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A B S T R A C T   

Acute myeloid leukemia (AML) represents as a prevalent and formidable hematological malig-
nancy, characterized by notably low 5-year survival rates. Ferroptosis has been found to be 
correlated with cancer initiation, therapeutic response, and clinical outcome. Nevertheless, the 
involvement of Ferroptosis-related genes (FRGs) in AML remains ambiguous. Five independent 
AML cohorts totaling 1,470 (GSE37642, GSE12417, GSE10358, Beat-AML, and TCGA-AML) pa-
tients with clinical information were used to systematically investigated the influence of these 
FRGs expression on outcome and tumor microenvironment. The integration of these datasets led 
to the subdivision into training and validation sets. Nineteen FRGs were identified as correlated 
with the overall survival (OS) of AML patients, primarily enriched in ferroptosis, fatty acid 
metabolism, and leukemia-related signaling pathways. The prognostic signature, consisting of 11 
FRGs, was formulated using LASSO-Cox stepwise regression analysis. Patients with high-risk 
scores exhibited reduced survival compared to those in the low-risk group. The receiver oper-
ating characteristic (ROC) analysis underscored the signature’s robust predictive accuracy. The 
high predictive efficacy was confirmed by both internal and external validation datasets. Leu-
kemia and signaling related to immune regulation were mainly enriched pathways of the 
differentially expressed genes by comparing high- and low-risk groups. The immune composition 
deconvolution might indicate an immunosuppressive niche in the high-risk patients. The pRRo-
phetic algorithm exploration unveiled chemical drugs with potentially sensitivity among patients 
in both groups. Collectively, our study developed a ferroptosis-derived prognostic signature that 
provides the OS prediction and identifies the immune microenvironment for AML patients on 
large-scale AML cohorts.   

1. Introduction 

Acute myeloid leukemia (AML) is a prevalent and lethally blood malignancy, marked by the immature myeloid cell accumulation in 
bone marrow and peripheral blood [1]. Patients with AML have a poor prognosis and a high relapse risk that are mostly attributed to 
therapeutic resistance to chemotherapy [2]. 5-year survival has been not greatly improved over several decades, and still listed as one 
of the lowest survivals among all blood cancers from 1975 to 2014 [3]. Therapeutic options for AML patients have not witnessed 
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significant progress. The standard care for AML still revolves around chemotherapy, yet a considerable number of patients succumb to 
the disease primarily due to relapse. Molecular targeting therapies including FLT3 inhibitors [4], IDH and c-KIT inhibitors have made a 
remarkable leap forward. While gemtuzumab ozogamicin, targeting CD33-positive AML, has been utilized in the treatment of AML, its 
widespread use has been limited due to high toxicity. CAR T-cell therapy [5] and bi-specific antibodies that engage T cells with new 
antigens expressed on tumor cells [6] have emerged as novel, safe, and highly effective treatments for blood cancers, including AML. 
However, it’s worth noting that most therapies based on these concepts are currently in various stages of preclinical or clinical trials. 
Therefore, it’s crucial to uncover novel potential signatures to enhance patient prognosis monitoring and aid in the advancement of 
effective therapies. 

Ferroptosis, a non-apoptotic, iron-dependent form of programmed cell death which is different from necroptosis, apoptosis, and 
autophagy [7], has been found to be associated with tumorigenesis, disease progression, and the response to drugs. It exerts diverse 
functions in biological processes and cellular signaling cascades [8–10]. Ferroptosis is characterized by redox-active iron levels, 
impaired repair of lipid peroxides, and oxidation of polyunsaturated fatty acids. Emerging research suggests that susceptibility to 
ferroptosis is influenced by factors like RAS/MAPK signaling, amino acid and iron metabolism, cell adhesion, phospholipid biosyn-
thesis, p53 status, and the activity of NRF2 [11]. Numerous genes, validated to promote or inhibit ferroptosis, are referred as 
ferroptosis-related genes (FRGs) in tumor cells. Examples include G6PD, TP53 [12], GPX4 [13], SLC7A11 [14] and DHODH [15]. 
Previous studies demonstrated that ferroptosis represents promising anti-cancer therapeutic target [16–18]. Exposure to APR-246 can 
trigger ferroptosis-mediated anti-tumor activity in AML cells by augmenting cystine uptake, thus sustaining the synthesis of the 
antioxidant molecule glutathione [19]. The novel all-trans retinoic acid derivative, 4-amino-2-trifluoromethyl-phenyl retinate (ATPR), 
has showed potent anti-tumor activity in AML. ATPR triggers ferroptosis in AML cells by modulating autophagy through iron ho-
meostasis, suggesting that directing ferroptosis enhances ATPR-induced AML differentiation via the ROS-autophagy-lysosomal 
signaling [20]. In their study, Hai-Yan Zhu et al. discovered that typhaneoside stimulates autophagy in AML cells by activating 
AMPK pathway. This process leads to ferritin degradation, subsequent ROS accumulation, and ultimately ferroptosis [21]. Further-
more, in their research, Weimin Wang et al. revealed that treatment with anti-PD-L1/anti-CTLA-4 activated CD8+ T cells, thereby 
fostering ferroptosis through targeted lipid peroxidation in tumor cells. This mechanism significantly contributes to the anti-tumoral 
effectiveness of the treatment [22]. Therefore, Understanding the interplay between ferroptosis and the leukemia microenvironment 
holds the potential to lead to the creation of novel and effective anti-leukemia treatments for AML. However, the roles of most FRGs in 
AML have remained largely unknown. Several studies utilizing computational biology have explored the potential clinical relevance of 
FRGs in AML. Several ferroptosis-related gene signatures have been proposed as potential prognostic indicators or therapeutic target 
for AML, whereas most of these signatures were established on limited AML patients and lack comprehensive independent validation 
[23–25]. Furthermore, the impact of ferroptosis-related signatures on responsiveness to therapeutic drugs has rarely been assessed. 
Some studies attempted to assess the prognostic implications of the expression patterns of FRGs in AML [26] or focused on the in-
fluence of ferroptosis-related non-coding RNAs on patients’ outcomes using TCGA-AML data. Signatures based on non-coding RNAs 
are challenging to verify due to the limitations of the detective approaches used in high throughput methods such as microarrays [27]. 
Comprehensive analysis of FRGs in AML based on large scale of AML cohorts from multiple centers has not been thoroughly explored. 
Construction and validation of an FRGs-based signature on such large cohorts, used for assessing the leukemia microenvironment and 
forecasting the prognosis, also need further investigation. 

Motivated by these unexplored aspects, this study systematically profiled the ferroptosis-related gene signatures and clinico-
pathological characteristics of 1,470 AML patients in Gene Expression Omnibus (GEO) (GSE37642, GSE12417, GSE31580), Beat-AML, 
and the Cancer Genome Atlas (TCGA) databases. The datasets underwent strategic division into a training set, internal validation set, 
and external validation sets. The prognostic relevance of these FRGs in AML was established via univariate Cox regression analysis. 
Subsequently, we crafted a robust ferroptosis-derived prognostic signature using Lasso-Cox regression analysis. Validation of the 
signature’s predictive efficacy occurred across internal and three external validation sets, affirming its role as an effective indicator for 
monitoring AML patient outcomes. The study further delved into the leukemia immune microenvironment landscape delineated by the 
signature. Additionally, we investigated patients’ responsiveness to therapies. Our findings offer innovative perspectives for devel-
oping new therapies targeting ferroptosis in AML. 

2. Methods and materials 

2.1. Data acquisitions and preprocessing 

We obtained gene expression profiles and clinical data from the GEO and TCGA databases. Subsequently, we downloaded five AML 
cohorts containing relevant clinical information for subsequent analysis (GSE36732-GPL96, GSE36732-GPL570, GSE12417-GPL96, 
GSE12417-GPL570, GSE10358-GPL570, BeatAML, and TCGA-AML, Table S1). For Affymetrix® microarray data, we acquired raw 
“CEL” files and applied a robust multiarray averaging method using the affy packages to perform background adjustment and quantile 
normalization. Probe IDs were transferred to gene symbols using platform annotated packages, and in cases where a gene had multiple 
probes, the average value was adopted. For different datasets measured by the same platform, we eliminated batch effects stemming 
from non-biological sources using the combat algorithm via the sva package [28]. The RNA-sequencing data for TCGA-AML was 
retrieved from UCSC Xena database (https://xenabrowser.net/datapages/). 
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2.2. Discovery of FRGs associated with overall survival (OS) 

Samples measured by the GPL96 platform from GSE37642 and GSE12417 were amalgamated, followed by random and equitable 
allocation into training (n = 290) and internal validation (n = 290) sets. From the FerrDb database, we extracted a comprehensive 
collection of 159 experimentally validated FRGs, classified into drivers, suppressors, and markers [29] (http://www.zhounan.org/ 
ferrdb/, Table S2). The expression matrix of 132 FRGs were extracted across these AML datasets. OS-related FRGs were identified 
through univariate Cox regression analysis, considering significance at p < 0.05. 

2.3. Development and validation of a prognostic signature derived from ferroptosis 

To mitigate the potential overfitting, feature selection was conducted to identify OS-related FRGs using multivariate lasso-cox 
regression analysis. The optimal signature’s minimum features were determined using the Akaike information criterion [30]. The 
discrimination ability of the model was evaluated by the receiver operating characteristic curve (ROC) with survivalROC package. 
Individual patient’s risk scores were computed by multiplying the gene expression value of the model by the corresponding coefficient. 
Subsequently, patients were stratified into low- and high-risk groups using the median risk score as the cutoff. The predictive per-
formance of the signature was assessed using log rank test with “survminer” package and illustrated using Kaplan-Meier curve. 

The prognostic performance was verified by internal validation set (n = 290) and external three independent cohorts (samples 
measured by GPL570 from GSE37642, GSE10358 and GSE12417; Beat-AML; TCGA-AML). 

The heterogenous AML populations in our work should be noted as they may receive various therapeutical regimens. Univariate 
and multivariate Cox regression analyses assessed the prognostic independence of the prognostic signature by incorporating accessible 
clinicopathological factors. Accessible features from the training and validation sets were collected. The information on age, the 
French-American-British (FAB) classifications, and RUNX1/RUNX1T1 fusion was only available from the training and internal vali-
dation datasets. Gender, age, FAB classifications, and ELN2017 were available in TCGA-AML dataset. In addition, the information on 
gender, ELN2017, FLT3_ITD, NPM1 mutation, WBC count, BM blast, PB blast, and platelet count was obtainable from Beat-AML 
validation set. 

2.4. Identification and functional analysis of DEGs between low- and high-risk groups 

DEGs with |LogFC| greater than 0.5 and adjust p value less than 0.05 were screened by comparing high- and low-risk groups 
through “limma” [31]. Gene enrichment analysis, covering biological process (BP), molecular function (MF), and cellular components 
(CC), was conducted with clusterProfiler [32]. KEGG pathway analysis was conducted, with a significance threshold set at p value less 
than 0.05. 

Furthermore, to reveal the potential enriched pathways of these DEGs, gene set enrichment analysis (GSEA) was performed [33]. 
Genes were ranked based on their significance in the annotated “C2:KEGG gene sets” between low- and high-risk groups. The sig-
nificant gene set, determined through 1000 permutations, had a p-value <0.05. 

2.5. Tumor immune microenvironment (TIME) analysis 

The tumor niche comprises the tumor and its surrounding microenvironment, including immune cells, stromal cells, signaling 
molecules, and extracellular matrix. We employed the CIBERSORT algorithm [34] to assess the infiltration of 22 immune cell types in 
both high- and low-risk groups, characterizing the composition of immune cells based on gene expression data mixture. A total of 7 
types of T cells, naïve and memory B cells, plasma cells, and NK cells are included. The cases with p < 0.05 were delivered for further 
analysis. 

In addition, the expression of PD-1, CTLA-4, CD33, and CD123 between high- and low-risk groups were compared using Wilcox 
test, with statistical significance set at p < 0.05. 

2.6. Construction of ferroptosis-derived clinicopathologic nomogram 

A ferroptosis-derived clinicopathologic nomogram was developed to predict OS for each AML patient. This included patient risk 
score along with available clinicopathologic parameters from the training set using rms package [35]. A calibration curve was plotted 
to assess the predictive performance [36]. 

2.7. Chemotherapeutic response prediction 

Given that chemotherapy is the mainstream clinical regime for treating AML, the prediction of potential chemicals responsive to 
AML was performed based on the IC50 value using the pRRophetic package [37] according to the GDSC database [38]. This meth-
odology involved constructing statistical models from gene expression and drug sensitivity data across a broad panel of cancer cell 
lines. These models were then applied to gene expression data obtained from primary tumor biopsies. 
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3. Results 

3.1. Identification and enrichment analysis of OS-related FRGs in AML 

In order to determine clinical relevance of FRGs in AML, Nineteen FRGs significantly correlated with patient outcomes were 
identified via univariate Cox regression analysis in training set (Fig. 1A). The FRGs network illustrated the comprehensive landscape of 
interactions, regulator connection, and prognostic significance for AML patients (Fig. 1B). To investigate underlying functions of the 
FRGs in AML, GO terms exploration suggested that these FRGs were primarily involved in metabolic and biosynthetic associated 
biological processes including fatty acid biosynthesis and metabolism, iron ion binding (Fig. 1C). Ferroptosis, PPAR, AMPK, auto-
phagy, and mTOR signaling pathways were the predominantly signaling pathways (Fig. 1D). These pathways are vital in disease 
development and served as therapeutic targets in hematological malignancies including AML [39–42]. This suggests a crucial role for 
these FRGs in AML progression, promoting further investigation into their relationship with the tumor microenvironment. 

3.2. Development and validation of a ferroptosis-derived prognostic signature 

To prevent overfitting, the minimum key survival-related FRGs were assessed by Lasso regression (Figs. S1A–B). A prognostic 
ferroptosis-derived signature was developed via multivariate Cox stepwise regression. The final optimal signature of 11 genes was 
determined using AIC algorithm within the “survival” package (Fig. 2A). Ferroptosis-derived risk score (named as FerroScore) for an 
individual patient was calculated as following formula: 

FerroScore=
∑ n

i Coef x Ai 

Fig. 1. Clinical relevance of the FRGs in AML (A). Prognostic FRGs in AML. (B). The interplay among FRGs in AML. The circle size represents regular 
effect for the prognosis, and p-values calculated by Log-rank test was p < 1e-4, p < 1e-3, p < 0.01, and p < 0.05, respectively. Purple dots, risk 
factors of outcomes; Green dots, protective factors of outcomes. Lines indicate regulator interactions, with thickness reflecting correlation strength. 
Blue and red colors show negative and positive correlations. (C–D). GO terms analysis and pathways of prognostic FRGs. (For interpretation of the 
references to color in this figure legend, the reader is referred to the Web version of this article.) 
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In this equation, “Coef” stands for the regression coefficient, “i" represents the signature gene, “A" represents the relative value of the 
signature expression, and “n" represents the number of signature genes. 

Patients were categorized into high- and low-risk groups using the median risk score as the cutoff value. The number of deaths 
increased as the risk score rose (Fig. 2B–C). To dictate the predictive capacity of the prognostic signature, we generated a Kaplan-Meier 
curve revealing that patients in the low-risk group have better survival than those patients in the high-risk group (P < 0.0001, Fig. 2D). 
The predictive accuracy of the signature was appraised, yielding an AUC value of 0.82 for 3-year OS. Additionally, the AUCs for 1- and 
5-year OS were 0.79 and 0.81, respectively, implying that accurate prognosis prediction efficiency (Fig. 2E). Furthermore, an internal 

Fig. 2. Generation of a ferroptosis-derived prognostic signature in AML (A). Signature’s features. (B). Range of patients’ risk scores. (C). Survival 
time plotted against risk scores. (D). High-risk group has decreased OS. (E). ROC curves for 1-, 3, and 5-year in the training set. 

Fig. 3. Validation of the ferroptosis-derived signature in internal AML cohort (A). Patients with high-risk scores have decreased OS. (B). ROC curves 
for 1-, 3, and 5-year. (C). The Patients’ risk scores. (D). Decreasing survival with increasing risk score. 
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validation set was used to verify its predictive reliability. Patients with high-risk scores also have decreased OS than those patients with 
low-risk scores (P < 0.0001, Fig. 3A). The AUCs of the signature in internal validation set were comparable to those in training set 
(Fig. 3B), the AUCs of 1-, 3-, and 5-year OS were 0.67, 0.75, and 0.74. As the risk score rose, so did the number of deaths (Fig. 3C–D). 
This indicates that the OS prediction of our signature was robust. 

Additionally, as illustrated in Figs. S1C–D, the signature remained independent of accessible variables, including age, FAB clas-
sifications, and RUNX1/RUNX1T1 fusion, in the training and internal validation datasets using univariate and multivariate analysis. 
This suggests that the signature is an independent prognostic indicator for AML. Further interrogation by including more available 

Fig. 4. Validation of the Ferroptosis-derived signature in external AML cohort (A). Patients with high-risk scores have decreased OS in TCGA-AML. 
(B). ROC curves for 1-, 3, and 5-year in TCGA-AML. (C). Decreased OS in combined AML samples from GPL570 platform. (D). ROC curves for 1-, 3, 
and 5-year in GPL570 platform AML. (E). High-risk group has decreased OS in Beat-AML. (F). ROC curves for 1-, 3, and 5-year in Beat-AML. 
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clinical factors including gender, age, ELN2017, FLT3-ITD and NPM1 mutation, and the risk score maintains its autonomy as a reliable 
predictor in TCGA-AML dataset, but it didn’t reach significance (p = 0.092) by multivariate analysis (Table S3). This may be induced 
by the heterogeneity of the AML cohorts as they may receive different treatments before measuring gene expression profiles. Subset 
analysis was not feasible due to the insufficient number patients under each clinical feature, such as TP53 mutation status and different 
treatment schemes. It will be more convincing if more subsets of patients become available for future validation. 

Three external datasets (TCGA-AML; GPL570 platform from GSE37642, GSE10358, and GSE12417; Beat-AML) were employed to 
validate the signature’s forecast stability and independence for AML. Each patient’s risk score, delineated by the signature, categorized 
them into high- and low-risk cohorts. Within the TCGA-AML cohort, individuals in the low-risk category experienced significantly 
prolonged overall survival compared to those in the high-risk group (P < 0.0001, Fig. 4A). Predictive accuracy of the signature in 
TCGA-AML was comparable to performance in the training set, and the AUC for predicting OS at three years stood at 0.70 (Fig. 4B). 
Similar remarkable survival stratifications were also observed in the combined cohort from the affy-GPL570 platform (P < 0.0001, 
Fig. 3C) and Beat-AML dataset (P = 0.012 Fig. 4E). ROC analysis showed these two validation sets had moderate capacity of OS 
prediction for AML patients (Fig. 4D–F). On the whole, this finding highlight that the prognostic signature has robust prognostic 
stratification for AML patients on both array- and RNA-seq-based platforms. Further validation in clinical samples is warranted. 

3.3. Gene enrichment analysis of DEGs 

Exploring the potential molecular regulatory mechanisms characterized by the signature, we identified 70 DEGs between high- and 
low-risk group using limma package. Of these, 32 DEGs exhibited upregulation, while 38 DEGs showed downregulation (Fig. 5A). 
Notably, distinct gene expression patterns were discernible in both groups (Fig. 5B). Functional analysis revealed that these DEGs 
predominantly participate in biological processes related to neutrophil-mediated immunity, leukocyte activity, and inflammatory 
response. Additionally, cellular components implicated include those found in the lumen, granule, and lysosome, such as secretory 

Fig. 5. Gene enrichment analysis of DEGs between high- and low-risk groups (A). Volcano plot. (B). Heatmap. (C). GO terms analysis. (D). KEGG 
pathways analyses. 
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granule lumen and cytoplasmic vesicle lumen. Molecular functions associated with serine hydrolase and peptidase activity, as well as 
cytokine and chemokine-related activities, were also identified (Fig. 5C). Furthermore, enriched pathways among these DEGs 
encompassed acute myeloid leukemia, IL-17, TNF, NF-Kappa B, chemokine, and cytokine-cytokine receptor interaction pathways 

Fig. 6. Leukemic immune microenvironment analysis (A–B) The proportions of immune cells in high- and low-risk groups in the training and Beat- 
AML validation sets. (C). Immune checkpoints and targeted genes expression in training and validation sets. 

Fig. 7. Proposed predictive nomogram for AML (A). Ferroptosis-derived clinicopathologic nomogram for 1-, 3-, and 5-year OS monitoring for AML 
patients with risk score, age, FAB types. (B). Calibration curve for the probability of 3-year OS. 
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(Fig. 5D). Noteworthy, we observed that autophagy-related genes, such as BAG3 and SERPINA1, previously identified as potential 
prognostic factors for AML patients [43], were among the listed DEGs, suggesting a potential interplay between autophagy and fer-
roptosis in AML development. Moreover, we also identified the differentially expressed BLNK gene as a potential prognostic indicator 
in our recent work [44]. Research into the involvement of autophagy in ferroptosis has been explored and reviewed in various cancers, 
and enhanced autophagy contributes to ferroptosis through increasing the accumulation of intracellular iron levels [45]. 

GSEA revealed that the active involvement of these DEGs in lipid and acid-related metabolic pathways, glycosaminoglycan 

Fig. 8. Chemotherapeutic Response for AML patients (A). Potential drugs sensitive to low-risk patients. (B). Potential drugs sensitive to high-risk 
patients. IC50, half-maximal inhibitory concentration. 
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degradation and steroid biosynthesis (Figs. S2A–D). As a hallmark of ferroptosis, lipid peroxidation occurring in polyunsaturated fatty 
acid in the cell membrane can induce ferroptosis, and various lipid metabolic pathways have been reported to be engaged in ferroptosis 
[45,46]. These data insinuated that the DEGs discriminated by ferroptosis-derived signature might play important roles in AML 
progression, indirectly suggesting ferroptosis, emerging as a novel form of iron-dependent regulated cell demise marked by lipid 
peroxidation buildup, stands as a pivotal orchestrator in acute leukemia disease and immunity. 

3.4. Characterization of TIME and implications for therapies through ferroptosis-derived signature 

Given the implication of the ferroptosis-derived signature in immune regulatory signaling pathways within AML, coupled with the 
established influence of the TIME, notably tumor infiltrating lymphocytes (TILs), on both disease advancement and clinical outcome 
determinations. Twenty-two infiltrated immune cell types were deconvoluted using CIBESORT algorithm in both the training and 
Beat-AML validation datasets. Increased infiltrating gamma delta T cells (γδ T cells), activated NK cells, regulatory T cells (Tregs), M1 
macrophages, and activated mast cells were observed in patients with high-risk scores, while high infiltrating monocytes and resting 
mast cells were noted in patients with low-risk scores (Fig. 6A–B). Among these cell types, γδ T cell was reported to promote 
angiogenesis and cell growth through production of IL-17 in the TIME [47] or increase numbers of myeloid derived suppressor cells 
[48]. TIME-derived Tregs show potent immunosuppressive activities than those from steady condition [49], and its infiltrates were 
elevated in patients with high-scores, revealing a suppressive TIME in patients from high-risk group. 

Immunotherapy that represented by CART cells is a promising therapeutic strategy for refractory or relapsed AML patients [50]. 
High CD33 and CD123 have been found frequently express in AML blasts [51]. CD33− and CD123-CART cell therapies have been 
demonstrated to be potent anti-leukemia activities in vitro and in vivo assays [52]. We found that CD33 is over-expressed in patients 
with low-risk scores across these AML cohorts, suggesting anti-CD33 CAR might be a potential immunotherapeutic option for low-risk 
AML patients (Fig. 6C). Furthermore, immune checkpoints blockade was widely employed to treat cancers including AML, while no 
significant difference in PD-1 and CTLA4 expression between high vs low-risk groups (Fig. 6C), even increased PD-1 expression was 
detected in low-risk patients in Beat-AML cohort. This indicated that ferroptosis-based signature might be relevant to immunotherapy 
in AML, but further work needs to be done for this hypothesis. 

3.5. Construction of ferroptosis-derived clinicopathologic nomogram 

Furthermore, to individually predict patients’ outcome, the ferroptosis-derived prognostic signature was combined with available 
clinical parameters, including age and French-American-British Classifications, to develop a nomogram [53]. This, providing the 
survival probability at a specific time for patients, incorporated signature’ score as a factor to assess the utility of OS prediction for 1-, 
3-, and 5-year (Fig. 7A). Of note, cautious consideration should be taken to interpret this nomogram because it was built based on the 
limited known variables of AML patients, more prognostic variants included such as cytogenetics mutations will convince its clinical 
potential in the future. Additionally, a calibration curve of OS at 3 years were selected to illustrate the observed rates against the 
nomogram-predicted probabilities (Fig. 7B). 

3.6. Chemotherapeutic response prediction for AML 

Chemotherapy was still used as standard care for AML patients [2]. We performed chemotherapeutic response analysis using 
pRRophetic algorithm to predict the effective potential chemical drugs based on the IC50 data from GDSC database for patients. The 
estimated IC50 for each chemical or drug between high- and low-risk patients was analyzed, and we noted that both groups signifi-
cantly sensitive to various chemical drugs, separately. 12 chemical drugs showed high sensitivity to low-risk patients (Fig. 8A), while 
low IC50 of 9 drugs were screened in high-risk patients (Fig. 8B). For example, low-risk patients exhibited enhanced sensitivity to 
Sorafenib and Roscovitine than that of high-risk patients. Sorafenib can prolong FLT3 mutated AML patients in relapse following 
allogeneic stem cell transplantation (allo-SCT) [54]. Preclinical data showed that Roscovitine, a cyclin-dependent kinase 2 inhibitor, 
arrests cell cycle and induces apoptosis in chronic lymphocytic leukemia [55], suggesting it might be an attractive drug for this 
incurable disease. Given that most patients with AML are resistant to chemotherapy after intensive induction and succumb to this 
disease. Further work is warranted to verify anti-leukemia efficacy of these drugs. 

4. Discussion 

Most effective anti-cancer therapies are aimed to selectively eliminate tumor cells with minimizing impairment to healthy cells 
[56]. Cell death including apoptosis, necrosis, pyroptosis, autophagy and oncosis has been identified in recent years. Cell death is 
critical to maintain biological homeostasis and disease advancement [57]. Increasingly recognized as a form of cell demise reliant on 
iron and lipid peroxidation, ferroptosis plays a dual role in tumorigenesis and anticancer therapies [56,58]. Ghoochani et al. show-
cased that ferroptosis inducers, like erastin or RSL3, alone or combined with second-generation antiandrogens, impede tumor cell 
proliferation and migration in vitro, as well as tumor expansion in vivo, suggesting a promising therapeutic avenue for advanced 
prostate cancer [59]. Additionally, Wang et al. illustrated that ferroptosis, orchestrated by CD8+ T cells, impacts the effectiveness of 
cancer immunotherapy [22]. The involvement of ferroptosis in leukemia has attracted great attention, and several signatures designed 
to predict survival based on FRGs have been proposed. However, these signatures were developed on limited numbers of patients or 
lacked independent validation. Therefore, a systematical profiling of FRGs in AML remains unexplored. Understanding the ferroptosis 
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within acute myeloid leukemia microenvironment contributes to identify markers for monitoring prognosis and aiding in new ther-
apeutic targets. 

In this work, we first comprehensively investigated prognostic significance of FRGs in AML patients by integrating currently 
available AML datasets. To convince the validity of the study, only experimentally validated genes related with ferroptosis were 
obtained from FerrDb database. We found that 19 FRGs were correlated with patients’ outcome. Correlation analysis showed potential 
distinct interactions among these survival related FRGs. In addition to ferroptosis, enriched pathways such as PPAR, AMPK, mTOR, 
and autophagy have been implicated in leukemia progression. This implies that ferroptosis probably has vital functions in AML. 
Identification specific FRG that has regulatory role in these signaling pathways needs to be investigated. We previously found 
autophagy-related genes including ULK1 are prognostic indicators [43,60]. This might be line with emerging research that ferroptosis 
is tightly associated with autophagy [61]. We established a robust prognostic classifier comprising 11 FRGs via Lasso-Cox regression 
model for monitoring patient survival. Patients that were stratified into the high-risk group have lower OS than those low-risk patients. 
3-year AUC value was 0.82, indicating the signature has good predictive performance. The high stratification efficacy of our signature 
was independently validated by an internal and three external validation AML datasets, which indicates the present signature was 
robust and accurate across different cohorts and detection platforms. We noted that Xianbo Huang et al. recently proposed a 12-ferrop-
tosis-derived signature to predict AML outcome, while sample size used for the training and validation was much smaller as compared 
to those in our study. Furthermore, predictive efficacy of the signature with few FRGs is comparable, which might make the signature 
more convincing. The signature stands alone as a predictor, even when adjusting for other clinical factors in both training and internal 
validation sets. In external validation datasets, we evaluated the prognostic signature’s independence through univariate and 
multivariate regression analysis, incorporated clinical parameters like gender, age, and ELN2017 risk classifications, and found that 
risk score is a prognostic indicator after adjusting these features in TCGA-AML dataset, while it has prognostic effect but not reach 
significant level (p = 0.092) in Beat-AML dataset. The possible explanation is because they received multiple treatments before tumor 
biopsies, which leads AML patients heterogenous. In addition, the TP53 mutation status in this study was missing, we were not able to 
conduct the association analysis between the mutation and the signature. Further clinical subset validation will provide indicative 
clues for adjusting the signature. 

TME has been demonstrated to affect patients’ outcome and responsiveness to therapy. Therefore, to understand the influence of 
the ferroptosis-derived signature on the TME of AML, the infiltrating immune cell subsets were quantified using CIBERSORT algorithm, 
which might provide clues to delineate survival contrast in high- and low-risk patients. γδ T cells, activated NK cells, activated mast 
cells, and Treg cells were increased in patients with high-risk scores. In line with prior research, Treg cells can orchestrate immu-
nosuppression within the TIME, facilitate to cancer immune evasion and lead to unfavorable outcome [62]. These tumor-infiltrating 
regulatory T cells possess diverse transcriptional states, which indicate their potential role in leukemia modulation [63]. Kai Yang et al. 
found that GPX4 guards against lipid peroxidation and ferroptosis to uphold Treg cell activation and inhibit anti-tumor activities [64], 
this inspires further investigation of FRG-expressing regulatory T cells in AML progression. γδ T cells have a dual function in cancer 
development. Non-MHC restricted recognition of antigens and high cytokine production of γδ T cells suggest it might be effective target 
in immunotherapies, while increased IL-17 secretion in tumor microenvironment can promote tumor growth [65]. On the other hand, 
high levels of MDSCs induced by γδ T cells also cause cancer development [48]. DEGs between high- and low-risk patients were 
predominantly involved in IL-17, cytokine-cytokine receptor interaction, chemokine, and NF-kappa B pathways. It might provide an 
explanation for patients within high-risk group have unfavorable survival. But it should be cautious to interpret γδ T cells function 
mediated by ferroptosis in AML due to γδ T cells can be classified into effector and regulatory γδ T cells have distinct functions [66]. 
Further investigation is warranted to clarify that the suppressive TME in high-risk groups is enhanced by regulatory γδ T cells. 

The increasing benefits of immunotherapy for patients with various types of cancers including AML led to improved outcomes in 
recent years. No significant difference of immune checkpoint molecules like PD-1 and CTLA-4 expression between high- and low-risk 
patients. Interestingly, CD33 or CD123 were highly expressed in patients in low-risk patients, suggesting that they might respond to 
CD33-CART or CD123-CART cell therapies [52]. We also applied pRRophetic algorithm to screen potential effective chemicals for AML 
patients. The chemicals that showed distinct sensitivities to high- and low-risk patients were identified. Of these, several drugs were 
employed to treat leukemia patients. For example, Bleomycin has been approved by FDA to treat Hodgkin and non-Hodgkin lymphoma 
[67]. Doxorubicin was also FDA approved and indicated for the treatment of some types of blood cancers [68]. These drugs might have 
inhibitory efficacy for AML, and further verification is under the way. 

This study established and verified a ferroptosis-based signature to predict outcomes for AML patients. However, there are limi-
tations need to take into consideration. The FRGs were identified through experimental assays, necessitating validation of their roles in 
AML progression. The prognostic signature, validated using retrospective transcriptomic datasets, requires further confirmation of its 
robustness and accuracy in clinical utility. This includes validation at the proteomics level and in patients from multiple centers, 
considering the high heterogeneity of AML. 

5. Conclusions 

In this study, a ferroptosis signature was built and validated in both internal and three independent external AML datasets, allowing 
us to scrutinize distinct pathways, TIME, and therapeutic implications related to the signature. Further explorations of its clinical 
effectiveness and the molecular mechanisms of these FRGs in AML is imperative. 
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