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Detecting SNPs associated with drug efficacy or toxicity is helpful to facilitate personalized medicine.
Previous studies usually find SNPs associated with clinical outcome only in patients received a specific
treatment. However, without information from patients without drug treatment, it is possible that the
detected SNPs are associated with patients’ clinical outcome even without drug treatment. Here we
aimed to detect drug response SNPs based on data from patients with and without drug treatment
through combing the cox proportional-hazards model and pairwise Kaplan-Meier survival analysis. A
pipeline named Detection of Drug Response SNPs (DDRS) was built and applied to TCGA breast cancer
data including 363 patients with doxorubicin treatment and 321 patients without any drug treatment.
We identified 548 doxorubicin associated SNPs. Drug response score derived from these SNPs were asso-
ciated with drug-resistant level (indicated by IC50) of breast cancer cell lines. Enrichment analyses
showed that these SNPs were enriched in active epigenetic regulation markers (e.g., H3K27ac).
Compared with random genes, the cis-eQTL genes of these SNPs had a shorter protein–protein interaction
distance to doxorubicin associated genes. In addition, linear discriminant analysis showed that the eQTL
gene expression levels could be used to predict clinical outcome for patients with doxorubicin treatment
(AUC = 0.738). Specifically, we identified rs2817101 as a drug response SNP for doxorubicin treatment.
Higher expression level of its cis-eQTL gene GSTA1 is associated with poorer survival. This approach
can also be applied to identify new drug associated SNPs in other cancers.
� 2021 The Author(s). Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creative-

commons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Cancer is a group of diseases involving uncontrolled growth and
spread of abnormal cells. Cancer incidence and mortality are
rapidly growing. Much work is ongoing to achieve better treatment
of this group of diseases. However, as an extremely heterogeneous
condition, it is estimated that any particular class of drugs is inef-
fective in about 75% of cancer patients [1]. Therefore, how to real-
ize personalized medicine (i.e., selecting optional therapy
according to patients’ personal profile) remains a key challenge.

It is reported that genetics account for 20%–95% of variability in
drug disposition and effects [2]. Single nucleotide polymorphisms
(SNPs) account for about 80% of the overall genomic heterogeneity
[3]. Moreover, a number of pharmacogenomics studies have
demonstrated that SNPs could influence the efficacy and side
effects of drugs [4]. For anti-cancer drugs (e.g., irinotecan, mercap-
topurine, 5-flurouracil, and tamoxifen), several SNPs have been
reported to be associated with drug efficacy or toxicity [5–7]. These
early studies generally focused on SNPs within pre-specified genes
of interest, which might miss other potentially significant poly-
morphisms. Recently, with the advances in high throughput tech-
nologies, genome-wide association study (GWAS) provides a
hypothesis-free approach to identify novel SNPs that are responsi-
ble for drug response. For example, Khan et al. [8] reported that the
common SNP rs8113308 mapped to 19q13.41 was associated with
reduced survival among endocrine treated breast cancer patients.
Cairns et al. [9] identified a SNP in CSMD1 associated with breast
cancer–free interval in a phase III randomized trial of anastrozole
versus exemestane. Generally, these studies usually tested the
association between SNPs and drug responses (e.g., recurrence-
free survival) only in patients received a specific treatment.
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Fig. 1. An overview of the approach. Step 1: We performed SNP � drug interaction
analysis in all patients (including patients with drug treatment and patients
without any drug treatment). SNPs with significant drug term (P < 0.05 forb1) and
significant interaction term (P < 0.05 forb3) were remained. Step 2: For SNPs
obtained from the first step, we performed Kaplan-Meier (KM) analysis in subjects
with different genotypes to select SNPs associated with drug response in patients
with drug treatment. KM analysis in patients without any drug treatment was also
performed to remove the SNPs associated with survival but this association was not
related to drug treatment. Step 3: We performed univariate cox proportional
hazards analysis for each drug response SNPs get from the first two steps. The
coefficients for all SNPs was used to calculate drug response score (DRS) in another
population to test the performance of drug response prediction.
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However, without information from patients without drug treat-
ment, this design cannot discriminate drug response SNPs from
clinical outcome associated SNPs. That’s, it is possible that the
detected SNPs are associated with patients’ clinical outcome even
without drug treatment.

In this study, we aimed to find drug response SNPs based on
data from patients with and without drug treatment. A pipeline
named Detection of Drug Response SNPs (DDRS) was built through
combing the cox proportional-hazards model and pairwise Kaplan-
Meier survival analysis. Briefly, first, we fit a Cox’s proportional
hazards model including three variates, including SNP, drug treat-
ment status, and an interaction term between SNP and drug treat-
ment in data including patients with and without drug treatment.
SNPs with significant drug treatment and interaction term were
remained. Second, Kaplan-Meier (KM) survival analysis were per-
formed in patients with different genotypes to further generate
the final set of SNPs. SNPs with significant KM results in patients
without drug treatment were removed. To test the performance
of DDRS, data of breast cancer patients from The Cancer Genome
Project (TCGA) project were analyzed.

2. Methods

2.1. Pipeline of DDRS

The outline of DDRS is shown in Fig. 1. The input data of the
study population included the genotype and patient’s survival
information. Specifically, patients without drug treatment were
also included. We used the patients’ survival status to indicate
drug response since overall survival is believed as the primary
end point to evaluate the outcome of any drug [10]. Overall sur-
vival has also been used as the endpoint to find drug response
and toxicity loci in previous studies [11,12]. First, a Cox’s propor-
tional hazards model was built to detect significant SNP-drug
interactions (P < 0.05 for b3).

h t;Xð Þ ¼ h0 tð Þexp b1 � drug þ b2 � SNP þ b3 � drug � SNPð Þ ð1Þ
We only focused on drugs with significant effect on survival

(P < 0.05 forb1) and significant interaction terms (P < 0.05 for b3).
Second, we performed KM survival analysis in patients with and
without drug treatment separately to further select the SNPs
related to drug response. For KM analysis, only subgroups with
more than 20 patients (at least 5 patients with dead events) were
remained for analysis. SNPs with FDR-adjusted P < 0.05 in the KM
analysis of patients with drug treatment were selected. In addition,
SNPs with P < 0.05 in the KM analysis of patients without drug
treatment were removed to rule out the associations unrelated to
drug treatment. Finally, to test the generalization ability of the
selected SNP sets in other populations, we calculated the correla-
tion between each SNP and survival in one population:

h t;Xð Þ ¼ h0 tð Þexpðb� SNPÞ ð2Þ
and constructed a drug response score (DRS) for each individual in
another dataset as follows:

S ¼
X

bi � Xi ð3Þ

where bi represents the coefficient of SNPi in Eq. (2) and Xi repre-
sents the tested allele’s copies of SNPi in Eq. (2). The correlation
between S and drug response were then calculated to test whether
the selected SNP sets could be used for survival prediction.

2.2. Genotype and clinical data collection processing

Clinical information, drug treatment information, germline DNA
genotypes for TCGA breast cancer samples (N = 1096) were
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obtained from the Genomic Data Commons Data Portal
(https://cancergenome.nih.gov/, GDC portal). The genotyping plat-
form for all patients was the Affymetrix 6.0 array. Genotypes with
score < 0.1 are considered to be highly confident (Broad institute,
BIRDSUITE software) and 928,706 SNPs were retained in the study.
2.3. DRS and drug-resistant levels in cell lines

We constructed DRSs for 45 cancer cell lines (Table S1) to test
whether DRS can be used to predict drug response. Gene expres-
sion and drug response data for these cell lines were obtained from
the Genomics of Drug Sensitivity in Cancer (GDSC) database [13].
We used IC50 (half maximal inhibitory concentration) for cell apop-
tosis to indicate the drug-resistant level. Corresponding genotype

https://cancergenome.nih.gov/
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data for all cell lines were obtained from the Gene Expression
Omnibus (GEO) database (GSE34211 and GSE41308). We used R
package crlmm [14] for genotype calling.
2.4. Functional annotation of the selected SNPs

We annotated the epigenetic regulatory features for SNPs using
data from the following resources: 1) we downloaded the 8 types
of ChIP-seq data from the GEO database (GSE85158 [15]) for 11
breast cancer cells. Sequencing reads were mapped to the human
genome reference (hg19) using Bowtie2 [16] with default settings.
MACS2 [17] was used to call peaks (-g hs -q 0.05 -n --keep-dup all).
2) we downloaded the predicted enhancer region for BRCA from
CistromeCancer [18]. The genome coordinates were converted
from hg38 to hg19 using liftover [19]. Next, we performed
10,000 permutation tests by using random SNP sets generated by
SNPsnap [20] with default settings. To calculate the enrichment
p-value, we simply count the number of sets with annotated SNPs
as or more extreme than our selected SNP set, and divide that num-
ber by the total number (10,000). The enrichment score (ES) was
calculated as follows:
ES ¼
X10;000

i¼1

x0
xi

� �
=10;000
where x0 is the number of annotated SNPs from our selected SNP
set, and xi is the number of annotated SNPs in the ith random SNP
set.
Table 1
Pre-treatment characteristics of the patients.

Patient with doxorubicin treatment

Number 363
Age
<=50 173 (48%)
>50 189 (52%)
Mean (SD) 52 (10)
Unknown 1

Nodal status
Positive 238 (66%)
Negative 122 (33%)
Unknown 3 (1%)

T stage
1 73 (21%)
2 233 (64%)
3 52 (14%)
4 5 (1%)
Unknown 0 (0%)

Pathologic stage
1 36 (10%)
2 213 (59%)
3 108 (30%)
4 2 (0%)
Unknown 4 (1%)

ER Status
Positive 244 (67%)
Negative 106 (29%)
Unknown 13 (4%)

PR Status
Positive 209 (58%)
Negative 139 (38%)
Unknown 15 (4%)

HER2 Status
Positive 45 (12%)
Negative 207 (57%)
Unknown 111 (31%)
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2.5. eQTL analysis

Gene expression data normalized using RSEM [21] and seg-
mented copy number variation data were downloaded from Gen-
ome Data Analysis Center database (GDAC, http://gdac.
broadinstitute.org/). Absolute gene copy numbers were calculated
from segmented copy number files by ABSOLUTE [22], and then
used as covariate to adjust the gene expression data [23]. To
remove the effect of population structure on gene expression, we
used smartpca in the EIGENSOFT [24] program to perform principal
component (PC) analysis, and selected the top 10 PCs from
genome-wide genotype data as covariates. To remove the hidden
batch effects and other potential confounders in the gene expres-
sion data, we also used the Probabilistic Estimation of Expression
Residuals [25] (PEER) method to select the first 15 PEER factors
as covariates. Age, pathologic stage and race were also used as
covariates. EQTL analysis was performed using matrix eQTL [26].
SNPs with false discovery rates (FDR) < 0.05 were defined as eQTL
genes. Cis-eQTL genes were defined if the SNP was located within
1 Mb from the gene transcriptional start site (TSS).

2.6. Extraction of drug target genes and protein–protein interactions
(PPIs)

We collected doxorubicin targets genes from the DrugBank
database [27] and Therapeutic Target Database [28]. We also col-
lected doxorubicin related enzymes, carriers and transporters from
DrugBank. Genes directly interacted with doxorubicin (confidence
score over 0.7) were collected from STITCH database [29]. To get
PPIs, we downloaded the human interactome published by Cheng
Patients without any drug treatment All patients

321 684

71 (22%) 244 (36%)
240 (77%) 429 (64%)
62 (14) 56 (13)
10 11

152 (48%) 390 (57%)
158 (49%) 280 (41%)
11 (3%) 14 (2%)

79 (25%) 152 (22%)
177 (55%) 410 (60%)
41 (13%) 93 (14%)
22 (7%) 27 (4%)
2 (0%) 2 (0%)

59 (18%) 95 (14%)
174 (54%) 387 (57%)
67 (21%) 175 (26%)
9 (3%) 11 (1%)
12 (4%) 16 (2%)

225 (70%) 469 (69%)
79 (25%) 185 (27%)
17 (5%) 30 (4%)

188 (59%) 397 (58%)
115 (36%) 254 (37%)
18 (5%) 33 (5%)

61 (19%) 106 (15%)
144 (45%) 351 (51%)
116 (36%) 227 (34%)

http://gdac.broadinstitute.org/
http://gdac.broadinstitute.org/
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et al. [30], which collected 243,603 PPIs of 16,677 unique proteins.
Next, we performed 10,000 permutation tests by randomly chose
same number of genes from 16,677 proteins. To calculate the per-
mutation p-value, we simply compared the mean shortest PPI dis-
tances from eQTL genes to doxorubicin and from randomly chosen
genes to doxorubicin. We count the number of randomly chosen
gene sets with shorter mean PPI distances than our eQTL gene
set, and divide that number by the total permutation number
(10,000) [30].
2.7. Doxorubicin resistance prediction model

We constructed multigene classifiers using these eQTL genes
and Linear Discriminant Analysis (LDA) in GSE20194, which has
230 patients received 6 months of preoperative chemotherapy
including doxorubicin. 182 patients were categorized as residual
invasive cancer (RD) and 48 patients were categorized as patholog-
ical complete response (pCR, no residual invasive cancer in the
breast or lymph nodes). We performed 1000 times repeated 1-
fold cross-validation. The classifier performance on the validation
data were assessed by using the area under the receiver operating
characteristic curve (ROC-AUC).
Fig. 2. A: Boxplot of DRS of patients in different molecular subtypes. Patients were stratifi
markers. B: Boxplot of DRS between doxorubicin-resistant cells (High IC50) and doxo
significant SNPs’ epigenetic annotation. Enrichment score (ES) are color-coded from ligh

3653
2.8. Pathway enrichment and pathway activity inference

The eQTL genes were ranked according to the product of the b
from eQTL analysis and the b from Cox analysis (i.e., bcox * beQTL).
For genes with more than one significant SNPs, the results with
the maximum absolute value was remained. Pathway enrichment
analysis for these genes with pre-ranked values was then per-
formed using GSEA [31]. Positive pathways enriched at P < 0.05
were recognized as doxorubicin-resistant/risk pathways and nega-
tive pathways enriched at P < 0.05 were recognized as doxorubicin-
sensitive/protective pathways. The pathways’ activity score (PAS)
were calculated with diffrank [32].

3. Result

3.1. Identification of doxorubicin response SNPs in breast cancer

We applied this approach to TCGA breast cancer data to detect
doxorubicin response SNPs. 363 patients with doxorubicin treat-
ment and 321 patients without any drug treatment was included.
Detailed characteristics of the patients are provided in Table 1.
Using the cox’s proportional hazards model, we identified 8020
SNPs that might be interacting with doxorubicin treatment. Next,
ed into groups of Luminal A, Luminal B, HER2 and Basal like by the ER, PR and HER2
rubicin-sensitive (Low IC50) cells. C: Enrichment analysis heatmap plot of those
t to dark.
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KM analysis in patients with doxorubicin treatment showed that
subjects with different genotypes of 619 SNPs had significant dif-
ferent survival status (FDR P < 0.05). In addition, using KM analysis
in patients without any drug treatment, we further ruled out the
SNP-survival associations not related to drug treatment and 71
SNPs were removed. Therefore, after analyzing with the DDRS
pipeline, a total of 548 doxorubicin associated SNPs were identified
with the detailed information summarized in Supplementary
Table S2.
3.2. DRS derived from selected SNP are associated with drug resistant
level

We calculated the DRS in the rest 269 TCGA breast cancer
patients with other drug treatment. As shown in Fig. 2A, compared
with other patients, the basal like patients had the highest DRS. We
also calculated doxorubicin-associated DRS in breast cancer cell
lines (Fig. 2B). These cells were divided into doxorubicin-
Fig. 3. A: Violin plot of mean shortest PPI distances to doxorubicin target. Red bars re
doxorubicin related enzymes, doxorubicin related enzymes/carriers/transporters, and do
10,000 groups of randomly selected genes. B: ROC curve for the predictive performance o
of univariate cox proportional hazards results of eQTL genes. Horizontal axis showed
negative log of the P values. Doxorubicin-resistant genes are shown on upper and do
proportional hazards results of PAS of enriched pathways. Horizontal axis shows the uni
log of the P values. Positive pathways are shown on upper and negative pathways are
pathways had significant risk PAS and 7 negative pathways had significant protective P
referred to the web version of this article.) (For interpretation of the references to color
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resistant group (IC50 higher than median value) and doxorubicin-
sensitive group (IC50 lower than median value). The DRS in the
doxorubicin-resistant group was significantly higher than the
doxorubicin-sensitive group (P = 0.044).
3.3. The selected SNPs are enriched in active regulatory epigenetic
markers

According to the genomic region annotation results, over 94%
SNPs are located in the intergenic or intronic region. We further
examined whether these doxorubicin-associated SNPs were associ-
ated with active epigenetic regulation using ChIP-seq data from 11
breast cancer cell lines (Table S1, Fig. 2C). The results showed that
34% SNPs are located in active epigenetic mark regions of at least
one breast cancer cell lines. Further analysis showed that these
SNPs were significantly enriched in histone epigenetic regions
associated with active enhancer (H3K27ac [33], H3K4me1 [34]
and H4K8ac [35]), active gene transcription (H3K36me3 [36],
present the mean PPI distance of the cis-eQTL genes to doxorubicin target genes,
xorubicin-interacting genes. Blue bars represent the mean shortest PPI distance of
f the LDA genomic pCR predictor with these eQTL genes as features. C: Volcano plot
the univariate cox proportional hazards confidences and vertical axis showed the
xorubicin-sensitive genes are shown on below. D: Volcano plot of univariate cox
variate cox proportional hazards confidences and vertical axis showed the negative
shown on below. E: Univariate cox proportional hazards confidences of 6 positive
AS. (For interpretation of the references to color in this figure legend, the reader is
in this figure legend, the reader is referred to the web version of this article.)
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H3K9ac [33] and H2BK120ub1 [37]) (Fig. 2C) and also in predicted
BRCA enhancer regions (P = 0.0008, 10,000 permutations; 1.46-
fold).

3.4. The eQTL gene expression levels could be used to predict clinical
outcome

We identified 958 cis-eQTL genes for these 548 doxorubicin
associated SNPs. Compared with random selected genes, these
genes had significantly shorter mean PPI distances to doxorubicin
target genes, doxorubicin related enzymes/carriers/transporters,
and doxorubicin-interacting genes (Fig. 3A, P < 0.001). Next, we
estimated these genes’ doxorubicin-response predictive power.
We used all the genes’ expression as features to train a LDA classi-
fier to distinguish patients from RD and pCR. The ROC-AUC was
0.738 (CI: 0.736–0.741) (Fig. 3B).

3.5. The direction of the association between gene expression and
clinical outcome is consistent with the product of bcox and beQTL of
SNPs

We further used the product of bcox and beQTL to classify these
genes into two categories: doxorubicin-resistant/risk (product
with positive sign) and doxorubicin-sensitive/protective (product
with negative sign). 25 genes with different signs when referring
to different SNPs were excluded from subsequent analysis. Using
data from GSE25055, we performed univariate cox proportional
hazards analysis to test the association between these
genes and patients’ survival. As shown in Fig. 3C, the directions
of cox analysis results were mostly consistent with our definition
of doxorubicin-resistant/sensitive genes (Chi-square test:
P = 1.93 � 10�10).
Fig. 4. A: Multivariate cox proportional hazards results about doxorubicin, rs2817101, rs
Meier survival analysis in patients with and without drug treatment separately of rs
pathologic stage, histological subtypes, Lymph nodes status, ER, PR and HER2 status f
threshold was set at 0.05. D: Boxplot of GSTA1 expression levels (log2(TPM + 1)) based
GSTA1 expression patients in GSE25055.
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We performed GSEA pre-ranked pathway enrichment of these
eQTL genes and identified 11 positive pathways and 52 negative
pathways. Similar to single gene analysis, we defined the positive
pathways as doxorubicin-resistant/risk and negative pathways as
doxorubicin-sensitive/protective. We calculated the PAS for these
pathways and performed univariate cox proportional hazards anal-
ysis using data from GSE25055. As shown in Fig. 3D, the directions
of cox analysis results were also mostly consistent with our defini-
tion of doxorubicin-resistant/risk and sensitive/protective path-
ways (Chi-square test: P = 0.039). Specifically, we illustrate the
pathways with the same direction in both enrichment and PAS
cox analyses (Fig. 3E). For example, two immune related pathways,
including ‘regulation of immune effector process (GO: 0002697)’
and ‘Leukocyte cell adhesion (GO: 0007159)’, were doxorubicin-
resistant/risk pathways whose PAS were significant risk factors to
patients’ survival. The pathway ‘response to steroid hormone
(GO: 0048545)’ was a doxorubicin-sensitive/protective pathway
whose PAS was significant protective factors to patients’ survival.
3.6. High expression of GSTA1 is a risk factor to doxorubicin treatment

We identified rs2817101 and its cis-eQTL gene GSTA1, which
had the highest product of bcox and beQTL. Cox proportional hazards
analysis showed that both doxorubicin treatment and the interac-
tion term (rs2817101 � doxorubicin) were significant risk factors
to breast cancer patients (Fig. 4A). Patients received doxorubicin
treatment with TT allele of rs2817101 suffered from poorer prog-
nosis than those with CC alleles (Fig. 4B). Meanwhile, in patients
received no treatment, no difference was detected between sub-
jects with different genotypes of rs2817101 (Fig. 4B). We further
performed two multivariate cox’s proportional hazards model in
patients with and without drug treatment separately. The follow-
2817101 � doxorubicin (interaction term) factors in all patients. B: Pairwise Kaplan-
2817101. C: Multivariate cox proportional hazards results about rs2817101, age,
actors respectively patients with and without drug treatment. Significant P-value
on rs2817101 genotypes. E. Kaplan-Meier survival analysis between high and low
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ing covariates were used as confounding factors: age, pathologic
stage, histological subtypes, lymph nodes status, ER, PR and HER2
status. We found that the rs2817101 was an independent prognos-
tic factor (HR = 0.90, 95% CI 0.41–1.38; P = 2.85 � 10�4) (Fig. 4C) for
patients received doxorubicin treatment. In contrast, for patients
without doxorubicin treatment, there was no survival difference
for subjects with different rs2817101 genotypes.

The SNP rs2817101 is located in the downstream of GSTA1. Sub-
jects with the CC genotype of rs2817101 showed the lowest
expression of GSTA1 (Fig. 4D). KM analysis using data from
GSE25055 showed that the survival of patients with low GSTA1
expression was poorer (Fig. 4E, P = 0.046). This result indicated that
patients with higher GSTA1 expression might be more resistant to
doxorubicin treatment.
4. Discussion

Detecting SNPs associated with drug response is helpful to real-
ize personalized medicine. Here we developed DDRS to detect drug
response SNPs. Different from previous studies, information from
the patients without drug treatment was also taken into consider-
ation. We applied this pipeline to detect doxorubicin response
SNPs using data from the TCGA database and the follow up analysis
confirmed its reliability.

For these identified doxorubicin associated SNPs, we calculated
the DRS in the patients with other drug treatment. The basal like
patients significantly had the highest DRS. This result consistent
with the known conclusion that drug-resistance is commonly
observed in TNBC (Triple-Negative Breast Cancer) patients and is
more common than in non-TNBC patients[38,39].

For these identified eQTL genes, we classified and ranked these
genes with the product of eQTL b * coefficient b. These genes were
classified into drug-resistant/risk and drug-sensitive/protective by
corresponding SNPs. The constancy of effect to drug between SNPs
and genes was confirmed in GEO validation data, indicating the
drug-response effect of genes are partly from the regulation of
SNPs. We identified rs2817101 and its cis-eQTL gene GSTA1, which
had the highest product of bcox and beQTL, the most doxorubicin-
resistant gene. Glutathione transferases (GSTs) was frequently
reported to have correlation with bad prognosis and resistance
against a number of different anticancer drugs [40]. It has been
reported that GSTA1 could promote lung cancer cell invasion and
adhesion and have effect on lung cancer cell metastasis by promot-
ing the epithelial-mesenchymal transition [41]. A previous study
reported that several polymorphisms in GST genes were associated
with differences in survival for cancer patients treated with
chemotherapy [42]. Our study revealed the regulation from down-
stream SNP rs2817101 to GSTA1 could also influenced doxorubicin-
response, and rs2817101 was an independently prognostic factor
to doxorubicin chemotherapy.

Except for interaction with drug related genes or other drug
resistant mechanism like drug efflux or metastasis, some eQTL
genes can also influence drug side effect. We also identified the
activity of pathway ‘response to steroid hormone (GO: 0048545)’
was a significant protective factor to doxorubicin for it could
reduce side effects of doxorubicin. Recent studies also revealed
that testosterone could protects cardio myocytes against senes-
cence caused by doxorubicin [43].

The major limitation to use DDRS is that it is hard to collect data
including patients with and without drug treatment. We used the
TCGA data in this study, which has the largest number of patients
with drug treatment information currently. When new large-scale
data is available, the results might be updated.

In summary, we presented an approach to identify drug-
response SNPs and applied it to TCGA breast cancer patients. We
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identified a group of doxorubicin associated SNPs. We hope this
method could also help to identify new drug associated SNPs in
other cancers.
5. URLs

DDRS is freely available for non-commercial research institu-
tions. Details can be obtained from https://github.com/ew314/
DDRS.
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