011).
	20.	 Tang, Y. & Cohen, A. E. Optical chirality and its interaction with matter. Phys. Rev. Lett. 104, 163901 (2010).
	21.	 Tang, Y. & Cohen, A. E. Enhanced enantioselectivity in excitation of chiral molecules by superchiral light. Science 332, 333–336 

(2011).
	22.	 Guzatov, D. V. & Klimov, V. V. The influence of chiral spherical particles on the radiation of optically active molecules. New J. Phys. 

14, 123009 (2012).
	23.	 Alaeian, H. & Dionne, J. A. Controlling electric, magnetic, and chiral dipolar emission with pt-symmetric potentials. Phys. Rev. B 

91, 245108 (2015).
	24.	 Hentschel, M., Schäferling, M., Duan, X., Giessen, H. & Liu, N. Chiral plasmonics. Sci. Adv. 3, e1602735 (2017).
	25.	 Kramer, C., Schäferling, M., Weiss, T., Giessen, H. & Brixner, T. Analytic optimization of near-field optical chirality enhancement. 

ACS Photonics 4, 396–406 (2017).
	26.	 Garca-Etxarri, A. & Dionne, J. A. Surface-enhanced circular dichroism spectroscopy mediated by nonchiral nanoantennas. Phys. 

Rev. B 87, 235409 (2013).
	27.	 Wang, H., Li, Z., Zhang, H., Wang, P. & Wen, S. Giant local circular dichroism within an asymmetric plasmonic nanoparticle trimer. 

Sci. Rep. 5, 8207 (2015).
	28.	 Lv, T. et al. Hybrid metamaterial switching for manipulating chirality based on vo 2 phase transition. Sci. Rep. 6, 23186 (2016).
	29.	 Hu, L., Tian, X., Huang, Y., Fang, L. & Fang, Y. Quantitatively analyzing the mechanism of giant circular dichroism in extrinsic 

plasmonic chiral nanostructures by tracking the interplay of electric and magnetic dipoles. Nanoscale 8, 3720–3728 (2016).
	30.	 Lipkin, D. M. Existence of a new conservation law in electromagnetic theory. J. Math. Phys. 5, 696–700 (1964).
	31.	 Bliokh, K. Y. & Nori, F. Characterizing optical chirality. Phys. Rev. A 83, 021803 (2011).
	32.	 Cameron, R. P., Barnett, S. M. & Yao, A. M. Optical helicity, optical spin and related quantities in electromagnetic theory. New J. 

Phys. 14, 053050 (2012).
	33.	 Nieto-Vesperinas, M. Optical theorem for the conservation of electromagnetic helicity: Significance for molecular energy transfer 

and enantiomeric discrimination by circular dichroism. Phys. Rev. A 92, 023813 (2015).
	34.	 Nieto-Vesperinas, M. Chiral optical fields: a unified formulation of helicity scattered from particles and dichroism enhancement. 

Phil. Trans. R. Soc. A 375, 20160314 (2017).
	35.	 Gutsche, P., Schneider, P.-I., Burger, S. & Nieto-Vesperinas, M. Chiral scatterers designed by bayesian optimization. In International 

Workshop on Metamaterials-by-Design, IOP Conf. Series: Journal of Physics 963, 012004, arXiv:1712.07091 (2018).
	36.	 Gutsche, P., Poulikakos, L. V., Hammerschmidt, M., Burger, S. & Schmidt, F. Time-harmonic optical chirality in inhomogeneous 

space. In Proc. SPIE 9756, 97560X arXiv:1603.05011 (2016).
	37.	 Poulikakos, L. V. et al. Optical chirality flux as a useful far-field probe of chiral near fields. ACS Photonics 3, 1619–1625 (2016).
	38.	 Mishchenko, M., Travis, L. & Lacis, A. Scattering, Absorption, and Emission of Light by Small Particles (Cambridge University Press, 

2002).
	39.	 Le R, E. C., Somerville, W. R. & Auguié, B. Radiative correction in approximate treatments of electromagnetic scattering by point 

and body scatterers. Phys. Rev. A 87, 012504 (2013).
	40.	 Fernandez-Corbaton, I. Helicity and duality symmetry in light matter interactions: Theory and applications. Ph.D. thesis, Macquarie 

University, Department of Physics and Astronomy (2014).
	41.	 McPeak, K. M. et al. Complex chiral colloids and surfaces via high-index off-cut silicon. Nano Lett. 14, 2934–2940 (2014).
	42.	 Jackson, J. D. Classical Electrodynamics, 3rd edn (John Wiley and Sons, 1998).
	43.	 Nieto-Vesperinas, M. Scattering and diffraction in physical optics, 2nd edn (World Scientific Publishing Company, 2006).
	44.	 Waterman, P. C. Matrix formulation of bistatic electromagnetic scattering. Tech. Rep., MITRE CORP BEDFORD MA (1968).
	45.	 Bohren, C. F. & Huffman, D. R. Absorption and Scattering of Light by Small Particles (John Wiley & Sons, 1940).
	46.	 Lindell, I. V. & Sihvola, A. H. Electromagnetic wave in chiral and bi-isotropic media (Artech House, 1994).
	47.	 Fruhnert, M., Fernandez-Corbaton, I., Yannopapas, V. & Rockstuhl, C. Computing the T-matrix of a scattering object with multiple 

plane wave illuminations. Beilstein J. Nanotechnol. 8, 614–626 (2017).
	48.	 Fernandez-Corbaton, I. & Molina-Terriza, G. Role of duality symmetry in transformation optics. Phys. Rev. B 88, 085111 (2013).
	49.	 Zambrana-Puyalto, X. & Bonod, N. Tailoring the chirality of light emission with spherical si-based antennas. Nanoscale 8, 

10441–10452 (2016).
	50.	 Fernandez-Corbaton, I., Rockstuhl, C. & Klopper, W. Computation of electromagnetic properties of molecular ensembles. arXiv 

preprint arXiv:1804.08085 (2018).
	51.	 Fernandez-Corbaton, I., Fruhnert, M. & Rockstuhl, C. Objects of maximum electromagnetic chirality. Phys. Rev. X 6, 031013 (2016).
	52.	 Fernandez-Corbaton, I., Fruhnert, M. & Rockstuhl, C. Dual and chiral objects for optical activity in general scattering directions. 

ACS Photonics 2, 376–384 (2015).
	53.	 Suryadharma, R. N. & Rockstuhl, C. Predicting Observable Quantities of Self-Assembled Metamaterials from the T-Matrix of Its 

Constituting Meta-Atom. Materials 11, 213 (2018).
	54.	 Craig, D. P. & Thirunamachandran, T. Molecular quantum electrodynamics: an introduction to radiation-molecule interactions 

(Courier Corporation, 1984).
	55.	 Kerker, M., Wang, D.-S. & Giles, C. Electromagnetic scattering by magnetic spheres. J. Opt. Soc. Am. 73, 765–767 (1983).
	56.	 Gomez-Medina, R. et al. Electric and magnetic dipolar response of germanium nanospheres: interference effects, scattering 

anisotropy, and optical forces. J. Nanophotonics 5, 053512 (2011).



www.nature.com/scientificreports/

13SCIeNtIfIC REPOrTs |  (2018) 8:9416  | DOI:10.1038/s41598-018-27496-w

	57.	 Nieto-Vesperinas, M., Gomez-Medina, R. & Saenz, J. Angle-suppressed scattering and optical forces on submicrometer dielectric 
particles. J. Opt. Soc. Am. A 28, 54–60 (2011).

	58.	 Geffrin, J.-M. et al. Magnetic and electric coherence in forward-and back-scattered electromagnetic waves by a single dielectric 
subwavelength sphere. Nat. Commun. 3, 1171 (2012).

	59.	 Fu, Y. H., Kuznetsov, A. I., Miroshnichenko, A. E., Yu, Y. F. & Luk’yanchuk, B. Directional visible light scattering by silicon 
nanoparticles. Nat. Commun. 4, 1527 (2013).

	60.	 Person, S. et al. Demonstration of zero optical backscattering from single nanoparticles. Nano Lett. 13, 1806–1809 (2013).
	61.	 Staude, I. et al. Tailoring directional scattering through magnetic and electric resonances in subwavelength silicon nanodisks. ACS 

Nano 7, 7824–7832 (2013).
	62.	 Zhang, Y., Nieto-Vesperinas, M. & Sáenz, J. J. Dielectric spheres with maximum forward scattering and zero backscattering: a search 

for their material composition. J. Opt. 17, 105612 (2015).
	63.	 Decker, M. & Staude, I. Resonant dielectric nanostructures: a low-loss platform for functional nanophotonics. J. Opt. 18, 103001 

(2016).
	64.	 Kuznetsov, A. I., Miroshnichenko, A. E., Brongersma, M. L., Kivshar, Y. S. & Luk’yanchuk, B. Optically resonant dielectric 

nanostructures. Science 354, aag2472 (2016).
	65.	 Zambrana-Puyalto, X., Fernandez-Corbaton, I., Juan, M., Vidal, X. & Molina-Terriza, G. Duality symmetry and Kerker conditions. 

Opt. Lett. 38, 1857–1859 (2013).
	66.	 Garca-Etxarri, A. et al. Strong magnetic response of submicron silicon particles in the infrared. Opt. Express 19, 4815–4826 

arXiv:1005.5446 (2011).
	67.	 Evlyukhin, A. B., Reinhardt, C., Seidel, A., Luk’yanchuk, B. S. & Chichkov, B. N. Optical response features of Si-nanoparticle arrays. 

Phys. Rev. B 82, 045404 (2010).
	68.	 Kuznetsov, A. I., Miroshnichenko, A. E., Fu, Y. H., Zhang, J. & Luk’yanchuk, B. Magnetic light. Sci. Rep. 2, 492 (2012).
	69.	 van der Laan, J. D., Wright, J. B., Scrymgeour, D. A., Kemme, S. A. & Dereniak, E. L. Evolution of circular and linear polarization in 

scattering environments. Opt. Express 23, 31874–31888 (2015).
	70.	 Wozniak, P. et al. Chiroptical response of a single plasmonic nanohelix. arXiv preprint arXiv:1804.05641 (2018).
	71.	 Gutsche, P., Mäusle, R. & Burger, S. Locally enhanced and tunable optical chirality in helical metamaterials. Photonics 3, 60 (2016).
	72.	 Schäferling, M., Engheta, N., Giessen, H. & Weiss, T. Reducing the complexity: Enantioselective chiral near-fields by diagonal slit 

and mirror configuration. ACS Photonics 3, 1076–1084 (2016).
	73.	 Tischler, N. et al. Experimental control of optical helicity in nanophotonics. Light: Science & Applications 3, e183 (2014).
	74.	 Fernandez-Corbaton, I. et al. Electromagnetic duality symmetry and helicity conservation for the macroscopic maxwell’s equations. 

Physical review letters 111, 060401 (2013).
	75.	 Poulikakos, L. V., Thureja, P., Stollmann, A., De Leo, E. & Norris, D. J. Chiral light design and detection inspired by optical antenna 

theory. Nano Lett., https://doi.org/10.1021/acs.nanolett.8b00083 (2018).
	76.	 JCMsuite. http://www.jcmwave.com (2018).
	77.	 Garcia Santiago, X., Zschiedrich, L., Burger, S. & Rockstuhl, C. in preparation (2018).

Acknowledgements
We acknowledge support by Freie Universität Berlin through the Dahlem Research School and by MINECO-
FEDER, grants FIS2014-55563-REDC, and FIS2015-69295-C3-1-P. This project has received funding from 
the EMPIR programme co-financed by the Participating States and from the European Union’s Horizon 2020 
research and innovation programme under grant agreement number 17FUN01 (BeCOMe).We thank Sven 
Burger for fruitful discussions and Xavier Garcia Santiago for his work on the Mie code and the algorithm for 
obtaining T-matrices from FEM simulations.

Author Contributions
P.G. and M.N.-V. conceived the idea of this study. P.G. developed the T-matrix formalism and performed the 
simulations. P.G. and M.N.-V. analysed the results and reviewed the manuscript.

Additional Information
Competing Interests: The authors declare no competing interests.
Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Cre-
ative Commons license, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons license and your intended use is not per-
mitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the 
copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
 
© The Author(s) 2018

http://dx.doi.org/10.1021/acs.nanolett.8b00083
http://www.jcmwave.com
http://creativecommons.org/licenses/by/4.0/

	Optical Chirality of Time-Harmonic Wavefields for Classification of Scatterers

	Results

	T-Matrix Formalism. 
	Energy Conservation. 
	Chirality Conservation. 
	Incident Light of Well-Defined Helicity. 

	Definitions for Classification of Scatterers. 
	Duality and Anti-Duality. 
	Helicity Variation. 
	Chirality. 


	Discussion of Examples

	Methods

	Isotropic Mie Code. 
	Anisotropic Numerical Simulations. 

	Acknowledgements

	Figure 1 Spectra from a spherical Si particle of radius r = 230 nm and refractive index n = 3.
	Figure 2 Spherical chiral particle of radius r = 230 nm, refractive index n = 3.
	Figure 3 Convex body with shrinked and elongated radius r1 in one direction starting from a sphere with r = 230 nm (cf.
	Figure 4 Geometrically chiral pyramidal particle made from gold41 (upper inset and red lines) or from a dual material obtained by introducing a magnetic permeability at λ = 600 nm (lower inset and blue lines).




