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Abstract: Our previous studies have shown that cholesterol-conjugated, peptide-based pan-coronavirus
(CoV) fusion inhibitors can potently inhibit human CoV infection. However, only palmitic acid
(C16)-based lipopeptide drugs have been tested clinically, suggesting that the development of C16-
based lipopeptide drugs is feasible. Here, we designed and synthesized a C16-modified pan-CoV
fusion inhibitor, EK1-C16, and found that it potently inhibited infection by SARS-CoV-2 and its
variants of concern (VOCs), including Omicron, and other human CoVs and bat SARS-related CoVs
(SARSr-CoVs). These results suggest that EK1-C16 could be further developed for clinical use to
prevent and treat infection by the currently circulating MERS-CoV, SARS-CoV-2 and its VOCs, as well
as any future emerging or re-emerging coronaviruses.

Keywords: palmitic acid; lipopeptide; Omicron; β-coronavirus; entry inhibitor

1. Introduction

Coronaviruses (CoVs) comprise a group of RNA viruses that can cause human or
animal infection. Seven coronaviruses can infect humans, thus being named human CoVs
(HCoVs), including severe acute respiratory syndrome coronavirus (SARS-CoV), severe
acute respiratory syndrome coronavirus 2 (SARS-CoV-2), Middle East respiratory syndrome
coronavirus (MERS-CoV), HCoV-229E, HCoV-OC43, HCoV-NL63, and HCoV-HKU1 [1].
Five belong to the β-CoV genus (i.e., sarbecoviruses), including SARS-CoV, SARS-CoV-2,
MERS-CoV, HCoV-OC43, and HCoV-HKU1. Some SARSr-CoVs from bat (e.g., WIV1,
Rs3367, and RsSHC014) also belong to the β-CoV genus.

SARS-CoV, SARS-CoV-2, and MERS-CoV, which belong to the group of highly pathogenic
CoVs, possess high infectivity and transmissibility and can cause serious disease after
infecting humans [2,3]. Since the end of 2019, when coronavirus disease 2019 (COVID-19)
caused by SARS-CoV-2 was first reported, SARS-CoV-2 and its variants have infected
about 3.6 billion individuals and caused more than 5.6 million deaths worldwide (https:
//covid19.who.int (accessed on 10 January 2022)). SARS-CoV-2 variants of concern (VOC),
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including Alpha, Beta, Gamma, Delta, and Omicron, have seriously compromised the
clinical efficacy of many vaccines and antibody therapies [4–6], making it more difficult to
control the COVID-19 pandemic.

In addition, low-pathogenic HCoVs in the β-CoV genus (HCoV-OC43 and HCoV-
HKU1) usually cause the common cold in humans (mild upper respiratory tract infec-
tions) [7], but sometimes pneumonia in children, the elderly, or immunocompromised
adults [8], calling for the development of more effective and broad-spectrum antivirals
against both high- and low-pathogenic HCoVs [9–11].

An HCoV infects the host target cell through either a cytoplasmic or endosomal
membrane fusion pathway. Each of these fusion processes occurs after the interaction
of the receptor-binding domain (RBD) in the viral spike protein and cellular receptor,
and proteolysis of spike protein mediated by transmembrane protease serine 2 (TMPRSS-2)
on the cell surface or cathepsin L in the endosome. RBD-receptor interaction can be by RBD-
specific antibodies and some mini-protein inhibitors [12], while the proteolytic function
of TMPRSS-2 or cathepsin L can be inhibited by TMPRSS-2 inhibitors (e.g., camostat and
nafamostat) or cathepsin L inhibitors (e.g., K11777), respectively [13].

The six-helix bundle (6-HB) fusion core structure formed by HR1 and HR2 domains of
SARS-CoV-2 is key for mediating membrane fusion. Previous studies confirmed its stability
(Figure 1A), suggesting that the 6-HB fusion core is an important target for the develop-
ment of pan-CoV fusion inhibitors against SARS-CoV-2 and its variants [14,15]. We and
others demonstrated that peptides derived from the HR2 domain of SARS-CoV-2, such as
2019-nCoV-HR2P, IPB01, and SARS-CoV-2-HRC, could potently inhibit SARS-CoV-2 infec-
tion by interacting with the HR1 domain of SARS-CoV-2 S protein to block the formation of
6-HB fusion core between viral HR1 and HR2 domains [14–16]. In particular, our previ-
ously developed pan-CoV fusion inhibitor EK1 is effective against infection by SARS-CoV-2
D614G and its VOCs [17–19]. Later, we found that cholesterol- and 25-hydroxycholesterol-
conjugated EK1 peptides, such as EK1C4 [17], EKL1C [20], and EK1P4HC [21], exhibited
much improved antiviral activity against SARS-CoV-2, its VOCs, and other HCoVs, in-
cluding SARS-CoV, MERS-CoV, HCoV-229E, HCoV-NL63, and HCoV-OC43, as well as
bat SARSr-CoV WIV1, SARSr-CoV Rs3367, and SARSr-CoV SHC014. However, we note
that no cholesterol-conjugated peptide drug is currently in clinical use, indicating the
difficulty of developing clinically applicable cholesterol-based lipopeptide drugs. Interest-
ingly, however, several palmitic acid-based lipopeptide drugs have been studied in clinical
trials [22,23], suggesting the feasibility of their development.
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3 (BSL-3) Facility of Fudan University. Authentic SARS-CoV-2 Omicron (hCoV-19/Hong 
Kong/HKU-344/2021) was isolated from a patient and maintained in the Biosafety Level 3 
(BSL-3) Facility of the University of Hong Kong (HKU). HCoV-OC43 (VR-1558) was ob-
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2.2. Authentic SARS-CoV-2 WT Strain Inhibition 
Wild-type SARS-CoV-2 live virus inhibition assay was performed in the BSL-3 Facil-

ity, Fudan University. Briefly, peptides were first incubated with SARS-CoV-2 (100 
TCID50) for 30 min and then added into the Vero-E6 cell line seeded in a 96-wall plate. 
After 1 h incubation, the supernatants containing peptide and SARS-CoV-2 were changed 
for fresh DMEM containing 5% FBS. After 48 h culture, Vero-E6 cells infected with SARS-
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SARS-CoV-2 and its VOCs, including Alpha, Beta, Gamma, Delta, and Omicron variants. (B) Design
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of EK1-C16 lipopeptide and putative mechanism of potent antiviral activity of EK1-C16 lipopeptide.
The C16 group of EK1-C16 can bind tightly with the cellular membrane of target cells, promoting
the membrane-bound EK1-C16 peptide entering the endosome to inhibit the viral entry into the
cytoplasm for replication, while lipid-free peptides only inhibit cytoplasm membrane fusion [24,25].

Therefore, in this study, we designed and synthesized a palmitic acid (C16)-modified
EK1 lipopeptide by adding a C16 group at the C-terminus of EK1 peptide, termed EK1-
C16 (Figure 1B). We found that EK1-C16 could potently inhibit infection by SARS-CoV-2
wild-type strain (D614G) and its VOCs, including Alpha, Beta, Gamma, Delta, and Omi-
cron, as well as other β-CoVs, including SARS-CoV, MERS-CoV, HCoV-OC43, and bat
SARSr-CoV WIV1 and SARSr-CoV Rs3367. These results suggest that EK1-C16 is a po-
tent lipopeptide-based pan-CoV fusion inhibitor with promise as an antiviral candidate
with efficacy in preventing and treating infection by current circulating MERS-CoV and
SARS-CoV-2 and its variants, as well as any future emerging or re-emerging coronaviruses.

2. Materials and Methods
2.1. Cell Lines, Plasmids, Peptides, and Viruses

HEK293T and Vero-E6 cell lines were obtained from the American Type Culture
Collection (ATCC). Caco2, RD, and Huh-7 cell lines were obtained from the cell bank of the
Chinese Academy of Science. All cell lines were cultured in Dulbecco’s Modified Eagle’s
Medium (DMEM) containing 10% fetal bovine serum (FBS).

HIV-backbone plasmid (pNL4-3.Luc.R-E) and other plasmids coding the spike protein of
coronaviruses (pAAV-IRES-GFP-SARS-CoV-2-D614G-spike, pAAV-IRES-GFP-MERS-CoV-spike,
pcDNA3.1-SARS-CoV-2-spike, pcDNA3.1-SARS-CoV-2-B.1.1.7-spike, pcDNA3.1-SARS-CoV-2-P.1-
spike, pcDNA3.1-SARS-CoV-2-B1.351-spike, pcDNA3.1-SARS-CoV-2-B1.617.2-spike, pcDNA3.1-
SARS-CoV-2-B.1.1.529-spike, pcDNA3.1-SARS-CoV-spike, pcDNA3.1-MERS-CoV-spike,
pcDNA3.1-Bat-CoV-WIV1-spike, pcDNA3.1-Bat-CoV-Rs3367-spike, and pcDNA3.1-VSV-G)
were all preserved in our laboratory.

EK1-C16 (SLDQINVTFLDLEYEMKKLEEAIKKLEESYIDLKEL-GSGSG-PEG4-C16) and
EK1 (SLDQINVTFLDLEYEMKKLEEAIKKLEESYIDLKEL) were synthesized by Chengdu
Shengnuo Biotechnology Co., Ltd. Authentic SARS-CoV-2 WT strain (nCoV-SH01, GenBank
number: MT121215.1) was isolated and preserved in the Biosafety Level 3 (BSL-3) Facility of
Fudan University. Authentic SARS-CoV-2 Omicron (hCoV-19/Hong Kong/HKU-344/2021)
was isolated from a patient and maintained in the Biosafety Level 3 (BSL-3) Facility of the
University of Hong Kong (HKU). HCoV-OC43 (VR-1558) was obtained from ATCC.

2.2. Authentic SARS-CoV-2 WT Strain Inhibition

Wild-type SARS-CoV-2 live virus inhibition assay was performed in the BSL-3 Facility,
Fudan University. Briefly, peptides were first incubated with SARS-CoV-2 (100 TCID50)
for 30 min and then added into the Vero-E6 cell line seeded in a 96-wall plate. After 1 h
incubation, the supernatants containing peptide and SARS-CoV-2 were changed for fresh
DMEM containing 5% FBS. After 48 h culture, Vero-E6 cells infected with SARS-CoV-2 were
fixed with 4% paraformaldehyde, followed by 0.2% Triton X-100 treatment. Next, an im-
munofluorescence assay was performed to detect the nucleocapsid protein of SARS-CoV-2
in Vero-E6 cells [26]. The SARS-CoV-2 nucleocapsid antibody (1:200, Sino Biological, Beijing,
China) was used as a primary antibody, the Alexa Fluor 488 goat anti-rabbit IgG (1:100,
Thermo Fisher) was used as a secondary antibody, and DAPI (Thermo Fisher, Waltham,
MA, USA) was used to stain the nucleus.

2.3. Authentic SARS-CoV-2 Omicron Variant Inhibition Assay

The inhibitory activity of peptides against SARS-CoV-2 isolate Omicron variant infection
was assessed at HKU. Briefly, a diluted peptide was first incubated with 0.01 MOI Omicron
variant (hCoV-19/Hong Kong/HKU-344/2021; GISAID accession number EPI_ISL_7357684) for
60 min. Next, this peptide–virus mixture was added into Vero-E6-TMPRSS2 cells which
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were seeded in a 96-well plate. After 72 h culture, CPE was observed and scored as 100%
inhibition or 0% inhibition.

2.4. Package of Coronavirus Pseudovirus

Coronavirus PsVs were produced as previously reported. Briefly, HEK293T cells
were seeded in a 6-well plate 24 h before transfection. Upon transfection, HIV backbone
plasmid (pNL4-3.Luc.R-E) and spike-expressing plasmid, such as pcDNA3.1-SARS-CoV-
2-spike, were co-transfected into HEK293T cells by Vigofect (Vigorous Biotechnology,
Beijing, China). At 10 h post-transfection, cellular supernatants containing transfection
reagent were changed for fresh DMEM containing 5% FBS. After another 36–48 h culture,
cell supernatants containing PsV particles were collected and stored at −80 ◦C.

2.5. Coronavirus Pseudovirus Inhibition Assay

The inhibitory activity of peptides against pseudovirus infection was assessed as previ-
ously reported [18]. In brief, a serially diluted peptide was first incubated with pseudovirus
for 30 min, and then this peptide–pseudovirus mixture was added into Caco2 cells seeded
in a 96-well plate. After a 12 h culture, culture supernatants were discarded, and fresh
DMEM was added. After another 36 h culture, luciferase assay (Promega, Madison, WI,
USA) was performed to measure luciferase activity according to the manufacturer’s in-
structions. Inhibition curves were produced with GraphPad Prism 8 software, and IC50
values were calculated.

2.6. Authentic HCoV-OC43 Inhibition Assay

The inhibitory activity of peptides against authentic HCoV-OC43 infection was mea-
sured as previously reported [17]. A diluted peptide was first incubated with HCoV-OC43
(100 TCID50) for 30 min, and the peptide–virus mixture was added to the RD cell line
seeded in a 96-well plate. The CCK-8 assay was used to assess cell viability by observing
CPE of HCoV-OC43, and an inhibition curve was produced by GraphPad Prism 8 software.

2.7. Cell–Cell Fusion Inhibition Assay

A cell–cell fusion inhibition assay was performed as previously reported [17]. Briefly,
HEK293T cells were transfected with plasmid pAAV-IRES-GFP-SARS-CoV-2-spike (or
pAAV-IRES-GFP-MERS-CoV-spike, pAAV-IRES-GFP-HCoV-OC43-spike) to obtain 293T
cells expressing GFP and SARS-CoV-2 spike protein (or MERS-CoV spike protein, HCoV-
OC43-spike). A diluted peptide was then incubated with these transfected HEK293T cells
for 30 min and added into target cells seeded in a 96-well plate. Two hours later, fusion
status was observed using fluorescence microscopy.

2.8. Cytotoxicity Assay

The cytotoxicity of peptides was assessed as previously reported [27]. Briefly, a diluted
peptide was co-incubated with RD cells seeded in a 96-well plate for 12 h. Next, the culture
medium containing peptides was replaced with fresh DMEM. After another 36 h culture,
the CCK-8 assay was used to assess cell viability.

2.9. Statistical Analysis

The inhibition curves and IC50 values of peptide inhibitors were all produced by
GraphPad Prism 8 software.

3. Results
3.1. EK1-C16 Potently Inhibited Infection of SARS-CoV-2 Wild-Type (WT) Strain

After designing and synthesizing the EK1-C16 lipopeptide, we first tested its in-
hibitory activity against SARS-CoV-2 D614G S-mediated cell–cell fusion and infection
of the pseudotyped SARS-CoV-2 WT strain (Wuhan-Hu-1). We found that EK1-C16 at
high (5.0 µM) and low (0.31 µM) concentrations could suppress SARS-CoV-2 S-mediated
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cell–cell fusion (Figure 2A). It also effectively inhibited SARS-CoV-2 WT pseudovirus
(PsV) infection in Caco2 cells in a dose-dependent manner with an IC50 (half maximal
inhibitory concentration) of 0.48 µM (Figure 2B). We then assessed the potential cytotoxicity
of EK1-C16 using the CCK-8 assay. At the concentration of 5 µM, it exhibited no significant
cytotoxicity (Figure 2C). Next, we used an authentic SARS-CoV-2 inhibition assay to de-
termine the inhibitory activity of EK1-C16 against infection of authentic SARS-CoV-2 WT
strain (nCoV-SH01, GenBank number: MT121215.1); an immunofluorescence assay was
used to detect SARS-CoV-2 N protein expression. As shown in Figure 2D, EK1-C16 at
0.31 µM could effectively inhibit authentic SARS-CoV-2 WT infection. While EK1 at 0.31
µM showed no significant inhibitory activity, it did inhibit authentic SARS-CoV-2 infection
at 5.0 µM, suggesting that EK1-C16 is more effective than EK1 in inhibiting authentic
SARS-CoV-2 infection.
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Figure 2. EK1-C16-mediated inhibition of SARS-CoV-2 infection. (A) EK1-C16-mediated inhibition
of SARS-CoV-2 D614G S-meditated cell–cell fusion. (B) EK1-C16-mediated inhibition of SARS-CoV-2
WT (Wuhan-Hu-1) PsV infection. (C) Cytotoxicity of EK1-C16 to RD cells was tested by using a
CCK-8 assay. (D) EK1-C16-mediated inhibition of authentic SARS-CoV-2 WT (nCoV-SH01) infection.
Samples were tested in triplicate, and the experiment was repeated at least twice.

3.2. EK1-C16 Inhibited Infection of SARS-CoV-2 VOCs, Including Omicron

SARS-CoV-2 variants are constantly emerging. Some show increased infectivity and
transmissibility, as well as reduced sensitivity to neutralization of therapeutic antibodies
and vaccine-elicited sera. Here, we assessed the inhibitory activity of EK1-C16 against these
SARS-CoV-2 VOCs. As shown in Figure 3A–E, EK1-C16 could effectively inhibit infection
by pseudotyped SARS-CoV-2 VOC Alpha, Beta, Gamma, Delta, and Omicron with IC50
values of 0.19, 0.43, 0.26, 0.11, and 0.23 µM, respectively, which are about 3- to 10-fold
more potent than that of SARS-CoV-2 WT. We further determined the inhibitory activity of
EK1-C16 against infection of the authentic Omicron variant in Vero-E6-TMPRSS-2 cells by
detecting the cytopathic effect (CPE) at 72 h post-infection. We found that EK1-C16 could
effectively inhibit authentic Omicron infection with an IC50 value of 0.75 µM (Figure 3F).
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experiment was repeated at least twice.

3.3. EK1-C16 Broadly Inhibited Infection by Other Sarbecoviruses

SARS-CoV has the potential to re-emerge in the future, while bat SARSr-CoVs may
cause emerging SARS-like infectious diseases in the future [28]. To prepare for these
emerging or re-emerging coronavirus infectious diseases, it is essential to develop broad-
spectrum antivirals. Here, we assessed the inhibitory activity of EK1-C16 against infection
by pseudotyped SARS-CoV and bat SARSr-CoVs. We found that EK1-C16 could potently
inhibit SARS-CoV PsV infection with an IC50 of 0.17 µM and bat SARSr-CoV WIV1 and
Rs3367 infection with IC50 of 0.15 and 0.3 µM, respectively (Figure 4). In contrast, EK1-C16
exhibited no significant inhibitory activity against VSV-G PsV infection at a concentration
as high as 5.0 µM (Figure 4), suggesting that the antiviral activity of EK1-C16 is specific
for coronaviruses.
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specificity for sarbecoviruses. Each peptide inhibitor was tested in duplicate, and experiments were
repeated twice.



Viruses 2022, 14, 549 7 of 11

3.4. EK1-C16 Inhibited MERS-CoV Infection

Another highly pathogenic HCoV in human circulation is MERS-CoV. Although its
infectivity and transmissibility are much lower compared to SARS-CoV-2, its case-fatality
rate is as high as 34% [29]. Therefore, it is also essential to develop antivirals against
MERS-CoV infection. Here, we first assessed the inhibitory activity of EK1-C16 against
MERS-CoV S-mediated membrane fusion. We found that it could potently inhibit MERS-
CoV S-mediated cell–cell fusion with an IC50 of 0.012 µM (Figure 5A), indicating nearly
10-fold more efficacy than that of EK1 peptide. Next, we evaluated the inhibitory activity
of EK1-C16 against MERS-CoV PsV infection in Caco2 cells and found that it inhibited
MERS-CoV PsV infection with an IC50 of 0.10 µM, about sixfold more potent than that
of EK1 (Figure 5B). These results suggest that EK1-C16 could be further developed as a
candidate antiviral for the prevention and treatment of MERS-CoV infection.
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Figure 5. EK1-C16 can broadly inhibit MERS-CoV infection. (A) Inhibitory activity of EK1-C16 against
MERS-CoV spike protein-mediated cell–cell fusion. (B) Inhibitory activity of EK1-C16 against
MERS-CoV PsV. Samples were tested in triplicate, and the experiment was repeated twice.

3.5. EK1-C16 Inhibited HCoV-OC43 Infection

Apart from the above highly pathogenic HCoVs, some HCoVs with low pathogenicity,
such as HCoV-OC43, continue to circulate widely in humans during the winter months
and cause upper and respiratory tract illness and common cold-like symptoms [7,8].
HCoV-OC43 infection may also be associated with acute exacerbation of chronic obstructive
pulmonary disease (AECOPD) and pneumonia in all age groups with immunocompro-
mised conditions [8]. Therefore, it is also important to develop antivirals against HCoVs
showing low pathogenicity [9,10]. Accordingly, in this study, we first measured the in-
hibitory activity of EK1-C16 against HCoV-OC43 S-mediated cell–cell fusion and found that
EK1-C16 can potently inhibit HCoV-OC43 S-mediated cell–cell fusion with an IC50 value
of 0.01 µM, which is about a 28-fold improvement compared to EK1 (Figure 6A). Next,
we measured the inhibitory activity of EK1-C16 on the authentic HCoV-OC43 infection
in RD cells. As shown in Figure 6B, EK1-C16 exhibited highly effective in inhibiting
HCoV-OC43 infection with IC50 of 0.07 µM, about 22-fold more potent than that of EK1,
indicating that EK1-C16, if well-developed, can also be used as a prophylactic or therapeutic
against low pathogenic HCoV infection.
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4. Discussion

The outbreak of COVID-19 sparked the development of a broad spectrum of antivi-
rals, including therapeutic monoclonal antibodies, protein-, peptide- and small-molecule
compound-based inhibitors, against SARS-CoV-2 infection [12,30,31]. However, the newly
emerged SARS-CoV-2 VOCs, such as Omicron, have shown increasing resistance to some
developed antiviral treatments and, even more concerning, SARS-CoV-2 RBD-specific
neutralizing antibodies and vaccines being used worldwide [6,32–35]. The presence of
SARSr-CoVs in bats may cause future outbreaks of SARS-like infectious diseases [28]. Thus,
the growing list of SARS-CoV-2 VOCs and other emerging sarbecoviruses calls for the
urgent development of antivirals with broad applicability and improved anti-coronavirus
activity. It should be noted that MERS-CoV is still circulating in the Middle East re-
gion [36]. Several cases of SARS-CoV-2 and MERS-CoV co-infection were identified in
Saudi Arabia [37], and both SARS-CoV-2 and MERS-CoV could infect type-II alveolar
cells [38]. Furthermore, co-infection of immunocompromised individuals—for instance,
by SARS-CoV-2 Omicron or MERS-CoV—could lead to a new species through genetic
recombination [29]. Such an event could potentially increase the transmissibility of the cur-
rent Omicron variant and reduce, even further, the sensitivity to SARS-CoV-2 neutralizing
antibodies, while gaining a higher case-fatality rate (CF) of MERS-CoV. Such a scenario
would spell disaster in countries with a low COVID-19 vaccination rate. Therefore, it is
essential to develop highly effective pan-CoV therapeutics or prophylactics [10].

Our previous studies have shown that the HR1 domain is an important target for the
development of potent and broad-spectrum HCoV fusion inhibitors [27,39]. We found that
EK1 peptide targeting the HR1 domain of divergent HCoVs could broadly and effectively
inhibit infection of all HCoVs and bat SARSr-CoVs tested [27]. Our cholesterol-conjugated
EK1 lipopeptide, EK1C4, showed significant improvement in its inhibitory activity against
SARS-CoV-2 and its VOCs, including Omicron [17,19]. However, while no cholesterol-
based lipopeptides are currently in clinical use, some C16-based lipopeptide drugs are in
clinical trials, showing the practicality of developing a C16-conjugated lipopeptide drug,
as we have herein reported.

Specifically, our C16-conjugated, lipopeptide-based pan-CoV fusion inhibitor, EK1-C16,
effectively inhibited infection by SARS-CoV-2 WT and its VOCs, including Omicron,
with the highest transmissibility and lowest sensitivity to SARS-CoV-2 neutralizing anti-
bodies. EK1-C16 lipopeptide is also highly effective against infection by SARS-CoV and
bat SARSr-CoVs, MERS-CoV, and HCoV-OC43. Similarly, some small-molecule antivirals
targeting the conserved region of other viral proteins of SARS-CoV-2, such as remde-
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sivir and molnupiravir targeting viral RdRp and nirmatrelvir targeting Mpro, also exhibit
broad-spectrum anti-HCoV activity and can potently inhibit infection from the Omicron
variant [35,40]. Combinations of EK1-based peptides with these inhibitors targeting the
conserved regions of other viral proteins are expected to have synergistic antiviral activity
against infection of SARS-CoV-2 variants and other HCoVs.

Taken collectively, these results suggest that EK1-C16 is a highly promising candidate
for development as a potent and broad-spectrum anti-HCoV drug for the prevention and
treatment of infection by current and future SARS-CoV variants, as well as emerging and
re-emerging coronaviruses.
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