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Abstract. A well-suited model to simulate cellular population dynamics is the two-dimensional cellular automaton model,
which consists of a lattice of sites, the value ai,j of each site being updated in discrete time steps according to an identical
deterministic rule depending on a neighbourhood of sites around it. A cellular automaton is described which mimics cell
population proliferation by replacing the site values by the age and the cycle phase of cells. The model takes into account
the size of the cells. It is used to simulate the proliferation of the human breast cancer cell line MCF-7 and the results of
the simulation are compared with experimental data obtained from a light microscopic image analysis of the proliferation
process. The initial configuration of the cellular automaton is obtained from the discretization of the results of the initial
stage of the image processing. After each day of proliferation the pattern obtained from the simulation is compared to
the experimental result of the corresponding image analysis. The comparison is made from a topographical point of view
through the concept of the minimal spanning tree graph. The agreement between experiment and model is a good starting
point to complex models such as cell proliferation under growth effectors or drugs.
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1. Introduction

Cell proliferation is a fundamental process in biological systems [24]. Cells can remain quiescent
for long times or can increase rapidly in number, for example, during embryogenesis and in wound
healing. Cell division is controlled by a variety of regulative mechanisms, including the availability
of space and the secretion of stimulating and inhibiting factors by cells in their environment. Cancer
cells can be shown to have lost many of these controls. The modelisation of cancer cell growth by
computer simulation is a way to indicate how cellular functions and microenvironmental factors may
influence the morphological patterns obtained through the proliferation process. We will describe a
cellular automaton which mimics the proliferating process of cancer cells in vitro.

∗Corresponding author: Jacqueline Palmari, CJF INSERM 9311, Boulevard P. Dramard, 13326 Marseille cedex 20, France.
Tel.: +33 491 28 88 82; fax: +33 491 09 01 71.

0921-8912/97/$8.00  1997 – IOS Press. All rights reserved



76 J. Palmari et al. / Topographical analysis of spatial patterns

Fig. 1. Schematic representation of the cell cycle. After the M phase which consists of nuclear division (mitosis) and
cytoplasmic division (cytokenesis) the daughter cells begin the interphase of a new cycle. Interphase starts with the G1

phase (gap period). The S phase begins when DNA synthesis starts and ends when the DNA content of the nucleus has
doubled. The cell then enters the G2 phase which ends when mitosis starts. Each daughter cell can shift to a quiescent
state G0.

Cells are put on a two-dimensional square lattice. The values of the sites are the age and the cycle
phase of the cells. The cell cycle is an ordered sequence of biochemical events leading up to the cell
division (mitosis). The cycle illustrated in Fig. 1, can be divided into four phases, called G1, S, G2

and M. In G1 (the gap period), RNA and proteins are synthetised to prepare for the DNA replication
that takes place in S (the synthetic period); then the cell progresses through G2, which is the second
gap period, and finally enters the mitosis (M). Each daughter cell can again traverse the cycle, or
can shift to a quiescent state (G0) during which cells do not divide for long periods. Quiescent cells
retain for a long time the ability to recycle under proper conditions or stimuli [2,14]. Before a typical
cell can divide it must double its mass and duplicate all of its contents. Only in this way will the
two new daughter cells contain all of the components that they need to begin their own cycle of cell
growth followed by division. Our model takes the size and the changes in the cell size during the
cell cycle and cell division into account. The general structure of the simulation is deduced from
the deterministic cellular automata theory [26], but some parameters introduced in the model have a
probabilistic nature.

The initial configuration of the cellular automaton is obtained from the discretization of the results
of the image analysis of a culture of the breast cancer cell line MCF-7 after Feulgen staining [5].
The results of the simulation are compared daily to the images of time course analysis of the cell
proliferation. The comparison is made from a topographical point of view through the concept of the
minimal spanning tree (MST) graph. The MST is a graph which provides several ways to analyse
the topography (spatial relationships) of objects sets [6,27]. Starting from the hypothesis that the
analysis of the spatial patterns of cells may lead to display and determine the control processes
between the cells which have induced those patterns, the MST method is well-suited to analyse these
mechanisms.
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2. Materials and methods

2.1. Simulation process

2.1.1. Initial configuration
The initial configuration of the cellular automaton was obtained from the digitization of the results

of an image analysis of a culture of the breast cancer cell line MCF-7 after Feulgen staining [5].
Images were recorded via a colour tri-CCD camera (JVC) attached to an inverted microscope (×4
objective, IMT2 Olympus, SCOP, Rungis, France) and then digitized through a SAMBA 2005 (TITN,
Grenoble, France) image processing environment with a spatial resolution of 512× 512. Images were
processed on a VAX station 4000 (Digital Equipment Corporation, Nashua, NH, USA) in the MIDAS
(Munich Image Data Analysis System) environment. The different steps of image segmentation
combine filtering algorithms and mathematical morphology [18,19]. From the density image a 2D
Laplacian of Gaussian filter (LOG) was performed. A binary map of the nuclei centers was extracted
by the computation of an 8-connexity detection algorithm on the LOG image. Four dilations of this
mask using logic to prevent merging of features was then performed. A logical AND between the
resulting mask and the one obtained by thresholding the LOG image at the zero crossings ended the
segmentation process. This mask of the segmented nuclei was used with the density image to bring
out for each nucleus: the (x, y) coordinates of its barycenter which allows us to perform topographical
analysis; A, the surface of the nucleus projection on the (x, y) plane, and IOD, the Integrated Optical
Density of nuclei stained by Feulgen-Rossenbech stoichiometric nuclear reaction [9,25]. IOD is
proportional to the amount of DNA content of cells and consequently related to the cell cycle phase.
The IOD histogram reflects the cell distribution in the different phases of the cell cycle. The cells
with the least amount of DNA are in G0 or G1, those with double this amount are either in G2 or M,
while those in S have intermediate amounts. By fitting the IOD histogram by gaussians, it is possible
to define the three subpopulations G0/G1, S and G2/M [5]. The characteristics of each subpopulation
are recorded (position, nuclear surfaces, nuclear integrated densities). The initial phase of each cell is
then determined from the values of the IOD histogram in arbitrary units. Because the cells get larger
when they traverse the cycle, the age of a cell in each phase is A/(Amax − Amin)T , where T is the
phase duration, and A, Amax and Amin, the actual, maximal and minimal values of the nuclear area in
this phase as measured on experimental images.

Each cell is put on a square lattice of 512× 512 sites. Opposite sides of the lattice are considered
to be continuously linked, in order to minimize side effects. The site (i, j) of each nucleus is the node
of the grid which is the nearest neighbour of the real coordinates of the nuclear barycenter. In the
model, to take the size of the cells into account, the cell nuclei are considered as disks and the nuclear
radius of a cell located at (i, j) is R(i, j) =

√
A/π. The neighbourhood of a cell (i, j) is represented

by all the sites in the surface 2[integer(Rmax) + 1]× 2[integer(Rmax) + 1], where Rmax represents the
maximum value of all the nuclear radii as measured on experimental images. Figure 2a shows a part
of the initial configuration obtained by our image analysis.

2.1.2. Automaton rules
The time step size is one hour. From t to t + 1, the cellular automaton operations are applied to

the sites individually according to the following rules.
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Fig. 2. (a) Position of MCF-7 cells of the initial configuration. Only 256 × 256 points of the image are represented.
(b) Minimal spanning tree (MST) concerning the distribution of (a).

Grid cells management
(1) During its proliferation, the tumor cell passes the distinct cell cycle phases, G1, S, G2 and M.

For the cell cycle phases, a normal distribution (Gaussian distribution) of each of the phase durations
TG1, TS, TG2 and TM with standard deviation σ is assumed.

(2) The cell size increases when the cell ages. The initial nuclear radius R0(i, j) rises by a factor k,
determined by: k = (αRmax/Rmin)1/T , where Rmax and Rmin are the maximum and minimum values
of the nuclear radius in a phase measured on the image, T the phase duration, and α a correcting
factor because the experimental values measured could not be the real maximum and minimum values.
The factor α decreases from 1.100 to 0.935 when the cells reach confluence.

(3) At any time of the G1 phase a cell is able to enter the resting phase G0. A random number x
is compared to the probability of quiescence of the G1 cells (p(quies)). If x < p(quies), then the cell
enters the resting phase G0. Otherwise the cell progresses through S. At the end of the G1 phase, the
cell passes into the G2 phase.

(4) At the end of the S phase, the cell passes automatically into the G2 phase.
(5) At the end of the G2 phase, the cell passes automatically into the M phase.
(6) Mitosis: at the end of its M phase, a cell C located at (i, j) duplicates itself. When division

occurs, the radius of each nucleus of the daughter cells returns to its initial value R0(i, j). One of
the daughter cells will occupy the original position (i, j) and the other will be put on one of its
neighbouring sites. In this stage the overlapping of the cells must be prevented. In the neighbourhood
of each possible vacant grid site (k, l), one calculates the Euclidian distance d between the site (k, l)
and an occupied site (m,n). If d > R0(i, j)+R(m,n), the site (k, l) may be selected. If there is more
than one possible site for the daughter cell, one site is randomly selected. Figure 3 is an illustration
of the process of duplication. If there is no free position around the dividing cell, it may detach from
the grid according to the probability p(det). A random number y is compared to the probability of
detachment (p(det)). If y < p(det), then the cell dies. Otherwise both the daughter cells are released
into the culture medium.
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Fig. 3. Duplication process. The radius of each cell nucleus is indicated on the figure. A: The cell (R = 1.4) in (6,6) is in
mitosis. The radius of each daughter cell returns to 1.1. B: One daughter cell will occupy the site (6,6). The site (8,8) can
be selected by the second daughter cell because the distance between this site and each occupied neighbour site is superior
to the sum of the radii of this cell and each neighbour cell.

Culture medium cell management
A test is performed to know if a detached cell is able to bind again to the grid. A random number

z is compared to a parameter called the probability of binding of the cells p(bind). If z < p(bind) and
if there is a free site on the grid, the cell is put on the grid in the G1 phase. If z < p(bind) and if
there is no free site on the grid, the cell remains in suspension. The time during which a cell remains
in the culture medium is limited to the value Tmax(susp). If z > p(bind) and if the age of the cell in
the culture medium is less than Tmax(susp), the cell remains in suspension. If z > p(bind) and if the
age of the cell in the culture medium is superior to Tmax(susp), the cell dies.

The flow chart of the whole simulation procedure is given in Fig. 4.
After each day of proliferation the pattern obtained from the simulation is compared to the exper-

imental result of an image analysis of the proliferation process [5]. The comparison is made from a
topographical point of view through the concept of the minimal spanning tree graph.

2.2. Topographical analysis

The power of graph-theoretical methods in the context of detecting and describing the inherent
cluster structure in arbitrary point sets with a distance function is well known. The graph enjoying the
widest application in pattern recognition is the minimal spanning tree (MST) [27]. An edge-weighted
linear graph G is composed of a set of points called nodes and a set of node pairs called edges, with
a number called weight (in this paper the Euclidean distance) assigned to each edge. A tree is a
connected graph with no loop, and an MST is a tree which contains all the nodes and where the sum
of the edges weight is minimal. There exist several algorithms enabling the MST to be computed.
In this paper we used Rohlf’s algorithm [20]. Depending on the starting point there may be more
than one MST for a given set of points, but all the MSTs have the same edge-length histogram.
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Fig. 4. Flow chart of the simulation procedure. A: grid cells management. During its proliferation, a cell passes the distinct
cell cycle phases G1, S, G2 and M. The phase durations, TG1 , TS, TG2 and TM are normally distributed. At any time of the
G1 phase a cell is able to enter the resting phase G0 with a probability p(quies). When division occurs, one daughter cell
stays on the original site and the other will be put on one of its neighbouring free sites. If there is no free site, the daughter
cell may detach from the grid with a probability p(det). B: culture medium cells management. A cell in the culture medium
is able to bind a free site on the grid with a probability p(bind). The time during which a cell remains in the culture medium
is limited to Tmax(susp).
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Fig. 5. A: Quantization of the (m,σ) plane. The dot (•) pertains to perfectly random distribution. If the mean m is below
that of a random distribution, this is indicative of a tendency to clustering. If the value of the standard deviation is above
that of the random distribution there is a trend toward gradient formation. Highly organized distributions are characterized
by a value of σ = 0. The full line is the trajectory related to the transition from the triangular lattice to the uniform random
distribution. B: the eleven possibilities of arrangement of a set of points on a plane along regular or semi-regular mosaics
(σ = 0) and the normalized m value corresponding to each model.

It follows that statistical information deduced from this histogram such as the average edge-length
m and the standard deviation σ may be used as characteristics for the corresponding distribution.
Figure 2b shows the MST of the initial configuration in Fig. 2a. In order to be able to compare
different distributions regardless the particle density and the sampling window, the values of m and σ
must be normalized. For this purpose, the process described by Hoffman and Jain [11] has been used.
In the case of small samples, borders effects on the MST become important [16], but when a large
number of points is used, stationarity is assumed [18]. The use of a diagram involving both the values
of m and σ enables us to determine the degree of order of any distribution by taking a simple reading
in the (m,σ) plane on which well-characterized distributions have previously been located (Fig. 5A).
Perfectly orderly distributions are obviously characterized by σ = 0. There exist eleven possibilities
permitting the arrangement of a set of points on a plane along regular or semi-regular mosaics [1]. The
normalized m values corresponding to each model are shown on Fig. 5B. Each of those arrangements
may be randomized by giving each point a new position deduced from its previous position by using
a Gaussian distribution with a standard deviation of ω [6]. Then some trajectories in the (m,σ) plane
are obtained, each point of the trajectories corresponding to a certain degree of order. In particular the
full line in Fig. 5A corresponds to the trajectory related to the triangular lattice. For ω > 1.075, the
uniform random distribution is reached. The corresponding values m = 0.650 and σ = 0.300 shown
on Fig. 5A have been corroborated by Monte Carlo simulations of random distributions generated
using the linear congruential method [15]. On the (m,σ) plane are also marked in different areas:
cluster structures (small m, σ 6= 0), gradients of concentration (large σ) and two-dimensional quasi-
periodic tiling (large m, σ 6= 0). Thanks to the normalization process any actual distribution can be
plotted in the (m,σ) plane and easily compared to the above mentioned distributions.
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3. Results

The values adopted for the different parameters are listed in Table 1. The phase durations refer
to cyto-kinetic literature [3,10,12,21]. In these studies the G1 and S phase durations are similar,
while the G2 and M phase lengths are distinctively different. The probability of quiescence has been
deduced from the computation of a model of a cell population in exponential growth [4,12]. There is
a lack of experimental data for the detachment and binding probabilities and for the maximum time
of suspension. The adjustments of these parameters as well as G2 and M phase lengths has been
performed by varying their values over a wide range and testing for each set of values the goodness
of fit between order degrees of the resulting simulation and the real cell distribution. In order to reach
the optimal values (best fit), the goodness of fit was maximized by minimizing an energy function
through a simulated annealing process [13]. One starts a simulation with a given parameter set (for
example random), and an “energy” function:

g(Ci) =

√(
m(Ci)−m(C0)

)2
+
(
σ(Ci)− σ(C0)

)2
,

where Ci is the current simulation and C0 the experimental pattern to be simulated, m and σ the order
degrees.

The parameters set of the simulation is then randomly modified and the new parameter configuration,
Cj , is accepted as the starting state for further rearrangement depending on the Metropolis criterion:

with probability 1, if g(Cj) < g(Ci),

with probability exp

(
g(Cj)− g(Ci)

T

)
, if g(Cj) > g(Ci),

where T is a decreasing parameter.
The process terminates when no further improvement can be found. In this approach, although the

multivariate function have some local minima, the unique global minimum is reached.

3.1. Proliferation curves

Figure 6 shows the two proliferating curves obtained from the experimental cultures and from the
simulation process. The data were compared by chi-square analysis. The value of the chi-square
χ2 = 2.075 corresponds to a probability of about 0.75.

Table 1
Values adopted for the parameters of the simulation

Phase duration (hours)∗ TG1 = 12 σG1 = 0.75
TS = 7 σS = 0.75
TG2 = 8 σG2 = 0.75
TM = 1.5 σM = 0.5

Probability of quiescence p(quies) = 25%

Probability of detachment p(det) = 20%

Probability of binding p(bind) = 10%

Maximum time in suspension (hours) Tmax(susp) = 10
∗For the cycle phases a normal distribution (Gaussian) of each of the phase
duration T with standard deviation σ is assumed.
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Fig. 6. Proliferating curves (semilogarithmic representation). The plain curve (—) represents the results of the image
analysis. The dashed curve (- - -) represents the results of the simulation process.

3.2. Pattern comparison

Figure 7 represents the sets of points deduced from the image analysis of the proliferation process
of the MCF-7 cells cultured for (A): 1 day after the initial configuration and (B): 4 days after the
initial configuration. The results of the simulation process computed from the initial configuration
in Fig. 2a are shown in (C): 1 day and (D): 4 days of proliferation. Although the simulations look
visually more or less like the experimental results, it is essential to have a quantification of the degree
of similarity between experiment and simulation. To do that, we compute the degree of order of each
pattern with the minimal spanning tree graph.

The results of the computation of the degree of order of the different distributions obtained from
image analysis and the simulation is shown in Fig. 8. The agreement between experiment and
simulation is acceptable because the differences in the degrees of order is of the order of the stochastic
fluctuations amplitude (∆m = 0.015, ∆σ = 0.020).

4. Discussion

Modeling complex physical phenomena by computer simulations has become a common tool for
understanding biological phenomena. Realistic models based on physical laws generally result in
large systems of non-linear integro- and partial differential equations. Such models lead to formidable
numerical problems that require huge memories and fast computers. A way to simplify these numerical
systems is to mimic the physical laws by simple rules computed in parallel by using cellular automata.
Cellular automata are discrete in time, space and state. The abstract properties of general deterministic
cellular automata have been the object of many studies [26]. Recently, Ermentrout et al. [8] have
presented a review on cellular automata approaches to biological modeling. In this study our objective
was twofold: (i) to simulate the proliferation process of a cancer cell line in vitro based on the
cell cycle. (ii) to compare the patterns obtained through the simulation process with those of an
experimental time course of the cell proliferation via a topographical concept: the minimal spanning
tree graph.

Most of the work done by computer simulation of cancer cell growth employed a rigid two-
dimensional square tesselated space, where each site represented a cell. Division occurred by placing
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Fig. 7. Patterns obtained from (A) and (B) the image analysis 1 day and 4 days after the initial configuration, and (C) and
(D) the computation process 1 day and 4 days after the initial configuration in Fig. 2a.

a daughter cell into one neighbouring site [5,6,19,23,25]. These models cannot be used to simulate
changes in cell size [7,17]. Matela and Ransom [17] used another approach, a triangulated planar
graph and its dual structure, a trivalent map taking into account cellular changes. As discussed by
Duvdevani-Bar and Segel [7], this topological model gives no information on the geometric pattern
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Fig. 8. Position of the normalized values of m and σ for the different distributions. The plain curve (—) represents the
results of the image analysis. The dashed curve (- - -) represents the results of the simulation process.

of which it is an abstraction. Our model uses a rigid two-dimensional tessellation, but cell sizes and
changes in cell sizes are simulated.

The simulation-experiment comparison of the proliferation curves and patterns supports the accuracy
of the model. Beyond the subjective evaluation, it is important to have a quantitative estimation of the
degree of similarity between computed and experimental patterns. Smolle et al. [22] use morphological
descriptors to assess this point. Our choice is the minimal spanning tree graph and a good agreement
has been obtained by this approach. Since so much of cell biology is, at best, qualitative, cellular
automata and minimal spanning tree analysis are good tools in which one needs to specify precise
values of parameters before obtaining some results from the model to fit the experiment.

The implemented model is a good start and may be rendered complex in order to take into account
cellular phenotypes and cell communication (contact or signal emitting). Then we should be able to
simulate cancer cell proliferation under growth effectors such as hormones, anti-hormones, growth
factors or anti-tumor agents. Co-cultured cell growth such as for normal and malignant cells can also
be simulated with this model.

The analysis of the results obtained from cellular automata through the minimal spanning tree graph
is a good tool to quantify hidden informations in cell biology experiments. This approach is expected
to provide valuable help in bioassays for understanding of the mechanisms of action of drugs on
cellular populations.
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