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Leishmaniasis is endemic to the tropical and subtropical regions of the world and is
transmitted by the bite of an infected sand fly. The multifaceted interactions between
Leishmania, the host innate immune cells, and the adaptive immunity determine the
severity of pathogenesis and disease development. Leishmania parasites establish a
chronic infection by subversion and attenuation of the microbicidal functions of phagocytic
innate immune cells such as neutrophils, macrophages and dendritic cells (DCs). Other
innate cells such as inflammatory monocytes, mast cells and NK cells, also contribute to
resistance and/or susceptibility to Leishmania infection. In addition to the cytokine/
chemokine signals from the innate immune cells, recent studies identified the subtle
shifts in the metabolic pathways of the innate cells that activate distinct immune signal
cascades. The nexus between metabolic pathways, epigenetic reprogramming and the
immune signaling cascades that drive the divergent innate immune responses, remains to
be fully understood in Leishmania pathogenesis. Further, development of safe and
efficacious vaccines against Leishmaniasis requires a broader understanding of the
early interactions between the parasites and innate immune cells. In this review we
focus on the current understanding of the specific role of innate immune cells, the
metabolomic and epigenetic reprogramming and immune regulation that occurs during
visceral leishmaniasis, and the strategies used by the parasite to evade and modulate host
immunity. We highlight how such pathways could be exploited in the development of safe
and efficacious Leishmania vaccines.

Keywords: innate immunity, vaccine, metabolic regulation, visceral leishmaniasis, live attenuated leishmania
vaccines, trained immunity, metabolomics, immune-regulation
INTRODUCTION

Protozoan parasites of the genus Leishmania are the causative agents of leishmaniasis, a spectrum of
vector-borne neglected diseases affecting over 12 million people worldwide with growing
geographical extension (1, 2). The clinical manifestations of leishmaniasis differ widely,
depending principally on the causative species. An estimated 20 different Leishmania spp. cause
org October 2021 | Volume 12 | Article 7483251
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the three main clinical disease manifestations: cutaneous,
mucocutaneous, and visceral leishmaniasis (3). Among these,
the visceral form is fatal if not treated. Most cutaneous
leishmaniasis (CL) and visceral leishmaniasis (VL) patients
develop long-term protective immunity after cure from the
infection, indicating the feasibility of developing an effective
prophylactic strategy against leishmaniasis (4, 5). However, no
vaccine is currently available against human leishmaniasis.

Leishmania is a digenetic parasite, whose life cycle includes
two hosts: the insect vector, and a vertebrate host. Following the
bite of an infected sand fly, the obligate intracellular parasite
Leishmania rapidly infects its host cells (2, 6). A better
understanding of the spectrum of immune responses following
infection with Leishmania parasites is required to develop more
effective preventative approaches, as the host immune response
is a key determinant of the outcome of leishmaniasis (7).
Following inoculation, innate cells such as neutrophils,
inflammatory monocytes, macrophages, dendritic cells (DCs),
mast cells, and natural killer (NK) cells create either a permissive
or hostile environment for the parasite through their effector
functions, and subsequently modulate the adaptive immune
responses towards host susceptibility or resistance. Although
the adaptive branch of the immune response is crucial to control
leishmaniasis, it has been extensively reviewed elsewhere and it is
out of the scope of this review. Specifically, we focus on the
innate immune responses in visceral leishmaniasis due to its
significant mortality (7, 8).

Leishmaniaparasites have evolved highly successful strategies to
evade the microbicidal activity of neutrophils, to prime infected
macrophages towardsananti-inflammatory/alternativephenotype,
and to undermine the Th1 polarizing functions of DCs, thereby
attenuating the host protective adaptive immune responses (9–11).
These altered immunological characteristics of the host cells upon
infection are often induced by changes in the host metabolic
pathways. Thus, there has been an emerging interest in profiling
host metabolomics in the context of immune regulation, and
especially to understand how metabolites and metabolic processes
such as oxidative metabolism, glycolysis, and glutaminolysis can
influence immune cell proliferation, differentiation and effector
functions (12, 13). For instance, in pathogen-associated molecular
pattern (PAMP)-activated neutrophils, mast cells, and DCs,
glycolysis acts as a metabolic effector response that fuels reactive
oxygen species (ROS) production, degranulation, and antigen
presentation, respectively (13). Furthermore, changes in the
metabolomic profile of infected immune cells can alter nutrient
availability to the parasite, rendering the intracellular environment
either permissive or hostile thus determining the anti-leishmanial
activities (14). Leishmania parasites can also alter the metabolic
pathways of the host cell to their advantage, for example by
influencing nutrient uptake (15). It is hypothesized these
metabolomic alterations can protect the parasite from elevated
temperatures, low pH, and ROS in the parasitophorous vacuole
(PV), leading to enhanced survival inside the host cell (15).

Increasing evidence points to a crucial role of innate immune
cells in determining the outcome of the infection. This review
particularly attempts to highlight the role of the innate immune
Frontiers in Immunology | www.frontiersin.org 2
cells, the metabolomic and epigenetic reprogramming, and
immune regulation during VL, and discuss their implications
with respect to the development of a vaccine against VL.
INNATE CELLS AND THEIR ROLE IN VL

Neutrophils
Role of Neutrophils in VL Pathogenesis
Neutrophils are the first innate immune cells recruited to the
dermal site of Leishmania infection in response to several factors
derived either from the host, the sand fly, or the parasite itself
(16, 17) (Figure 1). Neutrophils’ anti-parasitic activities include
phagocytosis, formation of neutrophil extracellular traps (NETs),
as well as the release of reactive species (RNS and ROS) and
granule-derived toxic compounds in the local environment or
into the phagosome (18–23) (Figure 1). Additionally,
neutrophils actively participate in modulating the adaptive
immune responses. Specifically, several cytokines and granule
proteins secreted by neutrophils such as interleukin (IL)-12,
interferon (IFN)-g, tumor necrosis factor (TNF)-a, and
neutrophil elastase can induce T cell activation (24–27).
Alternatively, IL-10, transforming growth factor (TGF)-b
(Figure 1), and eicosanoids (thromboxane A2) from
neutrophils suppress T cell activity (24–26, 28).

The divergent immune responses observed in neutrophils
may be induced by changes in the metabolism of Leishmania
infected cells (27). For instance, L. donovani-infected neutrophils
undergo a rapid upregulation of glycolytic enzymes at 6 hours
post infection. Inhibition of glycolysis prior to infection led to
significantly higher parasitic burdens in neutrophils, by
inhibiting the generation of ROS production due to reduced
NADPH oxidase activity (13, 27). Metabolic reprogramming in
neutrophils may affect other functions in addition to
microbicidal activities and remains an area of active
investigations in Leishmania and other pathogenic agents.

Neutrophils have been shown to play a protective role during
L. donovani infection (11). The rapid recruitment of neutrophils
during L. donovani infection promotes resistance via the
induction of an IFN-g–dominant Th1 response in mice (29),
and canine models of VL (30). Different visceralizing species of
Leishmania can differentially affect neutrophil activities. For
example, L. donovani infection can mediate recruitment,
survival, and deactivation of neutrophils via the lipoxin A4
receptor (16, 31). Conversely, L. infantum interaction with the
lipoxin A4 receptor promoted the activation of neutrophils
characterized by an increase in NET formation (32). These
divergent neutrophil roles due to different Leishmania species
were identified by manipulating the neutrophils in animal
models by treatment with neutrophil depleting antibodies that
may have certain limitations (17, 18, 31). In addition to
metabolite receptors such as lipoxin A4, vector saliva derived
factors such as sialogenins and yellow salivary protein may also
contribute to the diverse neutrophil-specific responses including
FasL-mediated apoptosis in different experimental models (33,
34). Due to the important role played by neutrophils in early
October 2021 | Volume 12 | Article 748325
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immunity, these populations have been studied in human VL as
summarized in the following sections.

Role of Neutrophil Interactions With
Other Immune Cells in Leishmania Immune
Response
Neutrophils, in addition to their independent role in
orchestrating the early cytokine/chemokine responses, also
interact with other immune cell types including DCs,
macrophages, NK cells, B cells, and T cells (35). Since
macrophages are the principal host cells for Leishmania
parasites, the crosstalk between neutrophils and infected
macrophages has been studied in VL. The interaction between
neutrophils and other immune cells has been shown to affect
Leishmania infection and innate immune functions upon
acquiring parasitized neutrophils (36–40). The species of
Leishmania parasites, the host genetic background, and the
apoptotic or necrotic nature of the neutrophils determine
parasite transfer from neutrophils to macrophages, and the
subsequent outcome of their interaction with macrophages (23,
37). The crosstalk between neutrophils and macrophages/DCs in
VL remains to be studied (41), although it is known that when
human macrophages are co-cultured with neutrophils previously
infected with L. infantum in the presence of salivary gland
sonicate (SGS), they acquired significantly more parasites from
neutrophils. These macrophages also produced more TGF‐b and
prostaglandin E2 (PGE2), suggesting the importance of
Frontiers in Immunology | www.frontiersin.org 3
neutrophil-macrophage crosstalk (42). Parasitized neutrophils
may facilitate the uptake by DCs via the expression of apoptotic
markers that lead to decreased DC activation and impaired
cross-presentation for CD8+ T cell activation. Although
CD11b on neutrophils may interact with DC‐SIGN of DCs
and induce secretion of TNF‐a, such interaction remains to be
demonstrated in VL (41). A predominant immunoregulatory
role for neutrophils in regulating DC functions and subsequent T
cell differentiation via DCs during Leishmania infection has also
been reported (16, 41). The role of alarmins released during
degranulation of neutrophils and their role in altering DC
functions remains to be studied in VL (43).

Phenotypic Heterogeneity of Neutrophils
Heterogenous subsets of neutrophils identified based on size and
granularity have been observed to perform either pathogenic or
protective roles in autoimmune diseases, tumors, viral diseases
and vaccines (44–46). Accordingly, Na and Nb neutrophil sub-
populations have been described previously in the context of
murine vaccination with attenuated New York vaccinia virus
(NYVAC-C3). In this paper, Pilato, et al. reported higher
expression of activation markers (CD11c, CD80, and CD86) in
Nb neutrophils. Compared to Na cells, Nb had greater capacity
to induce antigen-specific CD8+ T-cell activation against the
virus (46). Similar studies elucidating the functional roles of
distinct neutrophil subsets revealed diverse roles of neutrophils
in VL. Characterization of recruited dermal neutrophils in
FIGURE 1 | Role of neutrophils in immunity against Leishmania parasites. LdWT (1) or Ldcen-/- (1’) parasites are injected with a needle or by the sand fly vector.
Compared with LdWT infection (2), LdCen−/− (2’) parasites induce higher recruitment of neutrophils, especially the smaller Na subtype, to the ear dermis and ear
draining lymph nodes (dLN), which were predominantly proinflammatory in nature. Similar Na and Nb subtypes were reported in live attenuated HSV vaccine studies.
Neutrophils from ear dLN of LdCen−/−-immunized (3’) mice exhibited heightened expression of costimulatory molecules and attenuated expression of coinhibitory
molecules necessary for higher T cell activation compared to LdWT (3). 4) Adoptive transfer of neutrophils bearing LdCen−/− parasites induced an increased Th1
response in naive mice compared to LdWT. 5) Neutrophil depletion significantly abrogated Ag-specific CD4+ T cell proliferation in LdCen−/−-immunized mice and
impaired protection against virulent challenge. Conversely, replenishing of neutrophils significantly restored the LdCen−/−-induced host-protective response. 6)
Neutrophils can undergo metabolic reprogramming to acquire trained immunity characteristics as shown in BCG vaccination studies.
October 2021 | Volume 12 | Article 748325
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C57BL/6 mice during VL revealed the presence of heterogeneous
Na and Nb neutrophil populations; Na being the predominant
population susceptible to infection (47). Further, studies in
human VL identified the presence of a subset of HLA-DR+ low
density circulating neutrophils that expressed elevated levels of
arginase-1 and IL-10. These neutrophils failed to stimulate
autologous T cell proliferation and promoted T cell exhaustion
due to higher PD-L1 on their surface and elevated PD-1
expression by lymphocytes (48). The divergent functional
specialization of neutrophil subsets observed in VL suggests
that their role in other Leishmania infections warrants
further studies.

Neutrophils and Their Role in Vaccine Induced
Immunity
In addition to the innate immune functions either independently
or through crosstalk between macrophages and DCs illustrated
in the previous section in the context of VL, neutrophils have
been shown to directly present antigens and promote T cell
activation (49–51). Due to their capacity to perform antigen
presentation to naïve T cells, similarly to other APCs, neutrophils
may be particularly relevant in vaccine immunity. Indeed, a
neutrophil-mediated T cell priming response was illustrated in
numerous vaccines, including modified vaccinia Ankara virus,
poxvirus, and live attenuated tuberculosis vaccine (46, 52, 53).
The protective role of neutrophils following immunization
against tuberculosis is demonstrated when depletion of
neutrophils abrogated the induction of Th1-specific responses
(52). Similarly, neutrophil depletion significantly abrogated Ag-
specific CD4+ T cell proliferation in live attenuated centrin gene-
deleted L. donovani (LdCen-/-)-immunized mice and impaired
protective immunity against virulent L. donovani challenge (47).
In contrast, depletion of neutrophils in animals immunized with
killed L. major + CpG vaccine enhanced protection upon sandfly
mediated challenge (19). In LdCen-/- immunization studies,
distinct functional roles of neutrophil subsets were observed.
Specifically, Na subsets from LdCen−/− infected mice expressed
significantly higher levels of costimulatory molecules along with
attenuation of coinhibitory molecules, resulting in significantly
higher CD4+ T cell activation compared with the Na population
from L. donovani wild type-infected mice (47). More studies are
needed to elucidate the role of neutrophil subsets in other anti-
leishmanial vaccination regimens.

In addition to the role of neutrophils in adaptive immune
responses, recent vaccination studies have shown that neutrophils
may also acquire non-specific memory due to epigenetic and
metabolic changes. This process termed “trained immunity” is
being intensely studied in neutrophils and other cell types.
Metabolic reprogramming induced by immunological signals
determines the epigenetic changes that orchestrate trained
immunity (54). These epigenetic modifications are usually broad,
not pathogen-specific, and include chromatin changes to a gene or
locus (55). A recent report form Moorlag, et al. demonstrated that
neutrophils acquire trained immunity after Bacillus Calmette-
Guérin (BCG) vaccination. Furthermore, trained neutrophils
showed long-term reprogramming and maintained their
Frontiers in Immunology | www.frontiersin.org 4
enhanced activation up to 3 months after vaccination (56).
Similar data is not available in leishmaniasis models. The broader
role of neutrophils in vaccine immunity in general and their
capacity to acquire trained immunity characteristics in particular,
are of significant interest although durability and thus relevance of
trained immunity inneutrophils remain tobedemonstrated inanti-
Leishmania vaccines.
MONOCYTES

Monocytes, along with neutrophils, are the earliest immune cell
populations to be recruited after infection of Leishmania (57)
(Figure 2). Recruitment of monocytes is modulated by pro-
inflammatory cytokines and chemokines after infection with
different Leishmania species. Monocyte subpopulations exist
within a phenotypical spectrum ranging from long-lived
patrolling monocytes (non-classical) that mainly monitor the
vasculature as part of normal physiology (58) to short-lived
inflammatory (classical) monocytes (iMOs, CD11b+ CX3CR1lo

Ly6Chi CCR2+ CD115+) (59, 60). During the bloodmeal,
Leishmania is injected along with sand fly salivary components,
which modulate inflammatory responses that lead to CCR2-
mediated chemotaxis of iMOs to the infection site (61), reviewed
in (62, 63). iMOs play contradictory roles in different infections:
while they mediate host defense against toxoplasmosis (64) and
malaria (65), a detrimental role in VL was demonstrated (51).
Monocytes can recognize Leishmania parasites via Toll-like
receptors (TLR)s and produce pro- and anti-inflammatory
cytokines that can play paradoxical roles during leishmaniasis
(66–69) (Figure 2). The expression of TLRs and the molecules on
the parasite surface could also generate a diverse range ofmonocytic
responses during infection with different Leishmania species. For
instance, L. donovani infection of monocytes inhibits oxidative
burst and antigen presentation and activates IL-10 expression via
downregulation of TLR2 and TLR4 signaling (70, 71). In contrast,
during L. tropica infection,monocytes showed higher expression of
TLR9 in addition to TLR2/TLR4, and elevated TNF-a that resulted
in a decrease of inducible nitric oxide synthase (72). Furthermore,
L. braziliensis infection of human monocytes showed enhanced
production of TNF-a and higher TNF-a/IL-10 ratios, and
controlled parasite burdens more effectively compared to
L. infantum infection (66). In addition to their role in
pathogenesis, monocytes play an important role in granuloma
formation, necessary for parasite clearance in murine models of
L. donovani infection. However, an IL-17-/- mouse model of L.
donovani infection showed diminished monocyte and neutrophil
infiltration resulting in smaller isolated granulomas in the liver and
spleen, yet controlled parasite burden due to elevated IFN-g
production (73).

Studies of active VL patients in Brazil and India showed an
increase of CD14+ monocytes, and elevated expression of IL-10,
which affects macrophage polarization and the outcome of the
disease (74, 75). Other studies with Indian VL patients reported
an anti-inflammatory (non-classical) monocyte response in the
peripheral blood characterized by reduced expression of TLR2
October 2021 | Volume 12 | Article 748325
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and TLR4, chemokine receptors and adhesion molecules, as well
as impaired phagocytosis and oxidative burst, important for the
elimination of Leishmania parasites (70, 76). These observations
illustrate the critical role of monocytes in the early modulation of
host immune responses and the clinical outcome of L. donovani
infection. The divergent engagement of TLRs and associated
immune responses following infection of monocytes with
different Leishmania species suggests that targeting these
interactions could be exploited in the development of effective
anti-parasitic strategies.

Role of Monocyte Subsets in the
Pathogenesis of VL
A growing body of research is focused on elucidating the role of
sub-populations of monocytes such as iMOs, intermediate, and
non-classical patrolling monocytes in Leishmania infection.
Monocytic subsets (CD14+ CD16- and CD14+ CD16+) of
human origin displayed significantly increased phagocytic
capacity and intracellular NO production when infected with
Frontiers in Immunology | www.frontiersin.org 5
L. infantum, compared to L. braziliensis (77). iMOs contribute to
parasite control at the lesion site in CL (78), but they play a
detrimental role in VL (59). Similarly, different subsets of
resistant (Ly6Clo/M1-like) or permissive (Ly6Chi/M2-like)
monocytes have also been reported in VL (79). Our previous
studies demonstrated that iMOs (CD11b+ Ly6Chi) are rapidly
recruited into the spleen and liver within 24 hours of L. donovani
infection in a CCR2-dependent manner, such that iMOs can
make up to 15-25% of the myeloid cells in these organs
(Figure 2) (59). The iMOs recruited to the spleen during
L. donovani infection can acquire a hypoxia‐inducible factor
(HIF)-1a mediated myeloid-derived suppressor cells (MDSC)
like phenotype, which promotes a chronic infection (80).
L. donovani infection of hamsters has been shown to induce
extramedullary hematopoiesis of myeloid cells in the spleen
resulting in the accumulation of monocytes that support
parasite replication (81). Migration of Ly6Chi iMOs to the
spleen and liver is facilitated by STAT-1 signaling (59, 82).
Therefore, altering monocyte migration to spleen and liver by
FIGURE 2 | The paradoxical roles of monocytes during visceral leishmaniasis. 1) Monocyte chemotaxis to the infection site is mediated in a CCR2-dependent
manner. During the blood meal, this process is additionally potentiated by sand fly salivary components. 2) The inflammatory monocytes, iMOs (light green),
recognize Leishmania trough TLR2 and TLR4. TLR recognition, together with the IFN-g released by neutrophils, induce the secretion of TNF-a, ROS, and NO that
results in parasite killing. Although the specific cytokine regulation is species-specific. 3) Particularly during VL, Leishmania can downregulate TLR2 and TLR4
signaling, dampening phagocytosis and respiratory burst, and promoting IL-10 production. This way, the parasite promotes its own survival by favoring the anti-
inflammatory monocyte profile (dark green). 4) Infected iMOs migrate rapidly to the liver and spleen, where they undergo extramedullary hematopoiesis (EMH) and
acquire a HIF-1a-mediated MDSC-like phenotype, that is permissive for parasite survival, as observed in VL patients. 5) In the liver and spleen, anti-inflammatory
monocytes are necessary for granuloma formation via the production of IL-13 and IL-4, which has a protective role during VL. 6) In the context of vaccination, iMOs
and T cells interplay is critical for memory responses. On the one hand, skin resident CD4+ memory T cells (TRMs) recruit iMOs to the infection site, where they
produce ROS and NO to control the infection. 7) At the same time, iMOs activate T cell responses by presenting antigens via MHC-II and producing NO and IFN-g;
and with the use of co-adjuvants targeting monocytic response, iMOs can also produce IL-12 (*). 8) Finally, it is possible that monocytes undergo metabolic and
epigenetic reprograming during VL.
October 2021 | Volume 12 | Article 748325
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immunomodulatory agents could be a potent parasite control
strategy (83). Indeed, therapeutic reduction of the iMOs influx to
the visceral organs with Ibrutinib, is shown to reduce
susceptibility to L. donovani infection in mice (84).

Role of iMOs in Vaccine Induced Immunity
Due to the pluripotent nature of monocytes to differentiate into
macrophages and DCs, it is important to understand the early
interaction between monocytes and Leishmania parasites.
A recent study showed that iMOs are necessary to control
L. major infection during challenge in a healed C57Bl/6 mouse
model (85). iMOs are the main inducible nitric oxide synthase
(iNOS) producers during secondary infections (86). Specifically,
skin resident CD4+ memory T cells (TRMs) responsible for
controlling the secondary infection recruit iMOs to the challenge
site. These recruited iMOs reduced the parasite burden even in
absence of CD44+ IFN-g+ effector T cells by producing ROS and
nitric oxide (NO) (85). iMOs also play a critical role in initiating
differentiation of T cells to acquire a memory phenotype by
secreting IL-18 and IL-15 in Listeria monocytogenes models,
suggesting that iMOs could be an analogous source of these
cytokines in Leishmania infections, though this needs to be
formally demonstrated (87). Thus, due to their roles in parasite
clearance at the challenge site and potentially in initiating a TRM
response, targeting iMOs could improve efficacy of anti-
Leishmania vaccines. For example, CpG oligonucleotides, when
used as adjuvants, have been shown to induce IL-12 in
monocytes (88). Studies of Leishmune®, a vaccine for canine
VL, have elucidated the critical role of monocytes in relation to
vaccine efficacy. Monocytes and neutrophils from vaccinated
dogs showed increased phagocytic activity, NO and IFN-g
production, expression of TLRs, costimulatory molecules, and
MHC-II (89, 90). The importance of monocytes relies not only
on their early immune responses, but also in their capacity to
activate an effective adaptive response, which is crucial in any
vaccination design.

As described in the neutrophil section, there is an emerging
interest in exploring the role of epigenetic and metabolic
reprogramming in the context of trained immunity in
monocytes (Figure 2). For example, Bacillus Calmette-Guérin
(BCG) and b-glucan from Candida albicans can induce
epigenetic changes in histone trimethylation at H3K4 in
monocytes and macrophages to promote trained immunity (91).
In particular, it seems that aerobic glycolysis induced by the
activation of Akt, mammalian target of rapamycin complex 1
(mTORC1), and HIF-1 is responsible for cellular activation and
trained immunity to BCG vaccination (92). Similarly, b-glucan
from Candida albicans is shown to induce non-specific trained
immunity in monocytes that conferred protection against
L. braziliensis, by promoting IL-1b signaling and inducing
epigenetic changes that result in upregulation of IL-32 (93).
However similar trained immunity has not been demonstrated
in other Leishmania species. These studies highlight how
epigenetic and metabolic reprogramming can have profound
effects on pathogen immunity. However, little is known about
how such mechanisms are operating during Leishmania infections
Frontiers in Immunology | www.frontiersin.org 6
overall and how they can be exploited for the development of a
pan-Leishmania vaccine including protection against visceral
leishmaniasis. Since the life span of innate immune cells is
limited, trained immunity has been shown to last up only up to
one year (94). It is possible that in Leishmania endemic areas,
where individuals are constantly exposed to Leishmania parasites,
trained immunity can be repeatedly induced and could play a role
in durable protection. Therefore, similar to the BCG vaccine, it
may be desirable for efficacious vaccines against VL to target the
induction of a robust trained immunity in addition to strong
adaptive immune responses that are likely long-lasting.
MACROPHAGES

Macrophages are considered the canonical hosts for Leishmania
in the later stages of infection, following phagocytosis of
Leishmania-infected apoptotic neutrophils (Figure 3) (95).
Neutrophils provide the chemical cues (MCP-1/CCL2, MIP-
1a/CCL3, MIP-1b/CCL4 and MIP-2/CXCL2) that help recruit
macrophages to the infection site (96). In addition, salivary
components induce a significant influx of macrophages in a
CCL2/MCP-1 dependent mechanism in L. chagasi infection (97).
Macrophage response to infection is dependent on the interplay
of a) the surface molecules on the Leishmania parasites, such as
glycoprotein-63 (gp63), lipophosphoglycan (LPG) and
glycosylphosphatidylinositol (GPI); and b) the receptors which
recognize them, such as Toll-like receptors (TLRs) (98)
fibronectin, mannose, complement and Fc receptors (Figure 3)
(99). Binding of Leishmania to complement and Fc receptors
slows down phagosome maturation (100) and induces IL-10
production (99, 101, 102). TLRs recognize Leishmania surface
gp63 and activate the NF-kB pathway in macrophages (Figure 3)
(103). Interestingly, Leishmania uses gp63 to negatively regulate
ROS production (104) and is shown to be critical for
Leishmania-mediated inhibition of NLRP3 inflammasome and
attenuating IL-1b secretion (105, 106). Macrophages play a dual
role in the infection, as they not only serve as permissive hosts,
but are also as anti-Leishmania effector cells (107). These
contrasting roles depend on the microenvironmental signals in
the host tissue (108) in response to differentLeishmania species and
on the differential recognition of the parasites. Depending on the
stimulus, infected macrophages can polarize towards a functional
phenotype within the spectrum ranging from inflammatory
macrophages (also called classically activated or M1) and anti-
inflammatory macrophages (also called alternatively activated of
M2, Figure 3). Macrophage polarization can determine the
outcome of the disease (37, 109–111). As discussed in the
previous section, iMOs usually mature into M1 macrophages,
while anti-inflammatory monocytes are more likely to
differentiate into M2 macrophages (59, 112). Some of the parasite
factors, such asL. infantum-derived lipidmediators, canalso induce
M2 phenotype by preventing IFN-g-mediated M1 polarization
(113). Functionally, macrophages classified within the M1 and
M2 spectrum show distinct activities. The relationship between
the macrophage phenotype and the immune milieu during
October 2021 | Volume 12 | Article 748325
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Leishmania infection is discussed inmore detail elsewhere (107). It
is important to note that the phenotypic spectrum of macrophages
is quite dynamic, and this plasticity confers a wide range of distinct
phenotypic characteristics. However, for the purpose of this review
werefer to thepro-inflammatoryandanti-inflammatory endsof the
spectrum as M1 and M2, respectively, as has been previously
established in Leishmania immunology.

Types of Macrophages and Their Role in VL
Macrophages of M1/M2 phenotype are identified primarily
based on their immunological characteristics. Recent studies
have brought to focus distinct metabolic reprogramming that
underlies the functional specialization of macrophages in
addition to the vector/parasite derived factors that affect the
macrophages. Leishmania parasite infection of macrophages is
accompanied by metabolic changes that help the parasite adapt
to the new environment. For example, L. infantum parasites
optimize their metabolism to compensate for limited resources
within macrophages by redistributing host metabolites towards
Frontiers in Immunology | www.frontiersin.org 7
the synthesis of biomass (114). Although the intracellular
metabolism of Leishmania parasites is widely conserved,
significant differences between L. infantum and L. mexicana
infections have been reported (114–116). Tight junctions between
the parasites and the parasitophorous vacuole (PV) allow for the bi-
directional transport of lipids (14). Because of this, lipid bodies can
accumulate in and around PVs and provide amastigotes with a
carbon source of polyunsaturated fatty acids (PUFA) (14). Parasite
metabolites themselves can affect the polarization of the
macrophages. For instance, the infective metacyclic stages of L.
infantum showed increased levels of docosahexaenoic acid, a
PUFA, compared to the non-infective procyclic forms (113).
Docosahexaenoic acid and its derivative resolvin D1 were shown
to induceM2polarization inmacrophages (117). In this context, it is
interesting to note high serum levels of resolvinD1 and other lipids,
such as prostaglandin F2 and leukotriene B4, observed in VL
patients (118).

Activation of pro-inflammatory macrophages (M1) is due to
stimuli such as IFN-g, lipopolysaccharide (LPS), and TLR
FIGURE 3 | Macrophage immunity against Leishmania parasites. 1) Leishmania promastigotes are injected into the host via needle injection or sand fly injection.
2) Monocytes differentiate into macrophages at the infection site. 3) Macrophages are recruited by neutrophils and infected after neutrophils release Leishmania
parasites, or as a consequence of phagocytosis of necrotic neutrophils. 4) Macrophages are the canonical host for Leishmania and can polarize towards M1 after
TLR stimulation via Leishmania molecules such as LPG and GP63. 5) TLR signaling induces HIF-1a and subsequent upregulation of glycolysis and the pentose
phosphate pathway (PPP). 6) TLR signaling also leads to NF-kB translocation to the nucleus and subsequent release of IL-12, TNF-a, and NO. SHP-1 upregulation
by the parasite GP63 and LPS can interfere with this pathway. 7) On the other hand, stimuli such as IL-10, IL-4, and TGF-b can polarize macrophages towards an
M2 anti-inflammatory phenotype, characterized by upregulation of fatty acid (FA) oxidation, oxidative phosphorylation and arginase production. 8) M2 macrophages
produce IL-10 and TGF-b, which mediate collagen deposition and granuloma formation in VL. 9) Different factors such as Leishmania-derived lipids,
immunomodulatory therapeutics and Th cells can induce and alter macrophage polarization. 10) The interplay between macrophages and Th1 cells via antigen
presentation and cytokine release is involved in vaccine-induced immunity. Furthermore, metabolomic reprogramming could influence vaccine immunity, as shown in
BCG vaccine, although this remains underexplored in Leishmania. PPP, pentose phosphate pathways; FA, fatty acid; NO, nitric oxide.
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signaling (111, 119). Metabolomic studies, however, identified
such activation to be dependent on upregulated glycolysis and
glutaminolysis. Conversely, activation of anti-inflammatory
macrophages (M2) occurs through stimuli such as IL-13 and IL-
4, independently of TLR. Anti-inflammatory macrophage-
activation is also dependent on fatty acid oxidation (Figure 3)
(13, 120). Additional metabolic changes have been identified that
drive subsequent immunomodulation of macrophages. For
example, the upregulation of the pentose phosphate pathway,
crucial for pro-inflammatory (M1) effector functions (121),
occurs several hours prior to the induction of pro-inflammatory
cytokines (122).

In pro-inflammatory (M1) macrophages, HIF-1a has been
identified as the main regulator of glycolytic metabolism, and it
contributes to pathogen clearance (Figure 3) (13). M1
macrophages upregulate anaerobic or aerobic glycolysis and
the pentose phosphate pathway to generate ATP and NADPH,
used for ROS production, which aids parasite clearance. On the
other hand, M2 macrophages shift towards a more efficient
mitochondrial respiration, making the macrophage more
permissive to amastigote growth (14, 123). Additionally,
arginine transport is upregulated in activated M1 macrophages,
where it is readily used to produce NO. On the other hand, low
IFN-g activation leads to decrease NO levels and increased
arginine availability for the parasite (14, 124). Taken together,
these studies show that metabolic reprogramming of the host cell
has a profound effect on its effector functions of macrophages.

Pro-inflammatory (M1) macrophages upregulate IL-12 and
TNF-a expression, as well as ROS and RNS production, crucial
to control Leishmania infection, as demonstrated in both mice
and human models (111, 125, 126). Within this inflammatory
microenvironment, IL-12 can upregulate iNOS and promote the
development of IFN-g-producing Th1 cells (99). IFN-g then
induces IL-12 and iNOS expression (99), which synthesizes
high amounts of NO with leishmanicidal activities. However,
the signal transduction of both IL-12 and IFN-g in macrophages is
interrupted in Leishmania infections (L. donovani, L. major, and L.
mexicana) by inhibition of STAT-1 and STAT-4 phosphorylation
(127, 128). Also, Leishmania favors the activation of SHP-1, an
inhibitor of the TLR cascade, which impairs production of pro-
inflammatory cytokines (Figure 3) (129). The importance of SHIP-
1 pathway in parasite survival was demonstrated in invitro studies
by the inhibition of SHIP-1 pathway by using antileishmanial drug
sodium stibogluconate (130). Similarly, surface molecules such as
lipophosphoglycan (LPG) from L. donovani dampen the IL-12 and
ROS production by preventing MAPK activation (127), although
the protective effect of LPG seems to be species and strain
dependent (131, 132). A more in-depth discussion of the
signaling pathways involved in Leishmania infection has been
covered in detail in other reviews (74, 80, 82, 99).

Anti-inflammatory (M2) macrophages show an IL-10 and IL-
4 dominant response that can lead to decrease NO secretion (7,
109, 133). Furthermore, IL-10 can make macrophages refractory
to IFN-g-mediated activation (99). In human VL, high IL-10
levels in blood and lesion tissue correlated with high parasitic
load (134–139). Thus, human L. donovani infections show a
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predominant activity of M2 macrophages (140, 141) however
M1/M2 dichotomy in protection versus pathogenicity is not
always as binary. M2 macrophages can also play a protective
role during VL, as IL-4 and IL-13 are necessary for collagen
deposition and granuloma formation (Figure 3) (142).

Role of Macrophages in Vaccine
Induced Immunity
Due to the specialized role of macrophages in the induction of
immune response against leishmaniasis, they are extensively
studied in the context of assessing candidate vaccines.
Macrophages due to their role of professional antigen presenting
cells, are crucial for T cell activation after antigen presentation.
The combined signals provided by the parasitized macrophages
displaying Leishmania antigenic epitopes and their interaction
with naïve CD4+ T cells bearing cognate T cell receptors lead to the
development of an antigen-specific effector T-cell response.
Accordingly, the role of macrophages in Leishmania clearance
during challenge infection following activation of T effector cells
has been reported in numerous experimental vaccines including
protein-based, nano-particulate encapsulated, and DNA-based
vaccines (143–147). The macrophage chemokine network is
critical in producing tissue resident CD4+T memory cells
(TRM) in viral vaccines (148). A similar role for macrophages in
the generation of tissue resident memory T cells in Leishmania
remains to be demonstrated.

The role of macrophages in the design and development of
novel candidate vaccines has been reviewed previously (149, 150).
Still, it is possible that vaccines or adjuvants targeting
macrophages potentiate and complement the cellular immune
response, at the same time allowing the macrophages to intensify
the killing of internalized Leishmania. M1 macrophage-mediated
induction of a polarized Th1 response was associated with
resistance to intracellular pathogens. Such a polarization of T
cells by pro-inflammatory (M1) macrophages was associated with
protection in several vaccine studies, including studies of
recombinant Mycobacterium bovis BCG, attenuated West Nile
virus (WNV), and live attenuated measles virus. These studies
show that efficacious candidate vaccines manipulate macrophages
to enhance pro-inflammatory responses and yield improved
protection (151–153). Exploitation of differential macrophage
phenotype towards improving the efficacy of experimental
vaccines warrants further studies.

The role of macrophages in potentiating a Th1 or Th2 response
in vaccine immunity or pathogenesis has been shown in
experimental L. donovani infections, with a special emphasis on
the role of membrane cholesterol in enabling anti-leishmanial
activities of macrophages (154). Specifically, L. donovani can alter
the physiology of the macrophage membrane by depleting
cholesterol, resulting in defective antigen presentation and
impaired T cell responses (155–157). Interestingly, as opposed
to virulent wild type L. donovani (LdWT) infection, immunization
with the avirulent genetically modified LdCen-/- does not interfere
with membrane fluidity and antigen presentation, allowing for
macrophage activation and induction of Th1 immunity (120).
Similarly, human macrophages infected with LdWT or LdCen-/-
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have shown differential expression of miR-21 and its target gene
IL-12 illustrating the early immune modulatory role of the live
attenuated vaccines (158). In summary, although macrophages
have been studied extensively in VL pathogenesis and in
experimental vaccines, emerging data in other vaccines
exploring their role in trained immunity suggests that early
metabolomic reprogramming in macrophages similarly could
have profound effects in determining efficacy or Leishmania
vaccines and therapeutics thus remain to be investigated.
DENDRITIC CELLS

Dendritic cells (DCs) are professional antigen-presenting cells
(APCs), are ubiquitous in the peripheral tissues, and perform
sentinel functions (Figure 4). Several distinct subsets of DCs
(plasmacytoid, conventional, monocyte derived and more) have
been identified based on their functional specialization and
expression of distinct markers (159). Similar to other
phagocytic cells, DCs can take up antigens via Fc receptors, C-
type lectin receptors (CLRs), and pattern recognition receptors
such as TLRs (Figure 4) (160). Recognition of Leishmania
parasites by DCs is accomplished via TLR-2, -4, and -9 (161).
TLR-9 has been identified as being responsible for DC activation
and production of neutrophil chemo-attractants and IL-12
secretion in L. infantum infection in C57BL/6 mice (162).
Following infection, DCs undergo maturation and express
MHCII, CD80, CD86, CD40 and migrate to lymphoid tissues
where they present antigens to naïve T cells (Figure 4) (10). DCs
are the main producers of IL-12, which is critical for polarization
of naïve T cells into IFN-g producing Th1 cells (163). L. donovani
infected DCs start producing IL-12, IL-23 and IL-27 within 5
hours of infection, IL-12 being mostly produced in CD8a+ DC
subsets (164). In the chronic stage of L. donovani infection,
CD11c+ splenic DCs showed a functional impairment, correlated
with reduced surface expression of MHC-II and impaired IL-12
production (165). Similarly, migration of splenic DC into
marginal zones is regulated by the CCR7 ligands CCL19/
CCL21, which also affect the ability of DCs to produce IL-
12 (166).
Role of DCs in VL Pathogenesis
Expression of IL-12 in DCs is regulated by several factors
including HIF-1a (167), interactions between VCAM-1/VLA-4
(Vascular cell adhesion molecule-1 and very late antigen-4)
(168), miR-21 (169), and miR-155 (Figure 4) (170). DCs
patrol for pathogens and participate in the immune response
against Leishmania parasites, mainly by migrating to secondary
lymphoid tissues and activating naïve T cells through antigen
presentation. In addition, parasite factors such as L. infantum
excreted/secreted proteins (LipESP) reduced the ability of human
DCs to produce IL-12p70 (171). Similarly, exosomes from L.
donovani failed to prime monocyte-derived human DCs to drive
the differentiation of naive CD4 T cells into IFN-g-producing
Th1 cells in vitro. Vesicles from L. donovani parasites deficient in
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HSP100 showed a stronger pro-inflammatory phenotype in
human DCs in vitro (172). Similarly, exosomes from L.
donovani-infected bone marrow-derived DCs (BMDCs)
showed a miR-21 dependent inhibition of IL-12 production
indicating numerous mechanisms exist that regulate the
function of DCs, particularly IL-12 production (158).

In addition to cytokine/chemokine-mediated immune
regulation, metabolic changes in DCs have also been shown to
affect their functions. For instance, inactivated DCs use oxidative
phosphorylation and fatty acid oxidation for energy supply and
biomolecule synthesis (173). However, infection leads to
substantial metabolic changes as a result of PAMP-mediated
activation. In particular, oxidative phosphorylation is reduced
(174), while anaerobic glycolysis, fatty acid synthesis, and the
pentose phosphate pathway are induced for ATP production and
biosynthesis of lipids and nucleotides (Figure 4) (175, 176).
These metabolic changes play important roles in inflammation
and in the establishment of an immune response. Generally, the
regulator of glycolytic metabolism HIF-1a plays a key role in DC
maturation and activation during inflammation (177). However,
HIF-1a was shown to promote L. donovani infection by reducing
IL-12 production in splenic DCs, thereby limiting Th1 expansion
(167), and impairing CD8+ expansion (178) in murine VL
models. These findings are in contrast to what was shown in
macrophages, where HIF-1a reduced susceptibility to
L. donovani (179), and suggest that the effects of glycolysis are
likely to be host cell specific.
Role of DCs in Vaccine Induced Immunity
DCs due to their potent APC activities have been used as potential
Leishmania vaccines by loading selected vaccine antigens or DC-
derived exosomes, although these vaccines did not progress
beyond laboratory studies (180–182). More recent studies focus
on ex-vivo pulsing of DCs, and then using these cells to vaccinate
mice, which has shown promising results. As such, pulsing the
DCs with the N-terminal of Leishmania elongation factor 2, an
antigen overlapping MHC-I and MHC-II epitopes, triggered a T
cell response when used with CpG oligodeoxynucleotides. Such
vaccinated mice could control L. infantum infection, resulting in
IL-2 and TNF-a, but not IL-10 production by CD4+ T cells, and in
the production of IFN-g by both CD4+ and CD8+ T cells (183).
DCs have also been shown to play a critical role in priming Th17
response in L. donovani infections. Immunization with LdCen-/-

parasites showed that LdCen-/–infected DCs produce IL-1b, IL-6,
and TGF-b to promote the development of Th17 lineage, and
upon virulent challenge with wild-type L. donovani (LdWT)
infection both CD4 and CD8 T cells produced IL-17, resulting
in protection (184). Similar results were found when priming DCs
with the C-terminal domain of nucleoside hydrolase NH36 from
L. donovani (185). In addition to the T cell response against
the L. infantum chagasi challenge, the defect in DCs migration
to the lymph node was reversed, allowing proper antigen
presentation (185).

The multifarious roles played by DCs as a critical source of IL-
12 and the redundant mechanisms that affect the expression of
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IL-12 in Leishmania infection highlight the pivotal role of DCs in
pathogenesis and potentiating an efficacious vaccine response.
MAST CELLS

Mast cells (MCs) have been shown to participate in the innate
immune responses in CL and VL (8, 186). MCs participate in the
initiation and orchestration of innate and adaptive defense to
pathogens and in various inflammatory responses (187, 188).
MCs are present in large numbers in the skin, predominantly in
the superficial dermis, the site where Leishmania parasites are
deposited after the bite of infected sand flies (189, 190).

Literature on MCs with respect to visceral infections of
Leishmania is sparse. Much of our understanding of the role of
MCs in Leishmania is derived from studies of CL. MC-derived
TNF-a followed by neutrophil influx and MIP-1a/b release is
required for the recruitment of macrophages during cutaneous
granuloma formation, a hallmark of parasite-induced
inflammatory responses (191). Indeed, MCs recruit effector
cells of innate and adaptive immunity to sites of L. major
infection and induce systemic protective dendritic cell (DC)-
Frontiers in Immunology | www.frontiersin.org 10
dependent adaptive immune responses that eventually control
L. major infection. Differential MC infiltration patterns and
responses have been reported depending on the mouse strains
(8) and Leishmania species (186). For example, there was a
significant uptake and killing of L. tropica by MCs compared to
L. donovani. Interactions of MCs with both these Leishmania
species ensues the release of MC extracellular traps (MCETs)
analogous to NETs produced by neutrophils (Figure 1).
Although both L. donovani and L. tropica seem susceptible to
MCETs, relatively higher number of viable promastigotes of L.
donovani in comparison to those of L. tropica are observed
indicating the relative resistance of L. donovani parasites. Thus,
MCs play a very important role in early innate immune response
to L. tropica and L. donovani and thus may play an important
role in the success of vaccines against Leishmaniasis (186).
Indeed, it has been hypothesized that MC-induced control of
L. major infections is not only restricted to the induction of local
inflammation, but that MC recruitment of pro-inflammatory
cells (i.e. DCs) to sites of L. major inoculation ensures the
development of protective, long-lasting memory responses
against L. major (192), suggesting the relevance of MCs in
vaccine immunity. Interestingly, vaccination with LdCen-/-
FIGURE 4 | Critical roles of dendritic cells in immunity against Leishmania parasites. 1) Leishmania promastigotes are injected into the host via needle
injection or sand fly injection. 2) DCs interact with Leishmania parasites through TLR-2/4/9, Fc receptors and C-type lectin receptors. 3) Activation of DCs is
indicated by the elevated expression of MHC-II/CD40/CD80/CD86. Leishmania infections also causes expression of co-inhibitory molecules. 4) DCs are the
main producers of IL-12 in addition to TNF-a, IL-6, TGF-b, IL-23, and IL-1b, which determine the differentiation of naïve T cells. 5) Expression of IL-12 is
affected by microRNAs, transcription factors such as HIF-1a and ligands such as VCAM-1/VLA-4. 6) Upon interaction with DCs in lymphoid tissues in
presence of cytokine signals, naive T cells differentiate into Th1, Th2 or Th17 cells and produce pro-inflammatory cytokines IFN-g, TNF-a, or anti-
inflammatory cytokines IL-4, IL-13 or IL-17. 7) Infected DCs are characterized by upregulation of anerobic glycolysis, fatty acid synthesis, pentose
phosphate pathway, and by down regulation of oxidative phosphorylation, which results in poor expansion of Th1 cells. 8) Vaccination with live attenuated
Leishmania parasites has shown elevated IL-12 production and expansion of Th1 cells. 9) Similar to other innate immune cells, metabolomic immune
regulation in DCs upon vaccination remains an unexplored area.
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parasites against virulent L. mexicana challenge resulted in
reduced infiltration or absence of degranulated MCs, which
correlated with protection (193). MCs may have a role in
Leishmania vaccination, similar to that observed in BCG
vaccination, where MCs phagocytize BCG, produce ROS, and
release MCETs (194). More studies in experimental models and
in humans are required to understand the immune mechanisms
that determine MCs involvement in Leishmania vaccine-induced
immunity. MCs-derived molecules have shown potent adjuvant
activity in certain vaccines [Reviewed in (195, 196)]. In
Toxoplasma gondii infection, the treatment with two different
MCs-derived molecules, C48/80 or cromoglycate, can either
increase or decrease the parasite burden by differentially
favoring Th1 or Th2 responses, respectively (197). Similar
results have also been observed in a Trypanosoma cruzi murine
model, where cromoglycate administration led to an increase of
parasitic burden (198). Administration of other MCs-derived
molecules like tryptase, resulted in the cleavage of many Th2
cytokines, and consequent Th1 polarization (199). Similar
studies in Leishmania exploring the role of MC-derived
molecules as potential immunomodulators remain to
be undertaken.
NATURAL KILLER AND NKT CELLS

Natural killer (NK) cells, identified as CD3−CD56+ in humans,
are characterized by their cytotoxic activity and cytokine
production (200), and have been shown to participate in the
immune response against Leishmania (Figure 1). VL patients
show three different NK subsets: CD56–CD161+, CD56+
CD161–, and CD56+CD161+, with a loss of the CD56+
CD161+ population in comparison to the healthy individuals
(201). TLR-2 recognition of Leishmania LPG activates NK cells
and induces the production of IFN-g and TNF-a and the
translocation of NF-kB to the nucleus. This activation seems to
be more intense in response to metacyclic promastigotes,
compared to procyclic promastigotes (202). IFN-g production
and NK cytotoxicity is also dependent on TLR-9 (203).
Interestingly, the downregulation of STAT-1 related to the
reduction in IFN-g, TNF-a and TLR2 expression by NK cells
allows the development of diffuse cutaneous leishmaniasis
(DCL), a form of the disease characterized by the uncontrolled
spread of the parasites (204). Moreover, lesion healing of DCL
patients corelates with the increase of CD16+ CD56+ NK cells
(205). Despite their important role, NK cells are not necessary for
the establishment of an effective Th1 response against L. major
(206), or L. tropica, whereas they are indispensable for the
elimination of L. donovani amastigotes (207). A more detailed
appraisal of the role of NK cells during leishmaniasis can be
found in (208). Recent studies have identified NK cells to play a
role in vaccine-mediated immunity. Laabs, et al. have shown that
vaccination with live L. major combined with CpG DNA leads to
DC and NK activation, as well as increased IFN-g production by
NK cells (209). Interestingly, NK cells have also been shown to
acquire trained immunity, in the context of BCG vaccination.
However, the exact epigenetic and metabolic reprogramming
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underlying this phenomenon remains to be fully elucidated (210,
211). Similar to other innate cell types, the role of trained
immunity in NK cells needs to be further investigated in the
context of Leishmania infection and vaccination.

There are few reports about the role of NK-T cells (NKTs) in
leishmaniasis. NKTs are CD1d-restricted T cells with innate and
adaptive properties, which react to a variety of stress proteins and
glycolipids using either NK or T cell effector mechanisms (212).
Glycoconjugates on the Leishmania surface are detected by
CD1d+ NKT cells, which are protective against leishmaniasis
in early stages of VL (213). CD8+ NKT cells are also protective,
express IFN-g and Killer cell immunoglobulin-like receptors
(KIRs) and do not migrate towards the L. donovani infection
site, whereas the CD4+ NKTs are found to be pathogenic as they
migrate towards the infection site and express CD25, FoxP3 and
IL-10 (214). In comparison to other immune cells, literature on
the role of NK and NKT cells remains limited in VL. They may
yet play important roles in protective immunity in anti-
leishmania vaccines analogous to the limited studies in BCG
vaccination that revealed potent trained immunity that
contributed to protection.
CONCLUSION

The immune response to Leishmania infection is primarily
initiated by innate immune cells which orchestrate the
generation of protective innate and adaptive immunity against
Leishmania parasites. Innate immune cells specialize in the
clearance of invading pathogens. Leishmania parasites have
evolved a range of evasion strategies to subvert normal innate
cell function. While the role of the innate immune cells in host
protection during Leishmania infection are being explored,
important questions regarding their roles in shaping the
protective immunity in a prophylactic vaccine setting remain
to be investigated. Furthermore, chronic infections with
Leishmania parasites have been shown to induce prominent
changes in host metabolomic pathways that influence immune
cell proliferation, differentiation, and effector functions. Current
advances in metabolomics have made significant impact and
present important implications in the management of VL.
Metabolomic profiling during VL may reveal novel immune
regulation networks that can be exploited for vaccine
development. Additionally, while metabolic changes in
different Leishmania species are well studied and could serve as
biomarkers of virulence and disease progression, what would be
a desirable metabolic profile for innate immune cells during
vaccination remains to be investigated. In conclusion, innate
immune cells are critical for the development protective
immunity due to their profound role in shaping adaptive
immunity. Furthermore, innate cells themselves may undergo
epigenetic and metabolic changes that renders them to acquire
trained immunity, an emerging concept that has been studied in
various vaccines. Such studies of metabolomic and epigenetic
changes of innate immune cells will benefit the development of
efficacious vaccines against VL.
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